Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 02645926

History | View | Annotate | Download (76.9 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 9d0a8e6f bellard
@item G3 BW PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 3475187d bellard
@item Sun4m (32-bit Sparc processor)
78 3475187d bellard
@item Sun4u (64-bit Sparc processor, in progress)
79 3f9f3aa1 bellard
@item Malta board (32-bit MIPS processor)
80 ce819861 pbrook
@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81 00a9bf19 pbrook
@item ARM Versatile baseboard (ARM926E)
82 d7739d75 pbrook
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83 b00052e4 balrog
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
85 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
86 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
87 52c00a5f bellard
@end itemize
88 386405f7 bellard
89 e6e5906b pbrook
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
90 0806e3f6 bellard
91 debc7065 bellard
@node Installation
92 5b9f457a bellard
@chapter Installation
93 5b9f457a bellard
94 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
95 15a34c63 bellard
96 debc7065 bellard
@menu
97 debc7065 bellard
* install_linux::   Linux
98 debc7065 bellard
* install_windows:: Windows
99 debc7065 bellard
* install_mac::     Macintosh
100 debc7065 bellard
@end menu
101 debc7065 bellard
102 debc7065 bellard
@node install_linux
103 1f673135 bellard
@section Linux
104 1f673135 bellard
105 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
106 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
107 5b9f457a bellard
108 debc7065 bellard
@node install_windows
109 1f673135 bellard
@section Windows
110 8cd0ac2f bellard
111 15a34c63 bellard
Download the experimental binary installer at
112 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
113 d691f669 bellard
114 debc7065 bellard
@node install_mac
115 1f673135 bellard
@section Mac OS X
116 d691f669 bellard
117 15a34c63 bellard
Download the experimental binary installer at
118 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
119 df0f11a0 bellard
120 debc7065 bellard
@node QEMU PC System emulator
121 3f9f3aa1 bellard
@chapter QEMU PC System emulator
122 1eb20527 bellard
123 debc7065 bellard
@menu
124 debc7065 bellard
* pcsys_introduction:: Introduction
125 debc7065 bellard
* pcsys_quickstart::   Quick Start
126 debc7065 bellard
* sec_invocation::     Invocation
127 debc7065 bellard
* pcsys_keys::         Keys
128 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
129 debc7065 bellard
* disk_images::        Disk Images
130 debc7065 bellard
* pcsys_network::      Network emulation
131 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
132 debc7065 bellard
* pcsys_usb::          USB emulation
133 f858dcae ths
* vnc_security::       VNC security
134 debc7065 bellard
* gdb_usage::          GDB usage
135 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
136 debc7065 bellard
@end menu
137 debc7065 bellard
138 debc7065 bellard
@node pcsys_introduction
139 0806e3f6 bellard
@section Introduction
140 0806e3f6 bellard
141 0806e3f6 bellard
@c man begin DESCRIPTION
142 0806e3f6 bellard
143 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
144 3f9f3aa1 bellard
following peripherals:
145 0806e3f6 bellard
146 0806e3f6 bellard
@itemize @minus
147 5fafdf24 ths
@item
148 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
149 0806e3f6 bellard
@item
150 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
151 15a34c63 bellard
extensions (hardware level, including all non standard modes).
152 0806e3f6 bellard
@item
153 0806e3f6 bellard
PS/2 mouse and keyboard
154 5fafdf24 ths
@item
155 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
156 1f673135 bellard
@item
157 1f673135 bellard
Floppy disk
158 5fafdf24 ths
@item
159 c4a7060c blueswir1
PCI/ISA PCI network adapters
160 0806e3f6 bellard
@item
161 05d5818c bellard
Serial ports
162 05d5818c bellard
@item
163 c0fe3827 bellard
Creative SoundBlaster 16 sound card
164 c0fe3827 bellard
@item
165 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
166 c0fe3827 bellard
@item
167 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
168 b389dbfb bellard
@item
169 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
170 0806e3f6 bellard
@end itemize
171 0806e3f6 bellard
172 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
173 3f9f3aa1 bellard
174 c0fe3827 bellard
Note that adlib is only available when QEMU was configured with
175 c0fe3827 bellard
-enable-adlib
176 c0fe3827 bellard
177 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
178 15a34c63 bellard
VGA BIOS.
179 15a34c63 bellard
180 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
181 c0fe3827 bellard
182 0806e3f6 bellard
@c man end
183 0806e3f6 bellard
184 debc7065 bellard
@node pcsys_quickstart
185 1eb20527 bellard
@section Quick Start
186 1eb20527 bellard
187 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
188 0806e3f6 bellard
189 0806e3f6 bellard
@example
190 285dc330 bellard
qemu linux.img
191 0806e3f6 bellard
@end example
192 0806e3f6 bellard
193 0806e3f6 bellard
Linux should boot and give you a prompt.
194 0806e3f6 bellard
195 6cc721cf bellard
@node sec_invocation
196 ec410fc9 bellard
@section Invocation
197 ec410fc9 bellard
198 ec410fc9 bellard
@example
199 0806e3f6 bellard
@c man begin SYNOPSIS
200 0806e3f6 bellard
usage: qemu [options] [disk_image]
201 0806e3f6 bellard
@c man end
202 ec410fc9 bellard
@end example
203 ec410fc9 bellard
204 0806e3f6 bellard
@c man begin OPTIONS
205 9d4520d0 bellard
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
206 ec410fc9 bellard
207 ec410fc9 bellard
General options:
208 ec410fc9 bellard
@table @option
209 3dbbdc25 bellard
@item -M machine
210 3dbbdc25 bellard
Select the emulated machine (@code{-M ?} for list)
211 3dbbdc25 bellard
212 2be3bc02 bellard
@item -fda file
213 2be3bc02 bellard
@item -fdb file
214 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
215 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
216 2be3bc02 bellard
217 ec410fc9 bellard
@item -hda file
218 ec410fc9 bellard
@item -hdb file
219 181f1558 bellard
@item -hdc file
220 181f1558 bellard
@item -hdd file
221 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
222 1f47a922 bellard
223 181f1558 bellard
@item -cdrom file
224 181f1558 bellard
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
225 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
226 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
227 181f1558 bellard
228 eec85c2a ths
@item -boot [a|c|d|n]
229 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
230 eec85c2a ths
is the default.
231 1f47a922 bellard
232 181f1558 bellard
@item -snapshot
233 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
234 1f47a922 bellard
the raw disk image you use is not written back. You can however force
235 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
236 ec410fc9 bellard
237 52ca8d6a bellard
@item -no-fd-bootchk
238 52ca8d6a bellard
Disable boot signature checking for floppy disks in Bochs BIOS. It may
239 52ca8d6a bellard
be needed to boot from old floppy disks.
240 52ca8d6a bellard
241 ec410fc9 bellard
@item -m megs
242 15a34c63 bellard
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
243 ec410fc9 bellard
244 3f9f3aa1 bellard
@item -smp n
245 3f9f3aa1 bellard
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
246 a785e42e blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
247 a785e42e blueswir1
to 4.
248 3f9f3aa1 bellard
249 1d14ffa9 bellard
@item -audio-help
250 1d14ffa9 bellard
251 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
252 1d14ffa9 bellard
parameters.
253 1d14ffa9 bellard
254 6a36d84e bellard
@item -soundhw card1,card2,... or -soundhw all
255 1d14ffa9 bellard
256 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
257 1d14ffa9 bellard
available sound hardware.
258 1d14ffa9 bellard
259 1d14ffa9 bellard
@example
260 1d14ffa9 bellard
qemu -soundhw sb16,adlib hda
261 1d14ffa9 bellard
qemu -soundhw es1370 hda
262 6a36d84e bellard
qemu -soundhw all hda
263 1d14ffa9 bellard
qemu -soundhw ?
264 1d14ffa9 bellard
@end example
265 a8c490cd bellard
266 15a34c63 bellard
@item -localtime
267 15a34c63 bellard
Set the real time clock to local time (the default is to UTC
268 15a34c63 bellard
time). This option is needed to have correct date in MS-DOS or
269 15a34c63 bellard
Windows.
270 15a34c63 bellard
271 f7cce898 bellard
@item -pidfile file
272 f7cce898 bellard
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
273 f7cce898 bellard
from a script.
274 f7cce898 bellard
275 71e3ceb8 ths
@item -daemonize
276 71e3ceb8 ths
Daemonize the QEMU process after initialization.  QEMU will not detach from
277 71e3ceb8 ths
standard IO until it is ready to receive connections on any of its devices.
278 71e3ceb8 ths
This option is a useful way for external programs to launch QEMU without having
279 71e3ceb8 ths
to cope with initialization race conditions.
280 71e3ceb8 ths
281 9d0a8e6f bellard
@item -win2k-hack
282 9d0a8e6f bellard
Use it when installing Windows 2000 to avoid a disk full bug. After
283 9d0a8e6f bellard
Windows 2000 is installed, you no longer need this option (this option
284 9d0a8e6f bellard
slows down the IDE transfers).
285 9d0a8e6f bellard
286 9ae02555 ths
@item -option-rom file
287 9ae02555 ths
Load the contents of file as an option ROM.  This option is useful to load
288 9ae02555 ths
things like EtherBoot.
289 9ae02555 ths
290 c35734b2 ths
@item -name string
291 c35734b2 ths
Sets the name of the guest.  This name will be display in the SDL window
292 c35734b2 ths
caption.  The name will also be used for the VNC server.
293 c35734b2 ths
294 0806e3f6 bellard
@end table
295 0806e3f6 bellard
296 f858dcae ths
Display options:
297 f858dcae ths
@table @option
298 f858dcae ths
299 f858dcae ths
@item -nographic
300 f858dcae ths
301 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
302 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
303 f858dcae ths
command line application. The emulated serial port is redirected on
304 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
305 f858dcae ths
with a serial console.
306 f858dcae ths
307 f858dcae ths
@item -no-frame
308 f858dcae ths
309 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
310 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
311 f858dcae ths
workspace more convenient.
312 f858dcae ths
313 f858dcae ths
@item -full-screen
314 f858dcae ths
Start in full screen.
315 f858dcae ths
316 f858dcae ths
@item -vnc display[,option[,option[,...]]]
317 f858dcae ths
318 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
319 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
320 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
321 f858dcae ths
tablet device when using this option (option @option{-usbdevice
322 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
323 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
324 f858dcae ths
syntax for the @var{display} is
325 f858dcae ths
326 f858dcae ths
@table @code
327 f858dcae ths
328 f858dcae ths
@item @var{interface:d}
329 f858dcae ths
330 f858dcae ths
TCP connections will only be allowed from @var{interface} on display @var{d}.
331 f858dcae ths
By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
332 f858dcae ths
be omitted in which case the server will bind to all interfaces.
333 f858dcae ths
334 f858dcae ths
@item @var{unix:path}
335 f858dcae ths
336 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
337 f858dcae ths
location of a unix socket to listen for connections on.
338 f858dcae ths
339 f858dcae ths
@item @var{none}
340 f858dcae ths
341 f858dcae ths
VNC is initialized by not started. The monitor @code{change} command can be used
342 f858dcae ths
to later start the VNC server.
343 f858dcae ths
344 f858dcae ths
@end table
345 f858dcae ths
346 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
347 f858dcae ths
separated by commas. Valid options are
348 f858dcae ths
349 f858dcae ths
@table @code
350 f858dcae ths
351 f858dcae ths
@item @var{password}
352 f858dcae ths
353 f858dcae ths
Require that password based authentication is used for client connections.
