Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 02645926

History | View | Annotate | Download (76.9 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Freescale MCF5208EVB (ColdFire V2).
85
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
86
@item Palm Tungsten|E PDA (OMAP310 processor)
87
@end itemize
88

    
89
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
90

    
91
@node Installation
92
@chapter Installation
93

    
94
If you want to compile QEMU yourself, see @ref{compilation}.
95

    
96
@menu
97
* install_linux::   Linux
98
* install_windows:: Windows
99
* install_mac::     Macintosh
100
@end menu
101

    
102
@node install_linux
103
@section Linux
104

    
105
If a precompiled package is available for your distribution - you just
106
have to install it. Otherwise, see @ref{compilation}.
107

    
108
@node install_windows
109
@section Windows
110

    
111
Download the experimental binary installer at
112
@url{http://www.free.oszoo.org/@/download.html}.
113

    
114
@node install_mac
115
@section Mac OS X
116

    
117
Download the experimental binary installer at
118
@url{http://www.free.oszoo.org/@/download.html}.
119

    
120
@node QEMU PC System emulator
121
@chapter QEMU PC System emulator
122

    
123
@menu
124
* pcsys_introduction:: Introduction
125
* pcsys_quickstart::   Quick Start
126
* sec_invocation::     Invocation
127
* pcsys_keys::         Keys
128
* pcsys_monitor::      QEMU Monitor
129
* disk_images::        Disk Images
130
* pcsys_network::      Network emulation
131
* direct_linux_boot::  Direct Linux Boot
132
* pcsys_usb::          USB emulation
133
* vnc_security::       VNC security
134
* gdb_usage::          GDB usage
135
* pcsys_os_specific::  Target OS specific information
136
@end menu
137

    
138
@node pcsys_introduction
139
@section Introduction
140

    
141
@c man begin DESCRIPTION
142

    
143
The QEMU PC System emulator simulates the
144
following peripherals:
145

    
146
@itemize @minus
147
@item
148
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
149
@item
150
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
151
extensions (hardware level, including all non standard modes).
152
@item
153
PS/2 mouse and keyboard
154
@item
155
2 PCI IDE interfaces with hard disk and CD-ROM support
156
@item
157
Floppy disk
158
@item
159
PCI/ISA PCI network adapters
160
@item
161
Serial ports
162
@item
163
Creative SoundBlaster 16 sound card
164
@item
165
ENSONIQ AudioPCI ES1370 sound card
166
@item
167
Adlib(OPL2) - Yamaha YM3812 compatible chip
168
@item
169
PCI UHCI USB controller and a virtual USB hub.
170
@end itemize
171

    
172
SMP is supported with up to 255 CPUs.
173

    
174
Note that adlib is only available when QEMU was configured with
175
-enable-adlib
176

    
177
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
178
VGA BIOS.
179

    
180
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
181

    
182
@c man end
183

    
184
@node pcsys_quickstart
185
@section Quick Start
186

    
187
Download and uncompress the linux image (@file{linux.img}) and type:
188

    
189
@example
190
qemu linux.img
191
@end example
192

    
193
Linux should boot and give you a prompt.
194

    
195
@node sec_invocation
196
@section Invocation
197

    
198
@example
199
@c man begin SYNOPSIS
200
usage: qemu [options] [disk_image]
201
@c man end
202
@end example
203

    
204
@c man begin OPTIONS
205
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
206

    
207
General options:
208
@table @option
209
@item -M machine
210
Select the emulated machine (@code{-M ?} for list)
211

    
212
@item -fda file
213
@item -fdb file
214
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
215
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
216

    
217
@item -hda file
218
@item -hdb file
219
@item -hdc file
220
@item -hdd file
221
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
222

    
223
@item -cdrom file
224
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
225
@option{-cdrom} at the same time). You can use the host CD-ROM by
226
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
227

    
228
@item -boot [a|c|d|n]
229
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
230
is the default.
231

    
232
@item -snapshot
233
Write to temporary files instead of disk image files. In this case,
234
the raw disk image you use is not written back. You can however force
235
the write back by pressing @key{C-a s} (@pxref{disk_images}).
236

    
237
@item -no-fd-bootchk
238
Disable boot signature checking for floppy disks in Bochs BIOS. It may
239
be needed to boot from old floppy disks.
240

    
241
@item -m megs
242
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
243

    
244
@item -smp n
245
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
246
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
247
to 4.
248

    
249
@item -audio-help
250

    
251
Will show the audio subsystem help: list of drivers, tunable
252
parameters.
253

    
254
@item -soundhw card1,card2,... or -soundhw all
255

    
256
Enable audio and selected sound hardware. Use ? to print all
257
available sound hardware.
258

    
259
@example
260
qemu -soundhw sb16,adlib hda
261
qemu -soundhw es1370 hda
262
qemu -soundhw all hda
263
qemu -soundhw ?
264
@end example
265

    
266
@item -localtime
267
Set the real time clock to local time (the default is to UTC
268
time). This option is needed to have correct date in MS-DOS or
269
Windows.
270

    
271
@item -pidfile file
272
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
273
from a script.
274

    
275
@item -daemonize
276
Daemonize the QEMU process after initialization.  QEMU will not detach from
277
standard IO until it is ready to receive connections on any of its devices.
278
This option is a useful way for external programs to launch QEMU without having
279
to cope with initialization race conditions.
280

    
281
@item -win2k-hack
282
Use it when installing Windows 2000 to avoid a disk full bug. After
283
Windows 2000 is installed, you no longer need this option (this option
284
slows down the IDE transfers).
285

    
286
@item -option-rom file
287
Load the contents of file as an option ROM.  This option is useful to load
288
things like EtherBoot.
289

    
290
@item -name string
291
Sets the name of the guest.  This name will be display in the SDL window
292
caption.  The name will also be used for the VNC server.
293

    
294
@end table
295

    
296
Display options:
297
@table @option
298

    
299
@item -nographic
300

    
301
Normally, QEMU uses SDL to display the VGA output. With this option,
302
you can totally disable graphical output so that QEMU is a simple
303
command line application. The emulated serial port is redirected on
304
the console. Therefore, you can still use QEMU to debug a Linux kernel
305
with a serial console.
306

    
307
@item -no-frame
308

    
309
Do not use decorations for SDL windows and start them using the whole
310
available screen space. This makes the using QEMU in a dedicated desktop
311
workspace more convenient.
312

    
313
@item -full-screen
314
Start in full screen.
315

    
316
@item -vnc display[,option[,option[,...]]]
317

    
318
Normally, QEMU uses SDL to display the VGA output.  With this option,
319
you can have QEMU listen on VNC display @var