354 f858dcae ths
The password must be set separately using the @code{change} command in the
355 f858dcae ths
@ref{pcsys_monitor}
356 f858dcae ths
357 f858dcae ths
@item @var{tls}
358 f858dcae ths
359 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
360 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
361 f858dcae ths
attack. It is recommended that this option be combined with either the
362 f858dcae ths
@var{x509} or @var{x509verify} options.
363 f858dcae ths
364 f858dcae ths
@item @var{x509=/path/to/certificate/dir}
365 f858dcae ths
366 f858dcae ths
Valid if @var{tls} is specified. Require that x509 credentials are used
367 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
368 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
369 f858dcae ths
to provide authentication of the client when this is used. The path following
370 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
371 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
372 f858dcae ths
373 f858dcae ths
@item @var{x509verify=/path/to/certificate/dir}
374 f858dcae ths
375 f858dcae ths
Valid if @var{tls} is specified. Require that x509 credentials are used
376 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
377 f858dcae ths
to the client, and request that the client send its own x509 certificate.
378 f858dcae ths
The server will validate the client's certificate against the CA certificate,
379 f858dcae ths
and reject clients when validation fails. If the certificate authority is
380 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
381 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
382 f858dcae ths
path following this option specifies where the x509 certificates are to
383 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
384 f858dcae ths
certificates.
385 f858dcae ths
386 f858dcae ths
@end table
387 f858dcae ths
388 f858dcae ths
@item -k language
389 f858dcae ths
390 f858dcae ths
Use keyboard layout @var{language} (for example @code{fr} for
391 f858dcae ths
French). This option is only needed where it is not easy to get raw PC
392 f858dcae ths
keycodes (e.g. on Macs, with some X11 servers or with a VNC
393 f858dcae ths
display). You don't normally need to use it on PC/Linux or PC/Windows
394 f858dcae ths
hosts.
395 f858dcae ths
396 f858dcae ths
The available layouts are:
397 f858dcae ths
@example
398 f858dcae ths
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
399 f858dcae ths
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
400 f858dcae ths
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
401 f858dcae ths
@end example
402 f858dcae ths
403 f858dcae ths
The default is @code{en-us}.
404 f858dcae ths
405 f858dcae ths
@end table
406 f858dcae ths
407 b389dbfb bellard
USB options:
408 b389dbfb bellard
@table @option
409 b389dbfb bellard
410 b389dbfb bellard
@item -usb
411 b389dbfb bellard
Enable the USB driver (will be the default soon)
412 b389dbfb bellard
413 b389dbfb bellard
@item -usbdevice devname
414 0aff66b5 pbrook
Add the USB device @var{devname}. @xref{usb_devices}.
415 b389dbfb bellard
@end table
416 b389dbfb bellard
417 1f673135 bellard
Network options:
418 1f673135 bellard
419 1f673135 bellard
@table @option
420 1f673135 bellard
421 a41b2ff2 pbrook
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
422 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
423 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
424 41d03949 bellard
target. Optionally, the MAC address can be changed. If no
425 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
426 549444e1 balrog
Qemu can emulate several different models of network card.
427 549444e1 balrog
Valid values for @var{type} are
428 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
429 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
430 7e049b8a pbrook
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
431 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
432 c4a7060c blueswir1
for a list of available devices for your target.
433 41d03949 bellard
434 115defd1 pbrook
@item -net user[,vlan=n][,hostname=name]
435 7e89463d bellard
Use the user mode network stack which requires no administrator
436 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
437 115defd1 pbrook
hostname reported by the builtin DHCP server.
438 41d03949 bellard
439 41d03949 bellard
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
440 41d03949 bellard
Connect the host TAP network interface @var{name} to VLAN @var{n} and
441 41d03949 bellard
use the network script @var{file} to configure it. The default
442 6a1cbf68 ths
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
443 6a1cbf68 ths
disable script execution. If @var{name} is not
444 41d03949 bellard
provided, the OS automatically provides one.  @option{fd=h} can be
445 41d03949 bellard
used to specify the handle of an already opened host TAP interface. Example:
446 1f673135 bellard
447 41d03949 bellard
@example
448 41d03949 bellard
qemu linux.img -net nic -net tap
449 41d03949 bellard
@end example
450 41d03949 bellard
451 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
452 41d03949 bellard
@example
453 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
454 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
455 41d03949 bellard
@end example
456 3f1a88f4 bellard
457 3f1a88f4 bellard
458 41d03949 bellard
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
459 1f673135 bellard
460 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
461 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
462 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
463 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
464 3d830459 bellard
another QEMU instance using the @option{listen} option. @option{fd=h}
465 3d830459 bellard
specifies an already opened TCP socket.
466 1f673135 bellard
467 41d03949 bellard
Example:
468 41d03949 bellard
@example
469 41d03949 bellard
# launch a first QEMU instance
470 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
471 debc7065 bellard
               -net socket,listen=:1234
472 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
473 debc7065 bellard
# of the first instance
474 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
475 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
476 41d03949 bellard
@end example
477 52c00a5f bellard
478 3d830459 bellard
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
479 3d830459 bellard
480 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
481 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
482 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
483 3d830459 bellard
NOTES:
484 3d830459 bellard
@enumerate
485 5fafdf24 ths
@item
486 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
487 3d830459 bellard
correct multicast setup for these hosts).
488 3d830459 bellard
@item
489 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
490 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
491 4be456f1 ths
@item
492 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
493 3d830459 bellard
@end enumerate
494 3d830459 bellard
495 3d830459 bellard
Example:
496 3d830459 bellard
@example
497 3d830459 bellard
# launch one QEMU instance
498 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
499 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
500 3d830459 bellard
# launch another QEMU instance on same "bus"
501 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
502 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
503 3d830459 bellard
# launch yet another QEMU instance on same "bus"
504 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
505 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
506 3d830459 bellard
@end example
507 3d830459 bellard
508 3d830459 bellard
Example (User Mode Linux compat.):
509 3d830459 bellard
@example
510 debc7065 bellard
# launch QEMU instance (note mcast address selected
511 debc7065 bellard
# is UML's default)
512 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
513 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
514 3d830459 bellard
# launch UML
515 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
516 3d830459 bellard
@end example
517 3d830459 bellard
518 41d03949 bellard
@item -net none
519 41d03949 bellard
Indicate that no network devices should be configured. It is used to
520 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
521 039af320 bellard
is activated if no @option{-net} options are provided.
522 52c00a5f bellard
523 0db1137d ths
@item -tftp dir
524 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
525 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
526 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
527 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
528 0db1137d ths
usual 10.0.2.2.
529 9bf05444 bellard
530 47d5d01a ths
@item -bootp file
531 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
532 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
533 47d5d01a ths
a guest from a local directory.
534 47d5d01a ths
535 47d5d01a ths
Example (using pxelinux):
536 47d5d01a ths
@example
537 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
538 47d5d01a ths
@end example
539 47d5d01a ths
540 2518bd0d bellard
@item -smb dir
541 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
542 2518bd0d bellard
server so that Windows OSes can access to the host files in @file{dir}
543 2518bd0d bellard
transparently.
544 2518bd0d bellard
545 2518bd0d bellard
In the guest Windows OS, the line:
546 2518bd0d bellard
@example
547 2518bd0d bellard
10.0.2.4 smbserver
548 2518bd0d bellard
@end example
549 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
550 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
551 2518bd0d bellard
552 2518bd0d bellard
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
553 2518bd0d bellard
554 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
555 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
556 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
557 2518bd0d bellard
558 9bf05444 bellard
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
559 9bf05444 bellard
560 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
561 9bf05444 bellard
connections to the host port @var{host-port} to the guest
562 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
563 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
564 9bf05444 bellard
built-in DHCP server).
565 9bf05444 bellard
566 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
567 9bf05444 bellard
screen 0, use the following:
568 9bf05444 bellard
569 9bf05444 bellard
@example
570 9bf05444 bellard
# on the host
571 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
572 9bf05444 bellard
# this host xterm should open in the guest X11 server
573 9bf05444 bellard
xterm -display :1
574 9bf05444 bellard
@end example
575 9bf05444 bellard
576 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
577 9bf05444 bellard
the guest, use the following:
578 9bf05444 bellard
579 9bf05444 bellard
@example
580 9bf05444 bellard
# on the host
581 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
582 9bf05444 bellard
telnet localhost 5555
583 9bf05444 bellard
@end example
584 9bf05444 bellard
585 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
586 9bf05444 bellard
connect to the guest telnet server.
587 9bf05444 bellard
588 1f673135 bellard
@end table
589 1f673135 bellard
590 41d03949 bellard
Linux boot specific: When using these options, you can use a given
591 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
592 1f673135 bellard
for easier testing of various kernels.
593 1f673135 bellard
594 0806e3f6 bellard
@table @option
595 0806e3f6 bellard
596 5fafdf24 ths
@item -kernel bzImage
597 0806e3f6 bellard
Use @var{bzImage} as kernel image.
598 0806e3f6 bellard
599 5fafdf24 ths
@item -append cmdline
600 0806e3f6 bellard
Use @var{cmdline} as kernel command line
601 0806e3f6 bellard
602 0806e3f6 bellard
@item -initrd file
603 0806e3f6 bellard
Use @var{file} as initial ram disk.
604 0806e3f6 bellard
605 ec410fc9 bellard
@end table
606 ec410fc9 bellard
607 15a34c63 bellard
Debug/Expert options:
608 ec410fc9 bellard
@table @option
609 a0a821a4 bellard
610 a0a821a4 bellard
@item -serial dev
611 0bab00f3 bellard
Redirect the virtual serial port to host character device
612 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
613 0bab00f3 bellard
@code{stdio} in non graphical mode.
614 0bab00f3 bellard
615 0bab00f3 bellard
This option can be used several times to simulate up to 4 serials
616 0bab00f3 bellard
ports.
617 0bab00f3 bellard
618 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
619 c03b0f0f bellard
620 0bab00f3 bellard
Available character devices are:
621 a0a821a4 bellard
@table @code
622 af3a9031 ths
@item vc[:WxH]
623 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
624 af3a9031 ths
@example
625 af3a9031 ths
vc:800x600
626 af3a9031 ths
@end example
627 af3a9031 ths
It is also possible to specify width or height in characters:
628 af3a9031 ths
@example
629 af3a9031 ths
vc:80Cx24C
630 af3a9031 ths
@end example
631 a0a821a4 bellard
@item pty
632 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
633 c03b0f0f bellard
@item none
634 c03b0f0f bellard
No device is allocated.
635 a0a821a4 bellard
@item null
636 a0a821a4 bellard
void device
637 f8d179e3 bellard
@item /dev/XXX
638 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
639 f8d179e3 bellard
parameters are set according to the emulated ones.
640 e57a8c0e bellard
@item /dev/parportN
641 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
642 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
643 f8d179e3 bellard
@item file:filename
644 f8d179e3 bellard
Write output to filename. No character can be read.
645 a0a821a4 bellard
@item stdio
646 a0a821a4 bellard
[Unix only] standard input/output
647 f8d179e3 bellard
@item pipe:filename
648 0bab00f3 bellard
name pipe @var{filename}
649 0bab00f3 bellard
@item COMn
650 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
651 951f1351 bellard
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
652 4be456f1 ths
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
653 951f1351 bellard
654 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
655 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
656 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
657 951f1351 bellard
will appear in the netconsole session.
658 0bab00f3 bellard
659 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
660 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
661 0bab00f3 bellard
source port each time by using something like @code{-serial
662 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
663 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
664 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
665 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
666 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
667 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
668 0bab00f3 bellard
@table @code
669 951f1351 bellard
@item Qemu Options:
670 951f1351 bellard
-serial udp::4555@@:4556
671 951f1351 bellard
@item netcat options:
672 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
673 951f1351 bellard
@item telnet options:
674 951f1351 bellard
localhost 5555
675 951f1351 bellard
@end table
676 951f1351 bellard
677 951f1351 bellard
678 f7499989 pbrook
@item tcp:[host]:port[,server][,nowait][,nodelay]
679 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
680 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
681 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
682 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
683 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
684 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
685 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
686 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
687 951f1351 bellard
connect to the corresponding character device.
688 951f1351 bellard
@table @code
689 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
690 951f1351 bellard
-serial tcp:192.168.0.2:4444
691 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
692 951f1351 bellard
-serial tcp::4444,server
693 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
694 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
695 a0a821a4 bellard
@end table
696 a0a821a4 bellard
697 f7499989 pbrook
@item telnet:host:port[,server][,nowait][,nodelay]
698 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
699 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
700 951f1351 bellard
difference is that the port acts like a telnet server or client using
701 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
702 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
703 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
704 951f1351 bellard
type "send break" followed by pressing the enter key.
705 0bab00f3 bellard
706 ffd843bc ths
@item unix:path[,server][,nowait]
707 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
708 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
709 ffd843bc ths
@var{path} is used for connections.
710 ffd843bc ths
711 20d8a3ed ths
@item mon:dev_string
712 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
713 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
714 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
715 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
716 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
717 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
718 20d8a3ed ths
listening on port 4444 would be:
719 20d8a3ed ths
@table @code
720 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
721 20d8a3ed ths
@end table
722 20d8a3ed ths
723 0bab00f3 bellard
@end table
724 05d5818c bellard
725 e57a8c0e bellard
@item -parallel dev
726 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
727 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
728 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
729 e57a8c0e bellard
parallel port.
730 e57a8c0e bellard
731 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
732 e57a8c0e bellard
ports.
733 e57a8c0e bellard
734 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
735 c03b0f0f bellard
736 a0a821a4 bellard
@item -monitor dev
737 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
738 a0a821a4 bellard
serial port).
739 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
740 a0a821a4 bellard
non graphical mode.
741 a0a821a4 bellard
742 20d8a3ed ths
@item -echr numeric_ascii_value
743 20d8a3ed ths
Change the escape character used for switching to the monitor when using
744 20d8a3ed ths
monitor and serial sharing.  The default is @code{0x01} when using the
745 20d8a3ed ths
@code{-nographic} option.  @code{0x01} is equal to pressing
746 20d8a3ed ths
@code{Control-a}.  You can select a different character from the ascii
747 20d8a3ed ths
control keys where 1 through 26 map to Control-a through Control-z.  For
748 20d8a3ed ths
instance you could use the either of the following to change the escape
749 20d8a3ed ths
character to Control-t.
750 20d8a3ed ths
@table @code
751 20d8a3ed ths
@item -echr 0x14
752 20d8a3ed ths
@item -echr 20
753 20d8a3ed ths
@end table
754 20d8a3ed ths
755 ec410fc9 bellard
@item -s
756 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
757 ec410fc9 bellard
@item -p port
758 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
759 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
760 52c00a5f bellard
@item -S
761 52c00a5f bellard
Do not start CPU at startup (you must type 'c' in the monitor).
762 3b46e624 ths
@item -d
763 9d4520d0 bellard
Output log in /tmp/qemu.log
764 46d4767d bellard
@item -hdachs c,h,s,[,t]
765 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
766 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
767 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
768 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
769 46d4767d bellard
images.
770 7c3fc84d bellard
771 87b47350 bellard
@item -L path
772 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
773 87b47350 bellard
774 15a34c63 bellard
@item -std-vga
775 15a34c63 bellard
Simulate a standard VGA card with Bochs VBE extensions (default is
776 3cb0853a bellard
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
777 3cb0853a bellard
VBE extensions (e.g. Windows XP) and if you want to use high
778 3cb0853a bellard
resolution modes (>= 1280x1024x16) then you should use this option.
779 3cb0853a bellard
780 3c656346 bellard
@item -no-acpi
781 3c656346 bellard
Disable ACPI (Advanced Configuration and Power Interface) support. Use
782 3c656346 bellard
it if your guest OS complains about ACPI problems (PC target machine
783 3c656346 bellard
only).
784 3c656346 bellard
785 d1beab82 bellard
@item -no-reboot
786 d1beab82 bellard
Exit instead of rebooting.
787 d1beab82 bellard
788 d63d307f bellard
@item -loadvm file
789 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
790 8e71621f pbrook
791 8e71621f pbrook
@item -semihosting
792 a87295e8 pbrook
Enable semihosting syscall emulation (ARM and M68K target machines only).
793 a87295e8 pbrook
794 a87295e8 pbrook
On ARM this implements the "Angel" interface.
795 a87295e8 pbrook
On M68K this implements the "ColdFire GDB" interface used by libgloss.
796 a87295e8 pbrook
797 8e71621f pbrook
Note that this allows guest direct access to the host filesystem,
798 8e71621f pbrook
so should only be used with trusted guest OS.
799 ec410fc9 bellard
@end table
800 ec410fc9 bellard
801 3e11db9a bellard
@c man end
802 3e11db9a bellard
803 debc7065 bellard
@node pcsys_keys
804 3e11db9a bellard
@section Keys
805 3e11db9a bellard
806 3e11db9a bellard
@c man begin OPTIONS
807 3e11db9a bellard
808 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
809 a1b74fe8 bellard
@table @key
810 f9859310 bellard
@item Ctrl-Alt-f
811 a1b74fe8 bellard
Toggle full screen
812 a0a821a4 bellard
813 f9859310 bellard
@item Ctrl-Alt-n
814 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
815 a0a821a4 bellard
@table @emph
816 a0a821a4 bellard
@item 1
817 a0a821a4 bellard
Target system display
818 a0a821a4 bellard
@item 2
819 a0a821a4 bellard
Monitor
820 a0a821a4 bellard
@item 3
821 a0a821a4 bellard
Serial port
822 a1b74fe8 bellard
@end table
823 a1b74fe8 bellard
824 f9859310 bellard
@item Ctrl-Alt
825 a0a821a4 bellard
Toggle mouse and keyboard grab.
826 a0a821a4 bellard
@end table
827 a0a821a4 bellard
828 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
829 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
830 3e11db9a bellard
831 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
832 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
833 ec410fc9 bellard
834 ec410fc9 bellard
@table @key
835 a1b74fe8 bellard
@item Ctrl-a h
836 ec410fc9 bellard
Print this help
837 3b46e624 ths
@item Ctrl-a x
838 366dfc52 ths
Exit emulator
839 3b46e624 ths
@item Ctrl-a s
840 1f47a922 bellard
Save disk data back to file (if -snapshot)
841 20d8a3ed ths
@item Ctrl-a t
842 20d8a3ed ths
toggle console timestamps
843 a1b74fe8 bellard
@item Ctrl-a b
844 1f673135 bellard
Send break (magic sysrq in Linux)
845 a1b74fe8 bellard
@item Ctrl-a c
846 1f673135 bellard
Switch between console and monitor
847 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
848 a1b74fe8 bellard
Send Ctrl-a
849 ec410fc9 bellard
@end table
850 0806e3f6 bellard
@c man end
851 0806e3f6 bellard
852 0806e3f6 bellard
@ignore
853 0806e3f6 bellard
854 1f673135 bellard
@c man begin SEEALSO
855 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
856 1f673135 bellard
user mode emulator invocation.
857 1f673135 bellard
@c man end
858 1f673135 bellard
859 1f673135 bellard
@c man begin AUTHOR
860 1f673135 bellard
Fabrice Bellard
861 1f673135 bellard
@c man end
862 1f673135 bellard
863 1f673135 bellard
@end ignore
864 1f673135 bellard
865 debc7065 bellard
@node pcsys_monitor
866 1f673135 bellard
@section QEMU Monitor
867 1f673135 bellard
868 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
869 1f673135 bellard
emulator. You can use it to:
870 1f673135 bellard
871 1f673135 bellard
@itemize @minus
872 1f673135 bellard
873 1f673135 bellard
@item
874 e598752a ths
Remove or insert removable media images
875 1f673135 bellard
(such as CD-ROM or floppies)
876 1f673135 bellard
877 5fafdf24 ths
@item
878 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
879 1f673135 bellard
from a disk file.
880 1f673135 bellard
881 1f673135 bellard
@item Inspect the VM state without an external debugger.
882 1f673135 bellard
883 1f673135 bellard
@end itemize
884 1f673135 bellard
885 1f673135 bellard
@subsection Commands
886 1f673135 bellard
887 1f673135 bellard
The following commands are available:
888 1f673135 bellard
889 1f673135 bellard
@table @option
890 1f673135 bellard
891 1f673135 bellard
@item help or ? [cmd]
892 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
893 1f673135 bellard
894 3b46e624 ths
@item commit
895 1f673135 bellard
Commit changes to the disk images (if -snapshot is used)
896 1f673135 bellard
897 5fafdf24 ths
@item info subcommand
898 1f673135 bellard
show various information about the system state
899 1f673135 bellard
900 1f673135 bellard
@table @option
901 1f673135 bellard
@item info network
902 41d03949 bellard
show the various VLANs and the associated devices
903 1f673135 bellard
@item info block
904 1f673135 bellard
show the block devices
905 1f673135 bellard
@item info registers
906 1f673135 bellard
show the cpu registers
907 1f673135 bellard
@item info history
908 1f673135 bellard
show the command line history
909 b389dbfb bellard
@item info pci
910 b389dbfb bellard
show emulated PCI device
911 b389dbfb bellard
@item info usb
912 b389dbfb bellard
show USB devices plugged on the virtual USB hub
913 b389dbfb bellard
@item info usbhost
914 b389dbfb bellard
show all USB host devices
915 a3c25997 bellard
@item info capture
916 a3c25997 bellard
show information about active capturing
917 13a2e80f bellard
@item info snapshots
918 13a2e80f bellard
show list of VM snapshots
919 455204eb ths
@item info mice
920 455204eb ths
show which guest mouse is receiving events
921 1f673135 bellard
@end table
922 1f673135 bellard
923 1f673135 bellard
@item q or quit
924 1f673135 bellard
Quit the emulator.
925 1f673135 bellard
926 1f673135 bellard
@item eject [-f] device
927 e598752a ths
Eject a removable medium (use -f to force it).
928 1f673135 bellard
929 f858dcae ths
@item change device setting
930 f858dcae ths
931 f858dcae ths
Change the configuration of a device
932 f858dcae ths
933 f858dcae ths
@table @option
934 f858dcae ths
@item change @var{diskdevice} @var{filename}
935 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
936 f858dcae ths
937 f858dcae ths
@example
938 f858dcae ths
(qemu) change cdrom /path/to/some.iso
939 f858dcae ths
@end example
940 f858dcae ths
941 f858dcae ths
@item change vnc @var{display,options}
942 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
943 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
944 f858dcae ths
945 f858dcae ths
@example
946 f858dcae ths
(qemu) change vnc localhost:1
947 f858dcae ths
@end example
948 f858dcae ths
949 f858dcae ths
@item change vnc password
950 f858dcae ths
951 f858dcae ths
Change the password associated with the VNC server. The monitor will prompt for
952 f858dcae ths
the new password to be entered. VNC passwords are only significant upto 8 letters.
953 f858dcae ths
eg.
954 f858dcae ths
955 f858dcae ths
@example
956 f858dcae ths
(qemu) change vnc password
957 f858dcae ths
Password: ********
958 f858dcae ths
@end example
959 f858dcae ths
960 f858dcae ths
@end table
961 1f673135 bellard
962 1f673135 bellard
@item screendump filename
963 1f673135 bellard
Save screen into PPM image @var{filename}.
964 1f673135 bellard
965 455204eb ths
@item mouse_move dx dy [dz]
966 455204eb ths
Move the active mouse to the specified coordinates @var{dx} @var{dy}
967 455204eb ths
with optional scroll axis @var{dz}.
968 455204eb ths
969 455204eb ths
@item mouse_button val
970 455204eb ths
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
971 455204eb ths
972 455204eb ths
@item mouse_set index
973 455204eb ths
Set which mouse device receives events at given @var{index}, index
974 455204eb ths
can be obtained with
975 455204eb ths
@example
976 455204eb ths
info mice
977 455204eb ths
@end example
978 455204eb ths
979 a3c25997 bellard
@item wavcapture filename [frequency [bits [channels]]]
980 a3c25997 bellard
Capture audio into @var{filename}. Using sample rate @var{frequency}
981 a3c25997 bellard
bits per sample @var{bits} and number of channels @var{channels}.
982 a3c25997 bellard
983 a3c25997 bellard
Defaults:
984 a3c25997 bellard
@itemize @minus
985 a3c25997 bellard
@item Sample rate = 44100 Hz - CD quality
986 a3c25997 bellard
@item Bits = 16
987 a3c25997 bellard
@item Number of channels = 2 - Stereo
988 a3c25997 bellard
@end itemize
989 a3c25997 bellard
990 a3c25997 bellard
@item stopcapture index
991 a3c25997 bellard
Stop capture with a given @var{index}, index can be obtained with
992 a3c25997 bellard
@example
993 a3c25997 bellard
info capture
994 a3c25997 bellard
@end example
995 a3c25997 bellard
996 1f673135 bellard
@item log item1[,...]
997 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
998 1f673135 bellard
999 13a2e80f bellard
@item savevm [tag|id]
1000 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1001 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1002 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1003 13a2e80f bellard
@ref{vm_snapshots}.
1004 1f673135 bellard
1005 13a2e80f bellard
@item loadvm tag|id
1006 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1007 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1008 13a2e80f bellard
1009 13a2e80f bellard
@item delvm tag|id
1010 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1011 1f673135 bellard
1012 1f673135 bellard
@item stop
1013 1f673135 bellard
Stop emulation.
1014 1f673135 bellard
1015 1f673135 bellard
@item c or cont
1016 1f673135 bellard
Resume emulation.
1017 1f673135 bellard
1018 1f673135 bellard
@item gdbserver [port]
1019 1f673135 bellard
Start gdbserver session (default port=1234)
1020 1f673135 bellard
1021 1f673135 bellard
@item x/fmt addr
1022 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1023 1f673135 bellard
1024 1f673135 bellard
@item xp /fmt addr
1025 1f673135 bellard
Physical memory dump starting at @var{addr}.
1026 1f673135 bellard
1027 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1028 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1029 1f673135 bellard
1030 1f673135 bellard
@table @var
1031 5fafdf24 ths
@item count
1032 1f673135 bellard
is the number of items to be dumped.
1033 1f673135 bellard
1034 1f673135 bellard
@item format
1035 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1036 1f673135 bellard
c (char) or i (asm instruction).
1037 1f673135 bellard
1038 1f673135 bellard
@item size
1039 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1040 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1041 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1042 1f673135 bellard
1043 1f673135 bellard
@end table
1044 1f673135 bellard
1045 5fafdf24 ths
Examples:
1046 1f673135 bellard
@itemize
1047 1f673135 bellard
@item
1048 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1049 5fafdf24 ths
@example
1050 1f673135 bellard
(qemu) x/10i $eip
1051 1f673135 bellard
0x90107063:  ret
1052 1f673135 bellard
0x90107064:  sti
1053 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1054 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1055 1f673135 bellard
0x90107070:  ret
1056 1f673135 bellard
0x90107071:  jmp    0x90107080
1057 1f673135 bellard
0x90107073:  nop
1058 1f673135 bellard
0x90107074:  nop
1059 1f673135 bellard
0x90107075:  nop
1060 1f673135 bellard
0x90107076:  nop
1061 1f673135 bellard
@end example
1062 1f673135 bellard
1063 1f673135 bellard
@item
1064 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1065 5fafdf24 ths
@smallexample
1066 1f673135 bellard
(qemu) xp/80hx 0xb8000
1067 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1068 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1069 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1070 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1071 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1072 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1073 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1074 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1075 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1076 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1077 debc7065 bellard
@end smallexample
1078 1f673135 bellard
@end itemize
1079 1f673135 bellard
1080 1f673135 bellard
@item p or print/fmt expr
1081 1f673135 bellard
1082 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1083 1f673135 bellard
used.
1084 0806e3f6 bellard
1085 a3a91a35 bellard
@item sendkey keys
1086 a3a91a35 bellard
1087 a3a91a35 bellard
Send @var{keys} to the emulator. Use @code{-} to press several keys
1088 a3a91a35 bellard
simultaneously. Example:
1089 a3a91a35 bellard
@example
1090 a3a91a35 bellard
sendkey ctrl-alt-f1
1091 a3a91a35 bellard
@end example
1092 a3a91a35 bellard
1093 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1094 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1095 a3a91a35 bellard
1096 15a34c63 bellard
@item system_reset
1097 15a34c63 bellard
1098 15a34c63 bellard
Reset the system.
1099 15a34c63 bellard
1100 b389dbfb bellard
@item usb_add devname
1101 b389dbfb bellard
1102 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1103 0aff66b5 pbrook
@ref{usb_devices}
1104 b389dbfb bellard
1105 b389dbfb bellard
@item usb_del devname
1106 b389dbfb bellard
1107 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1108 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1109 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1110 b389dbfb bellard
1111 1f673135 bellard
@end table
1112 0806e3f6 bellard
1113 1f673135 bellard
@subsection Integer expressions
1114 1f673135 bellard
1115 1f673135 bellard
The monitor understands integers expressions for every integer
1116 1f673135 bellard
argument. You can use register names to get the value of specifics
1117 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1118 ec410fc9 bellard
1119 1f47a922 bellard
@node disk_images
1120 1f47a922 bellard
@section Disk Images
1121 1f47a922 bellard
1122 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1123 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1124 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1125 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1126 13a2e80f bellard
snapshots.
1127 1f47a922 bellard
1128 debc7065 bellard
@menu
1129 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1130 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1131 13a2e80f bellard
* vm_snapshots::              VM snapshots
1132 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1133 19cb3738 bellard
* host_drives::               Using host drives
1134 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1135 debc7065 bellard
@end menu
1136 debc7065 bellard
1137 debc7065 bellard
@node disk_images_quickstart
1138 acd935ef bellard
@subsection Quick start for disk image creation
1139 acd935ef bellard
1140 acd935ef bellard
You can create a disk image with the command:
1141 1f47a922 bellard
@example
1142 acd935ef bellard
qemu-img create myimage.img mysize
1143 1f47a922 bellard
@end example
1144 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1145 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1146 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1147 acd935ef bellard
1148 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1149 1f47a922 bellard
1150 debc7065 bellard
@node disk_images_snapshot_mode
1151 1f47a922 bellard
@subsection Snapshot mode
1152 1f47a922 bellard
1153 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1154 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1155 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1156 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1157 acd935ef bellard
command (or @key{C-a s} in the serial console).
1158 1f47a922 bellard
1159 13a2e80f bellard
@node vm_snapshots
1160 13a2e80f bellard
@subsection VM snapshots
1161 13a2e80f bellard
1162 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1163 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1164 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1165 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1166 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1167 13a2e80f bellard
1168 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1169 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1170 19d36792 bellard
snapshot in addition to its numerical ID.
1171 13a2e80f bellard
1172 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1173 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1174 13a2e80f bellard
with their associated information:
1175 13a2e80f bellard
1176 13a2e80f bellard
@example
1177 13a2e80f bellard
(qemu) info snapshots
1178 13a2e80f bellard
Snapshot devices: hda
1179 13a2e80f bellard
Snapshot list (from hda):
1180 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1181 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1182 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1183 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1184 13a2e80f bellard
@end example
1185 13a2e80f bellard
1186 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1187 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1188 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1189 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1190 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1191 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1192 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1193 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1194 19d36792 bellard
disk images).
1195 13a2e80f bellard
1196 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1197 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1198 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1199 13a2e80f bellard
1200 13a2e80f bellard
VM snapshots currently have the following known limitations:
1201 13a2e80f bellard
@itemize
1202 5fafdf24 ths
@item
1203 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1204 13a2e80f bellard
inserted after a snapshot is done.
1205 5fafdf24 ths
@item
1206 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1207 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1208 13a2e80f bellard
@end itemize
1209 13a2e80f bellard
1210 acd935ef bellard
@node qemu_img_invocation
1211 acd935ef bellard
@subsection @code{qemu-img} Invocation
1212 1f47a922 bellard
1213 acd935ef bellard
@include qemu-img.texi
1214 05efe46e bellard
1215 19cb3738 bellard
@node host_drives
1216 19cb3738 bellard
@subsection Using host drives
1217 19cb3738 bellard
1218 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1219 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1220 19cb3738 bellard
1221 19cb3738 bellard
@subsubsection Linux
1222 19cb3738 bellard
1223 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1224 4be456f1 ths
disk image filename provided you have enough privileges to access
1225 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1226 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1227 19cb3738 bellard
1228 f542086d bellard
@table @code
1229 19cb3738 bellard
@item CD
1230 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1231 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1232 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1233 19cb3738 bellard
@item Floppy
1234 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1235 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1236 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1237 19cb3738 bellard
OS will think that the same floppy is loaded).
1238 19cb3738 bellard
@item Hard disks
1239 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1240 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1241 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1242 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1243 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1244 19cb3738 bellard
line option or modify the device permissions accordingly).
1245 19cb3738 bellard
@end table
1246 19cb3738 bellard
1247 19cb3738 bellard
@subsubsection Windows
1248 19cb3738 bellard
1249 01781963 bellard
@table @code
1250 01781963 bellard
@item CD
1251 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1252 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1253 01781963 bellard
supported as an alias to the first CDROM drive.
1254 19cb3738 bellard
1255 e598752a ths
Currently there is no specific code to handle removable media, so it
1256 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1257 19cb3738 bellard
change or eject media.
1258 01781963 bellard
@item Hard disks
1259 01781963 bellard
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1260 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1261 01781963 bellard
1262 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1263 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1264 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1265 01781963 bellard
modifications are written in a temporary file).
1266 01781963 bellard
@end table
1267 01781963 bellard
1268 19cb3738 bellard
1269 19cb3738 bellard
@subsubsection Mac OS X
1270 19cb3738 bellard
1271 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1272 19cb3738 bellard
1273 e598752a ths
Currently there is no specific code to handle removable media, so it
1274 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1275 19cb3738 bellard
change or eject media.
1276 19cb3738 bellard
1277 debc7065 bellard
@node disk_images_fat_images
1278 2c6cadd4 bellard
@subsection Virtual FAT disk images
1279 2c6cadd4 bellard
1280 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1281 2c6cadd4 bellard
directory tree. In order to use it, just type:
1282 2c6cadd4 bellard
1283 5fafdf24 ths
@example
1284 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1285 2c6cadd4 bellard
@end example
1286 2c6cadd4 bellard
1287 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1288 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1289 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1290 2c6cadd4 bellard
1291 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1292 2c6cadd4 bellard
1293 5fafdf24 ths
@example
1294 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1295 2c6cadd4 bellard
@end example
1296 2c6cadd4 bellard
1297 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1298 2c6cadd4 bellard
@code{:rw:} option:
1299 2c6cadd4 bellard
1300 5fafdf24 ths
@example
1301 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1302 2c6cadd4 bellard
@end example
1303 2c6cadd4 bellard
1304 2c6cadd4 bellard
What you should @emph{never} do:
1305 2c6cadd4 bellard
@itemize
1306 2c6cadd4 bellard
@item use non-ASCII filenames ;
1307 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1308 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1309 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1310 2c6cadd4 bellard
@end itemize
1311 2c6cadd4 bellard
1312 debc7065 bellard
@node pcsys_network
1313 9d4fb82e bellard
@section Network emulation
1314 9d4fb82e bellard
1315 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1316 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1317 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1318 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1319 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1320 41d03949 bellard
network stack can replace the TAP device to have a basic network
1321 41d03949 bellard
connection.
1322 41d03949 bellard
1323 41d03949 bellard
@subsection VLANs
1324 9d4fb82e bellard
1325 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1326 41d03949 bellard
connection between several network devices. These devices can be for
1327 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1328 41d03949 bellard
(TAP devices).
1329 9d4fb82e bellard
1330 41d03949 bellard
@subsection Using TAP network interfaces
1331 41d03949 bellard
1332 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1333 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1334 41d03949 bellard
can then configure it as if it was a real ethernet card.
1335 9d4fb82e bellard
1336 8f40c388 bellard
@subsubsection Linux host
1337 8f40c388 bellard
1338 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1339 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1340 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1341 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1342 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1343 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1344 9d4fb82e bellard
1345 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1346 ee0f4751 bellard
TAP network interfaces.
1347 9d4fb82e bellard
1348 8f40c388 bellard
@subsubsection Windows host
1349 8f40c388 bellard
1350 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1351 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1352 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1353 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1354 8f40c388 bellard
1355 9d4fb82e bellard
@subsection Using the user mode network stack
1356 9d4fb82e bellard
1357 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1358 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1359 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1360 41d03949 bellard
network). The virtual network configuration is the following:
1361 9d4fb82e bellard
1362 9d4fb82e bellard
@example
1363 9d4fb82e bellard
1364 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1365 41d03949 bellard
                           |          (10.0.2.2)
1366 9d4fb82e bellard
                           |
1367 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1368 3b46e624 ths
                           |
1369 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1370 9d4fb82e bellard
@end example
1371 9d4fb82e bellard
1372 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1373 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1374 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1375 41d03949 bellard
to the hosts starting from 10.0.2.15.
1376 9d4fb82e bellard
1377 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1378 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1379 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1380 9d4fb82e bellard
1381 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1382 4be456f1 ths
would require root privileges. It means you can only ping the local
1383 b415a407 bellard
router (10.0.2.2).
1384 b415a407 bellard
1385 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1386 9bf05444 bellard
server.
1387 9bf05444 bellard
1388 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1389 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1390 9bf05444 bellard
redirect X11, telnet or SSH connections.
1391 443f1376 bellard
1392 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1393 41d03949 bellard
1394 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1395 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1396 41d03949 bellard
basic example.
1397 41d03949 bellard
1398 9d4fb82e bellard
@node direct_linux_boot
1399 9d4fb82e bellard
@section Direct Linux Boot
1400 1f673135 bellard
1401 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1402 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1403 ee0f4751 bellard
kernel testing.
1404 1f673135 bellard
1405 ee0f4751 bellard
The syntax is:
1406 1f673135 bellard
@example
1407 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1408 1f673135 bellard
@end example
1409 1f673135 bellard
1410 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1411 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1412 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1413 1f673135 bellard
1414 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1415 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1416 ee0f4751 bellard
Linux kernel.
1417 1f673135 bellard
1418 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1419 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1420 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1421 1f673135 bellard
@example
1422 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1423 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1424 1f673135 bellard
@end example
1425 1f673135 bellard
1426 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1427 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1428 1f673135 bellard
1429 debc7065 bellard
@node pcsys_usb
1430 b389dbfb bellard
@section USB emulation
1431 b389dbfb bellard
1432 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1433 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1434 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1435 f542086d bellard
as necessary to connect multiple USB devices.
1436 b389dbfb bellard
1437 0aff66b5 pbrook
@menu
1438 0aff66b5 pbrook
* usb_devices::
1439 0aff66b5 pbrook
* host_usb_devices::
1440 0aff66b5 pbrook
@end menu
1441 0aff66b5 pbrook
@node usb_devices
1442 0aff66b5 pbrook
@subsection Connecting USB devices
1443 b389dbfb bellard
1444 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1445 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1446 b389dbfb bellard
1447 0aff66b5 pbrook
@table @var
1448 0aff66b5 pbrook
@item @code{mouse}
1449 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1450 0aff66b5 pbrook
@item @code{tablet}
1451 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1452 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1453 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1454 0aff66b5 pbrook
@item @code{disk:file}
1455 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1456 0aff66b5 pbrook
@item @code{host:bus.addr}
1457 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1458 0aff66b5 pbrook
(Linux only)
1459 0aff66b5 pbrook
@item @code{host:vendor_id:product_id}
1460 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1461 0aff66b5 pbrook
(Linux only)
1462 f6d2a316 balrog
@item @code{wacom-tablet}
1463 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1464 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1465 f6d2a316 balrog
coordinates it reports touch pressure.
1466 47b2d338 balrog
@item @code{keyboard}
1467 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1468 0aff66b5 pbrook
@end table
1469 b389dbfb bellard
1470 0aff66b5 pbrook
@node host_usb_devices
1471 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1472 b389dbfb bellard
1473 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1474 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1475 b389dbfb bellard
Cameras) are not supported yet.
1476 b389dbfb bellard
1477 b389dbfb bellard
@enumerate
1478 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1479 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1480 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1481 b389dbfb bellard
to @file{mydriver.o.disabled}.
1482 b389dbfb bellard
1483 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1484 b389dbfb bellard
@example
1485 b389dbfb bellard
ls /proc/bus/usb
1486 b389dbfb bellard
001  devices  drivers
1487 b389dbfb bellard
@end example
1488 b389dbfb bellard
1489 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1490 b389dbfb bellard
@example
1491 b389dbfb bellard
chown -R myuid /proc/bus/usb
1492 b389dbfb bellard
@end example
1493 b389dbfb bellard
1494 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1495 5fafdf24 ths
@example
1496 b389dbfb bellard
info usbhost
1497 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1498 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1499 b389dbfb bellard
@end example
1500 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1501 b389dbfb bellard
hubs, it won't work).
1502 b389dbfb bellard
1503 b389dbfb bellard
@item Add the device in QEMU by using:
1504 5fafdf24 ths
@example
1505 b389dbfb bellard
usb_add host:1234:5678
1506 b389dbfb bellard
@end example
1507 b389dbfb bellard
1508 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1509 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1510 b389dbfb bellard
1511 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1512 b389dbfb bellard
1513 b389dbfb bellard
@end enumerate
1514 b389dbfb bellard
1515 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1516 b389dbfb bellard
device to make it work again (this is a bug).
1517 b389dbfb bellard
1518 f858dcae ths
@node vnc_security
1519 f858dcae ths
@section VNC security
1520 f858dcae ths
1521 f858dcae ths
The VNC server capability provides access to the graphical console
1522 f858dcae ths
of the guest VM across the network. This has a number of security
1523 f858dcae ths
considerations depending on the deployment scenarios.
1524 f858dcae ths
1525 f858dcae ths
@menu
1526 f858dcae ths
* vnc_sec_none::
1527 f858dcae ths
* vnc_sec_password::
1528 f858dcae ths
* vnc_sec_certificate::
1529 f858dcae ths
* vnc_sec_certificate_verify::
1530 f858dcae ths
* vnc_sec_certificate_pw::
1531 f858dcae ths
* vnc_generate_cert::
1532 f858dcae ths
@end menu
1533 f858dcae ths
@node vnc_sec_none
1534 f858dcae ths
@subsection Without passwords
1535 f858dcae ths
1536 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1537 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1538 f858dcae ths
socket only. For example
1539 f858dcae ths
1540 f858dcae ths
@example
1541 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1542 f858dcae ths
@end example
1543 f858dcae ths
1544 f858dcae ths
This ensures that only users on local box with read/write access to that
1545 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1546 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1547 f858dcae ths
tunnel.
1548 f858dcae ths
1549 f858dcae ths
@node vnc_sec_password
1550 f858dcae ths
@subsection With passwords
1551 f858dcae ths
1552 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1553 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1554 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1555 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1556 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1557 f858dcae ths
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1558 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1559 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1560 f858dcae ths
1561 f858dcae ths
@example
1562 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1563 f858dcae ths
(qemu) change vnc password
1564 f858dcae ths
Password: ********
1565 f858dcae ths
(qemu)
1566 f858dcae ths
@end example
1567 f858dcae ths
1568 f858dcae ths
@node vnc_sec_certificate
1569 f858dcae ths
@subsection With x509 certificates
1570 f858dcae ths
1571 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1572 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1573 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1574 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1575 f858dcae ths
support provides a secure session, but no authentication. This allows any
1576 f858dcae ths
client to connect, and provides an encrypted session.
1577 f858dcae ths
1578 f858dcae ths
@example
1579 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1580 f858dcae ths
@end example
1581 f858dcae ths
1582 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1583 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1584 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1585 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1586 f858dcae ths
only be readable by the user owning it.
1587 f858dcae ths
1588 f858dcae ths
@node vnc_sec_certificate_verify
1589 f858dcae ths
@subsection With x509 certificates and client verification
1590 f858dcae ths
1591 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1592 f858dcae ths
The server will request that the client provide a certificate, which it will
1593 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1594 f858dcae ths
in an environment with a private internal certificate authority.
1595 f858dcae ths
1596 f858dcae ths
@example
1597 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1598 f858dcae ths
@end example
1599 f858dcae ths
1600 f858dcae ths
1601 f858dcae ths
@node vnc_sec_certificate_pw
1602 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1603 f858dcae ths
1604 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1605 f858dcae ths
to provide two layers of authentication for clients.
1606 f858dcae ths
1607 f858dcae ths
@example
1608 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1609 f858dcae ths
(qemu) change vnc password
1610 f858dcae ths
Password: ********
1611 f858dcae ths
(qemu)
1612 f858dcae ths
@end example
1613 f858dcae ths
1614 f858dcae ths
@node vnc_generate_cert
1615 f858dcae ths
@subsection Generating certificates for VNC
1616 f858dcae ths
1617 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1618 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1619 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1620 f858dcae ths
each server. If using certificates for authentication, then each client
1621 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1622 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1623 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1624 f858dcae ths
1625 f858dcae ths
@menu
1626 f858dcae ths
* vnc_generate_ca::
1627 f858dcae ths
* vnc_generate_server::
1628 f858dcae ths
* vnc_generate_client::
1629 f858dcae ths
@end menu
1630 f858dcae ths
@node vnc_generate_ca
1631 f858dcae ths
@subsubsection Setup the Certificate Authority
1632 f858dcae ths
1633 f858dcae ths
This step only needs to be performed once per organization / organizational
1634 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1635 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1636 f858dcae ths
issued with it is lost.
1637 f858dcae ths
1638 f858dcae ths
@example
1639 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1640 f858dcae ths
@end example
1641 f858dcae ths
1642 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1643 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1644 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1645 f858dcae ths
name of the organization.
1646 f858dcae ths
1647 f858dcae ths
@example
1648 f858dcae ths
# cat > ca.info <<EOF
1649 f858dcae ths
cn = Name of your organization
1650 f858dcae ths
ca
1651 f858dcae ths
cert_signing_key
1652 f858dcae ths
EOF
1653 f858dcae ths
# certtool --generate-self-signed \
1654 f858dcae ths
           --load-privkey ca-key.pem
1655 f858dcae ths
           --template ca.info \
1656 f858dcae ths
           --outfile ca-cert.pem
1657 f858dcae ths
@end example
1658 f858dcae ths
1659 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1660 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1661 f858dcae ths
1662 f858dcae ths
@node vnc_generate_server
1663 f858dcae ths
@subsubsection Issuing server certificates
1664 f858dcae ths
1665 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1666 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1667 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1668 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1669 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1670 f858dcae ths
secure CA private key:
1671 f858dcae ths
1672 f858dcae ths
@example
1673 f858dcae ths
# cat > server.info <<EOF
1674 f858dcae ths
organization = Name  of your organization
1675 f858dcae ths
cn = server.foo.example.com
1676 f858dcae ths
tls_www_server
1677 f858dcae ths
encryption_key
1678 f858dcae ths
signing_key
1679 f858dcae ths
EOF
1680 f858dcae ths
# certtool --generate-privkey > server-key.pem
1681 f858dcae ths
# certtool --generate-certificate \
1682 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1683 f858dcae ths
           --load-ca-privkey ca-key.pem \
1684 f858dcae ths
           --load-privkey server server-key.pem \
1685 f858dcae ths
           --template server.info \
1686 f858dcae ths
           --outfile server-cert.pem
1687 f858dcae ths
@end example
1688 f858dcae ths
1689 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1690 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1691 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1692 f858dcae ths
1693 f858dcae ths
@node vnc_generate_client
1694 f858dcae ths
@subsubsection Issuing client certificates
1695 f858dcae ths
1696 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1697 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1698 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1699 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1700 f858dcae ths
the secure CA private key:
1701 f858dcae ths
1702 f858dcae ths
@example
1703 f858dcae ths
# cat > client.info <<EOF
1704 f858dcae ths
country = GB
1705 f858dcae ths
state = London
1706 f858dcae ths
locality = London
1707 f858dcae ths
organiazation = Name of your organization
1708 f858dcae ths
cn = client.foo.example.com
1709 f858dcae ths
tls_www_client
1710 f858dcae ths
encryption_key
1711 f858dcae ths
signing_key
1712 f858dcae ths
EOF
1713 f858dcae ths
# certtool --generate-privkey > client-key.pem
1714 f858dcae ths
# certtool --generate-certificate \
1715 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1716 f858dcae ths
           --load-ca-privkey ca-key.pem \
1717 f858dcae ths
           --load-privkey client-key.pem \
1718 f858dcae ths
           --template client.info \
1719 f858dcae ths
           --outfile client-cert.pem
1720 f858dcae ths
@end example
1721 f858dcae ths
1722 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1723 f858dcae ths
copied to the client for which they were generated.
1724 f858dcae ths
1725 0806e3f6 bellard
@node gdb_usage
1726 da415d54 bellard
@section GDB usage
1727 da415d54 bellard
1728 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1729 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1730 da415d54 bellard
1731 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1732 da415d54 bellard
gdb connection:
1733 da415d54 bellard
@example
1734 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1735 debc7065 bellard
       -append "root=/dev/hda"
1736 da415d54 bellard
Connected to host network interface: tun0
1737 da415d54 bellard
Waiting gdb connection on port 1234
1738 da415d54 bellard
@end example
1739 da415d54 bellard
1740 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1741 da415d54 bellard
@example
1742 da415d54 bellard
> gdb vmlinux
1743 da415d54 bellard
@end example
1744 da415d54 bellard
1745 da415d54 bellard
In gdb, connect to QEMU:
1746 da415d54 bellard
@example
1747 6c9bf893 bellard
(gdb) target remote localhost:1234
1748 da415d54 bellard
@end example
1749 da415d54 bellard
1750 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1751 da415d54 bellard
@example
1752 da415d54 bellard
(gdb) c
1753 da415d54 bellard
@end example
1754 da415d54 bellard
1755 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1756 0806e3f6 bellard
1757 0806e3f6 bellard
@enumerate
1758 0806e3f6 bellard
@item
1759 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1760 0806e3f6 bellard
@item
1761 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1762 0806e3f6 bellard
@item
1763 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1764 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1765 0806e3f6 bellard
@end enumerate
1766 0806e3f6 bellard
1767 debc7065 bellard
@node pcsys_os_specific
1768 1a084f3d bellard
@section Target OS specific information
1769 1a084f3d bellard
1770 1a084f3d bellard
@subsection Linux
1771 1a084f3d bellard
1772 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1773 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1774 15a34c63 bellard
color depth in the guest and the host OS.
1775 1a084f3d bellard
1776 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1777 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1778 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1779 e3371e62 bellard
cannot simulate exactly.
1780 e3371e62 bellard
1781 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1782 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1783 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1784 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1785 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1786 7c3fc84d bellard
1787 1a084f3d bellard
@subsection Windows
1788 1a084f3d bellard
1789 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1790 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1791 1a084f3d bellard
1792 e3371e62 bellard
@subsubsection SVGA graphic modes support
1793 e3371e62 bellard
1794 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1795 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1796 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1797 15a34c63 bellard
depth in the guest and the host OS.
1798 1a084f3d bellard
1799 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1800 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1801 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1802 3cb0853a bellard
(option @option{-std-vga}).
1803 3cb0853a bellard
1804 e3371e62 bellard
@subsubsection CPU usage reduction
1805 e3371e62 bellard
1806 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1807 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1808 15a34c63 bellard
idle. You can install the utility from
1809 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1810 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1811 1a084f3d bellard
1812 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1813 e3371e62 bellard
1814 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1815 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1816 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1817 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1818 9d0a8e6f bellard
IDE transfers).
1819 e3371e62 bellard
1820 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1821 6cc721cf bellard
1822 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1823 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1824 6cc721cf bellard
use the APM driver provided by the BIOS.
1825 6cc721cf bellard
1826 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1827 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1828 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1829 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1830 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1831 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1832 6cc721cf bellard
1833 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1834 6cc721cf bellard
1835 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1836 6cc721cf bellard
1837 2192c332 bellard
@subsubsection Windows XP security problem
1838 e3371e62 bellard
1839 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1840 e3371e62 bellard
error when booting:
1841 e3371e62 bellard
@example
1842 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1843 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1844 e3371e62 bellard
@end example
1845 e3371e62 bellard
1846 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1847 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1848 2192c332 bellard
network while in safe mode, its recommended to download the full
1849 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1850 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1851 e3371e62 bellard
1852 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1853 a0a821a4 bellard
1854 a0a821a4 bellard
@subsubsection CPU usage reduction
1855 a0a821a4 bellard
1856 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1857 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1858 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1859 a0a821a4 bellard
problem.
1860 a0a821a4 bellard
1861 debc7065 bellard
@node QEMU System emulator for non PC targets
1862 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1863 3f9f3aa1 bellard
1864 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1865 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1866 4be456f1 ths
differences are mentioned in the following sections.
1867 3f9f3aa1 bellard
1868 debc7065 bellard
@menu
1869 debc7065 bellard
* QEMU PowerPC System emulator::
1870 24d4de45 ths
* Sparc32 System emulator::
1871 24d4de45 ths
* Sparc64 System emulator::
1872 24d4de45 ths
* MIPS System emulator::
1873 24d4de45 ths
* ARM System emulator::
1874 24d4de45 ths
* ColdFire System emulator::
1875 debc7065 bellard
@end menu
1876 debc7065 bellard
1877 debc7065 bellard
@node QEMU PowerPC System emulator
1878 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
1879 1a084f3d bellard
1880 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1881 15a34c63 bellard
or PowerMac PowerPC system.
1882 1a084f3d bellard
1883 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1884 1a084f3d bellard
1885 15a34c63 bellard
@itemize @minus
1886 5fafdf24 ths
@item
1887 5fafdf24 ths
UniNorth PCI Bridge
1888 15a34c63 bellard
@item
1889 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1890 5fafdf24 ths
@item
1891 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1892 5fafdf24 ths
@item
1893 15a34c63 bellard
NE2000 PCI adapters
1894 15a34c63 bellard
@item
1895 15a34c63 bellard
Non Volatile RAM
1896 15a34c63 bellard
@item
1897 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1898 1a084f3d bellard
@end itemize
1899 1a084f3d bellard
1900 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1901 52c00a5f bellard
1902 52c00a5f bellard
@itemize @minus
1903 5fafdf24 ths
@item
1904 15a34c63 bellard
PCI Bridge
1905 15a34c63 bellard
@item
1906 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1907 5fafdf24 ths
@item
1908 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1909 52c00a5f bellard
@item
1910 52c00a5f bellard
Floppy disk
1911 5fafdf24 ths
@item
1912 15a34c63 bellard
NE2000 network adapters
1913 52c00a5f bellard
@item
1914 52c00a5f bellard
Serial port
1915 52c00a5f bellard
@item
1916 52c00a5f bellard
PREP Non Volatile RAM
1917 15a34c63 bellard
@item
1918 15a34c63 bellard
PC compatible keyboard and mouse.
1919 52c00a5f bellard
@end itemize
1920 52c00a5f bellard
1921 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1922 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1923 52c00a5f bellard
1924 15a34c63 bellard
@c man begin OPTIONS
1925 15a34c63 bellard
1926 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1927 15a34c63 bellard
1928 15a34c63 bellard
@table @option
1929 15a34c63 bellard
1930 3b46e624 ths
@item -g WxH[xDEPTH]
1931 15a34c63 bellard
1932 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1933 15a34c63 bellard
1934 15a34c63 bellard
@end table
1935 15a34c63 bellard
1936 5fafdf24 ths
@c man end
1937 15a34c63 bellard
1938 15a34c63 bellard
1939 52c00a5f bellard
More information is available at
1940 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1941 52c00a5f bellard
1942 24d4de45 ths
@node Sparc32 System emulator
1943 24d4de45 ths
@section Sparc32 System emulator
1944 e80cfcfc bellard
1945 0986ac3b bellard
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1946 a2502b58 blueswir1
or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1947 a785e42e blueswir1
SMP up to 16 CPUs is supported, but Linux limits the number of usable CPUs
1948 a785e42e blueswir1
to 4.
1949 e80cfcfc bellard
1950 b671f9ed bellard
QEMU emulates the following sun4m peripherals:
1951 e80cfcfc bellard
1952 e80cfcfc bellard
@itemize @minus
1953 3475187d bellard
@item
1954 e80cfcfc bellard
IOMMU
1955 e80cfcfc bellard
@item
1956 e80cfcfc bellard
TCX Frame buffer
1957 5fafdf24 ths
@item
1958 e80cfcfc bellard
Lance (Am7990) Ethernet
1959 e80cfcfc bellard
@item
1960 e80cfcfc bellard
Non Volatile RAM M48T08
1961 e80cfcfc bellard
@item
1962 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1963 3475187d bellard
and power/reset logic
1964 3475187d bellard
@item
1965 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1966 3475187d bellard
@item
1967 3475187d bellard
Floppy drive
1968 a2502b58 blueswir1
@item
1969 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1970 e80cfcfc bellard
@end itemize
1971 e80cfcfc bellard
1972 a785e42e blueswir1
The number of peripherals is fixed in the architecture.  Maximum memory size
1973 a785e42e blueswir1
depends on the machine type, for SS-5 it is 256MB and for SS-10 2047MB.
1974 3475187d bellard
1975 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1976 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1977 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1978 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1979 3475187d bellard
1980 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1981 0986ac3b bellard
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1982 0986ac3b bellard
Solaris kernels don't work.
1983 3475187d bellard
1984 3475187d bellard
@c man begin OPTIONS
1985 3475187d bellard
1986 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1987 3475187d bellard
1988 3475187d bellard
@table @option
1989 3475187d bellard
1990 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
1991 3475187d bellard
1992 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1993 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1994 3475187d bellard
1995 66508601 blueswir1
@item -prom-env string
1996 66508601 blueswir1
1997 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1998 66508601 blueswir1
1999 66508601 blueswir1
@example
2000 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2001 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2002 66508601 blueswir1
@end example
2003 66508601 blueswir1
2004 a2502b58 blueswir1
@item -M [SS-5|SS-10]
2005 a2502b58 blueswir1
2006 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2007 a2502b58 blueswir1
2008 3475187d bellard
@end table
2009 3475187d bellard
2010 5fafdf24 ths
@c man end
2011 3475187d bellard
2012 24d4de45 ths
@node Sparc64 System emulator
2013 24d4de45 ths
@section Sparc64 System emulator
2014 e80cfcfc bellard
2015 3475187d bellard
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2016 3475187d bellard
The emulator is not usable for anything yet.
2017 b756921a bellard
2018 83469015 bellard
QEMU emulates the following sun4u peripherals:
2019 83469015 bellard
2020 83469015 bellard
@itemize @minus
2021 83469015 bellard
@item
2022 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2023 83469015 bellard
@item
2024 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2025 83469015 bellard
@item
2026 83469015 bellard
Non Volatile RAM M48T59
2027 83469015 bellard
@item
2028 83469015 bellard
PC-compatible serial ports
2029 83469015 bellard
@end itemize
2030 83469015 bellard
2031 24d4de45 ths
@node MIPS System emulator
2032 24d4de45 ths
@section MIPS System emulator
2033 9d0a8e6f bellard
2034 9d0a8e6f bellard
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2035 24d4de45 ths
Three different machine types are emulated:
2036 24d4de45 ths
2037 24d4de45 ths
@itemize @minus
2038 24d4de45 ths
@item
2039 24d4de45 ths
A generic ISA PC-like machine "mips"
2040 24d4de45 ths
@item
2041 24d4de45 ths
The MIPS Malta prototype board "malta"
2042 24d4de45 ths
@item
2043 24d4de45 ths
An ACER Pica "pica61"
2044 6bf5b4e8 ths
@item
2045 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2046 24d4de45 ths
@end itemize
2047 24d4de45 ths
2048 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2049 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2050 24d4de45 ths
emulated:
2051 3f9f3aa1 bellard
2052 3f9f3aa1 bellard
@itemize @minus
2053 5fafdf24 ths
@item
2054 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2055 3f9f3aa1 bellard
@item
2056 3f9f3aa1 bellard
PC style serial port
2057 3f9f3aa1 bellard
@item
2058 24d4de45 ths
PC style IDE disk
2059 24d4de45 ths
@item
2060 3f9f3aa1 bellard
NE2000 network card
2061 3f9f3aa1 bellard
@end itemize
2062 3f9f3aa1 bellard
2063 24d4de45 ths
The Malta emulation supports the following devices:
2064 24d4de45 ths
2065 24d4de45 ths
@itemize @minus
2066 24d4de45 ths
@item
2067 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2068 24d4de45 ths
@item
2069 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2070 24d4de45 ths
@item
2071 24d4de45 ths
The Multi-I/O chip's serial device
2072 24d4de45 ths
@item
2073 24d4de45 ths
PCnet32 PCI network card
2074 24d4de45 ths
@item
2075 24d4de45 ths
Malta FPGA serial device
2076 24d4de45 ths
@item
2077 24d4de45 ths
Cirrus VGA graphics card
2078 24d4de45 ths
@end itemize
2079 24d4de45 ths
2080 24d4de45 ths
The ACER Pica emulation supports:
2081 24d4de45 ths
2082 24d4de45 ths
@itemize @minus
2083 24d4de45 ths
@item
2084 24d4de45 ths
MIPS R4000 CPU
2085 24d4de45 ths
@item
2086 24d4de45 ths
PC-style IRQ and DMA controllers
2087 24d4de45 ths
@item
2088 24d4de45 ths
PC Keyboard
2089 24d4de45 ths
@item
2090 24d4de45 ths
IDE controller
2091 24d4de45 ths
@end itemize
2092 3f9f3aa1 bellard
2093 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2094 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2095 f0fc6f8f ths
It supports:
2096 6bf5b4e8 ths
2097 6bf5b4e8 ths
@itemize @minus
2098 6bf5b4e8 ths
@item
2099 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2100 6bf5b4e8 ths
@item
2101 6bf5b4e8 ths
PC style serial port
2102 6bf5b4e8 ths
@item
2103 6bf5b4e8 ths
MIPSnet network emulation
2104 6bf5b4e8 ths
@end itemize
2105 6bf5b4e8 ths
2106 24d4de45 ths
@node ARM System emulator
2107 24d4de45 ths
@section ARM System emulator
2108 3f9f3aa1 bellard
2109 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2110 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2111 3f9f3aa1 bellard
devices:
2112 3f9f3aa1 bellard
2113 3f9f3aa1 bellard
@itemize @minus
2114 3f9f3aa1 bellard
@item
2115 ce819861 pbrook
ARM926E, ARM1026E or ARM946E CPU
2116 3f9f3aa1 bellard
@item
2117 3f9f3aa1 bellard
Two PL011 UARTs
2118 5fafdf24 ths
@item
2119 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2120 00a9bf19 pbrook
@item
2121 00a9bf19 pbrook
PL110 LCD controller
2122 00a9bf19 pbrook
@item
2123 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2124 a1bb27b1 pbrook
@item
2125 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2126 00a9bf19 pbrook
@end itemize
2127 00a9bf19 pbrook
2128 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2129 00a9bf19 pbrook
2130 00a9bf19 pbrook
@itemize @minus
2131 00a9bf19 pbrook
@item
2132 00a9bf19 pbrook
ARM926E CPU
2133 00a9bf19 pbrook
@item
2134 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2135 00a9bf19 pbrook
@item
2136 00a9bf19 pbrook
Four PL011 UARTs
2137 5fafdf24 ths
@item
2138 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2139 00a9bf19 pbrook
@item
2140 00a9bf19 pbrook
PL110 LCD controller
2141 00a9bf19 pbrook
@item
2142 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2143 00a9bf19 pbrook
@item
2144 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2145 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2146 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2147 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2148 00a9bf19 pbrook
mapped control registers.
2149 e6de1bad pbrook
@item
2150 e6de1bad pbrook
PCI OHCI USB controller.
2151 e6de1bad pbrook
@item
2152 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2153 a1bb27b1 pbrook
@item
2154 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2155 3f9f3aa1 bellard
@end itemize
2156 3f9f3aa1 bellard
2157 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2158 d7739d75 pbrook
2159 d7739d75 pbrook
@itemize @minus
2160 d7739d75 pbrook
@item
2161 d7739d75 pbrook
ARM926E CPU
2162 d7739d75 pbrook
@item
2163 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2164 d7739d75 pbrook
@item
2165 d7739d75 pbrook
Four PL011 UARTs
2166 5fafdf24 ths
@item
2167 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2168 d7739d75 pbrook
@item
2169 d7739d75 pbrook
PL110 LCD controller
2170 d7739d75 pbrook
@item
2171 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2172 d7739d75 pbrook
@item
2173 d7739d75 pbrook
PCI host bridge
2174 d7739d75 pbrook
@item
2175 d7739d75 pbrook
PCI OHCI USB controller
2176 d7739d75 pbrook
@item
2177 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2178 a1bb27b1 pbrook
@item
2179 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2180 d7739d75 pbrook
@end itemize
2181 d7739d75 pbrook
2182 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2183 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2184 b00052e4 balrog
2185 b00052e4 balrog
@itemize @minus
2186 b00052e4 balrog
@item
2187 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2188 b00052e4 balrog
@item
2189 b00052e4 balrog
NAND Flash memory
2190 b00052e4 balrog
@item
2191 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2192 b00052e4 balrog
@item
2193 b00052e4 balrog
On-chip OHCI USB controller
2194 b00052e4 balrog
@item
2195 b00052e4 balrog
On-chip LCD controller
2196 b00052e4 balrog
@item
2197 b00052e4 balrog
On-chip Real Time Clock
2198 b00052e4 balrog
@item
2199 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2200 b00052e4 balrog
@item
2201 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2202 b00052e4 balrog
@item
2203 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2204 b00052e4 balrog
@item
2205 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2206 b00052e4 balrog
@item
2207 b00052e4 balrog
Three on-chip UARTs
2208 b00052e4 balrog
@item
2209 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2210 b00052e4 balrog
@end itemize
2211 b00052e4 balrog
2212 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2213 02645926 balrog
following elements:
2214 02645926 balrog
2215 02645926 balrog
@itemize @minus
2216 02645926 balrog
@item
2217 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2218 02645926 balrog
@item
2219 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2220 02645926 balrog
@item
2221 02645926 balrog
On-chip LCD controller
2222 02645926 balrog
@item
2223 02645926 balrog
On-chip Real Time Clock
2224 02645926 balrog
@item
2225 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2226 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2227 02645926 balrog
@item
2228 02645926 balrog
GPIO-connected matrix keypad
2229 02645926 balrog
@item
2230 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2231 02645926 balrog
@item
2232 02645926 balrog
Three on-chip UARTs
2233 02645926 balrog
@end itemize
2234 02645926 balrog
2235 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2236 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2237 9d0a8e6f bellard
2238 24d4de45 ths
@node ColdFire System emulator
2239 24d4de45 ths
@section ColdFire System emulator
2240 209a4e69 pbrook
2241 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2242 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2243 707e011b pbrook
2244 707e011b pbrook
The M5208EVB emulation includes the following devices:
2245 707e011b pbrook
2246 707e011b pbrook
@itemize @minus
2247 5fafdf24 ths
@item
2248 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2249 707e011b pbrook
@item
2250 707e011b pbrook
Three Two on-chip UARTs.
2251 707e011b pbrook
@item
2252 707e011b pbrook
Fast Ethernet Controller (FEC)
2253 707e011b pbrook
@end itemize
2254 707e011b pbrook
2255 707e011b pbrook
The AN5206 emulation includes the following devices:
2256 209a4e69 pbrook
2257 209a4e69 pbrook
@itemize @minus
2258 5fafdf24 ths
@item
2259 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2260 209a4e69 pbrook
@item
2261 209a4e69 pbrook
Two on-chip UARTs.
2262 209a4e69 pbrook
@end itemize
2263 209a4e69 pbrook
2264 5fafdf24 ths
@node QEMU User space emulator
2265 5fafdf24 ths
@chapter QEMU User space emulator
2266 83195237 bellard
2267 83195237 bellard
@menu
2268 83195237 bellard
* Supported Operating Systems ::
2269 83195237 bellard
* Linux User space emulator::
2270 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2271 83195237 bellard
@end menu
2272 83195237 bellard
2273 83195237 bellard
@node Supported Operating Systems
2274 83195237 bellard
@section Supported Operating Systems
2275 83195237 bellard
2276 83195237 bellard
The following OS are supported in user space emulation:
2277 83195237 bellard
2278 83195237 bellard
@itemize @minus
2279 83195237 bellard
@item
2280 4be456f1 ths
Linux (referred as qemu-linux-user)
2281 83195237 bellard
@item
2282 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2283 83195237 bellard
@end itemize
2284 83195237 bellard
2285 83195237 bellard
@node Linux User space emulator
2286 83195237 bellard
@section Linux User space emulator
2287 386405f7 bellard
2288 debc7065 bellard
@menu
2289 debc7065 bellard
* Quick Start::
2290 debc7065 bellard
* Wine launch::
2291 debc7065 bellard
* Command line options::
2292 79737e4a pbrook
* Other binaries::
2293 debc7065 bellard
@end menu
2294 debc7065 bellard
2295 debc7065 bellard
@node Quick Start
2296 83195237 bellard
@subsection Quick Start
2297 df0f11a0 bellard
2298 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2299 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2300 386405f7 bellard
2301 1f673135 bellard
@itemize
2302 386405f7 bellard
2303 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2304 1f673135 bellard
libraries:
2305 386405f7 bellard
2306 5fafdf24 ths
@example
2307 1f673135 bellard
qemu-i386 -L / /bin/ls
2308 1f673135 bellard
@end example
2309 386405f7 bellard
2310 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2311 1f673135 bellard
@file{/} prefix.
2312 386405f7 bellard
2313 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2314 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2315 386405f7 bellard
2316 5fafdf24 ths
@example
2317 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2318 1f673135 bellard
@end example
2319 386405f7 bellard
2320 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2321 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2322 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2323 df0f11a0 bellard
2324 1f673135 bellard
@example
2325 5fafdf24 ths
unset LD_LIBRARY_PATH
2326 1f673135 bellard
@end example
2327 1eb87257 bellard
2328 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2329 1eb87257 bellard
2330 1f673135 bellard
@example
2331 1f673135 bellard
qemu-i386 tests/i386/ls
2332 1f673135 bellard
@end example
2333 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2334 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2335 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2336 1f673135 bellard
Linux kernel.
2337 1eb87257 bellard
2338 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2339 1f673135 bellard
@example
2340 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2341 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2342 1f673135 bellard
@end example
2343 1eb20527 bellard
2344 1f673135 bellard
@end itemize
2345 1eb20527 bellard
2346 debc7065 bellard
@node Wine launch
2347 83195237 bellard
@subsection Wine launch
2348 1eb20527 bellard
2349 1f673135 bellard
@itemize
2350 386405f7 bellard
2351 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2352 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2353 1f673135 bellard
able to do:
2354 386405f7 bellard
2355 1f673135 bellard
@example
2356 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2357 1f673135 bellard
@end example
2358 386405f7 bellard
2359 1f673135 bellard
@item Download the binary x86 Wine install
2360 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2361 386405f7 bellard
2362 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2363 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2364 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2365 386405f7 bellard
2366 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2367 386405f7 bellard
2368 1f673135 bellard
@example
2369 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2370 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2371 1f673135 bellard
@end example
2372 386405f7 bellard
2373 1f673135 bellard
@end itemize
2374 fd429f2f bellard
2375 debc7065 bellard
@node Command line options
2376 83195237 bellard
@subsection Command line options
2377 1eb20527 bellard
2378 1f673135 bellard
@example
2379 1f673135 bellard
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2380 1f673135 bellard
@end example
2381 1eb20527 bellard
2382 1f673135 bellard
@table @option
2383 1f673135 bellard
@item -h
2384 1f673135 bellard
Print the help
2385 3b46e624 ths
@item -L path
2386 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2387 1f673135 bellard
@item -s size
2388 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2389 386405f7 bellard
@end table
2390 386405f7 bellard
2391 1f673135 bellard
Debug options:
2392 386405f7 bellard
2393 1f673135 bellard
@table @option
2394 1f673135 bellard
@item -d
2395 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2396 1f673135 bellard
@item -p pagesize
2397 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2398 1f673135 bellard
@end table
2399 386405f7 bellard
2400 79737e4a pbrook
@node Other binaries
2401 83195237 bellard
@subsection Other binaries
2402 79737e4a pbrook
2403 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2404 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2405 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2406 79737e4a pbrook
2407 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2408 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2409 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2410 e6e5906b pbrook
2411 79737e4a pbrook
The binary format is detected automatically.
2412 79737e4a pbrook
2413 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2414 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2415 a785e42e blueswir1
2416 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2417 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2418 a785e42e blueswir1
2419 83195237 bellard
@node Mac OS X/Darwin User space emulator
2420 83195237 bellard
@section Mac OS X/Darwin User space emulator
2421 83195237 bellard
2422 83195237 bellard
@menu
2423 83195237 bellard
* Mac OS X/Darwin Status::
2424 83195237 bellard
* Mac OS X/Darwin Quick Start::
2425 83195237 bellard
* Mac OS X/Darwin Command line options::
2426 83195237 bellard
@end menu
2427 83195237 bellard
2428 83195237 bellard
@node Mac OS X/Darwin Status
2429 83195237 bellard
@subsection Mac OS X/Darwin Status
2430 83195237 bellard
2431 83195237 bellard
@itemize @minus
2432 83195237 bellard
@item
2433 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2434 83195237 bellard
@item
2435 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2436 83195237 bellard
@item
2437 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2438 83195237 bellard
@item
2439 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2440 83195237 bellard
@end itemize
2441 83195237 bellard
2442 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2443 83195237 bellard
2444 83195237 bellard
@node Mac OS X/Darwin Quick Start
2445 83195237 bellard
@subsection Quick Start
2446 83195237 bellard
2447 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2448 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2449 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2450 83195237 bellard
CD or compile them by hand.
2451 83195237 bellard
2452 83195237 bellard
@itemize
2453 83195237 bellard
2454 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2455 83195237 bellard
libraries:
2456 83195237 bellard
2457 5fafdf24 ths
@example
2458 dbcf5e82 ths
qemu-i386 /bin/ls
2459 83195237 bellard
@end example
2460 83195237 bellard
2461 83195237 bellard
or to run the ppc version of the executable:
2462 83195237 bellard
2463 5fafdf24 ths
@example
2464 dbcf5e82 ths
qemu-ppc /bin/ls
2465 83195237 bellard
@end example
2466 83195237 bellard
2467 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2468 83195237 bellard
are installed:
2469 83195237 bellard
2470 5fafdf24 ths
@example
2471 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2472 83195237 bellard
@end example
2473 83195237 bellard
2474 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2475 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2476 83195237 bellard
2477 83195237 bellard
@end itemize
2478 83195237 bellard
2479 83195237 bellard
@node Mac OS X/Darwin Command line options
2480 83195237 bellard
@subsection Command line options
2481 83195237 bellard
2482 83195237 bellard
@example
2483 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2484 83195237 bellard
@end example
2485 83195237 bellard
2486 83195237 bellard
@table @option
2487 83195237 bellard
@item -h
2488 83195237 bellard
Print the help
2489 3b46e624 ths
@item -L path
2490 83195237 bellard
Set the library root path (default=/)
2491 83195237 bellard
@item -s size
2492 83195237 bellard
Set the stack size in bytes (default=524288)
2493 83195237 bellard
@end table
2494 83195237 bellard
2495 83195237 bellard
Debug options:
2496 83195237 bellard
2497 83195237 bellard
@table @option
2498 83195237 bellard
@item -d
2499 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2500 83195237 bellard
@item -p pagesize
2501 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2502 83195237 bellard
@end table
2503 83195237 bellard
2504 15a34c63 bellard
@node compilation
2505 15a34c63 bellard
@chapter Compilation from the sources
2506 15a34c63 bellard
2507 debc7065 bellard
@menu
2508 debc7065 bellard
* Linux/Unix::
2509 debc7065 bellard
* Windows::
2510 debc7065 bellard
* Cross compilation for Windows with Linux::
2511 debc7065 bellard
* Mac OS X::
2512 debc7065 bellard
@end menu
2513 debc7065 bellard
2514 debc7065 bellard
@node Linux/Unix
2515 7c3fc84d bellard
@section Linux/Unix
2516 7c3fc84d bellard
2517 7c3fc84d bellard
@subsection Compilation
2518 7c3fc84d bellard
2519 7c3fc84d bellard
First you must decompress the sources:
2520 7c3fc84d bellard
@example
2521 7c3fc84d bellard
cd /tmp
2522 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2523 7c3fc84d bellard
cd qemu-x.y.z
2524 7c3fc84d bellard
@end example
2525 7c3fc84d bellard
2526 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2527 7c3fc84d bellard
@example
2528 7c3fc84d bellard
./configure
2529 7c3fc84d bellard
make
2530 7c3fc84d bellard
@end example
2531 7c3fc84d bellard
2532 7c3fc84d bellard
Then type as root user:
2533 7c3fc84d bellard
@example
2534 7c3fc84d bellard
make install
2535 7c3fc84d bellard
@end example
2536 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2537 7c3fc84d bellard
2538 4fe8b87a bellard
@subsection GCC version
2539 7c3fc84d bellard
2540 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
2541 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
2542 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2543 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
2544 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
2545 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
2546 4be456f1 ths
these older versions so that usually you don't have to do anything.
2547 15a34c63 bellard
2548 debc7065 bellard
@node Windows
2549 15a34c63 bellard
@section Windows
2550 15a34c63 bellard
2551 15a34c63 bellard
@itemize
2552 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2553 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2554 15a34c63 bellard
instructions in the download section and the FAQ.
2555 15a34c63 bellard
2556 5fafdf24 ths
@item Download
2557 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2558 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2559 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2560 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2561 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
2562 15a34c63 bellard
correct SDL directory when invoked.
2563 15a34c63 bellard
2564 15a34c63 bellard
@item Extract the current version of QEMU.
2565 5fafdf24 ths
2566 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2567 15a34c63 bellard
2568 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2569 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2570 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2571 15a34c63 bellard
2572 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2573 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2574 15a34c63 bellard
@file{Program Files/Qemu}.
2575 15a34c63 bellard
2576 15a34c63 bellard
@end itemize
2577 15a34c63 bellard
2578 debc7065 bellard
@node Cross compilation for Windows with Linux
2579 15a34c63 bellard
@section Cross compilation for Windows with Linux
2580 15a34c63 bellard
2581 15a34c63 bellard
@itemize
2582 15a34c63 bellard
@item
2583 15a34c63 bellard
Install the MinGW cross compilation tools available at
2584 15a34c63 bellard
@url{http://www.mingw.org/}.
2585 15a34c63 bellard
2586 5fafdf24 ths
@item
2587 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2588 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2589 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2590 15a34c63 bellard
the QEMU configuration script.
2591 15a34c63 bellard
2592 5fafdf24 ths
@item
2593 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2594 15a34c63 bellard
@example
2595 15a34c63 bellard
./configure --enable-mingw32
2596 15a34c63 bellard
@end example
2597 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
2598 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
2599 15a34c63 bellard
--prefix to set the Win32 install path.
2600 15a34c63 bellard
2601 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2602 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2603 5fafdf24 ths
installation directory.
2604 15a34c63 bellard
2605 15a34c63 bellard
@end itemize
2606 15a34c63 bellard
2607 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
2608 15a34c63 bellard
QEMU for Win32.
2609 15a34c63 bellard
2610 debc7065 bellard
@node Mac OS X
2611 15a34c63 bellard
@section Mac OS X
2612 15a34c63 bellard
2613 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2614 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2615 15a34c63 bellard
information.
2616 15a34c63 bellard
2617 debc7065 bellard
@node Index
2618 debc7065 bellard
@chapter Index
2619 debc7065 bellard
@printindex cp
2620 debc7065 bellard
2621 debc7065 bellard
@bye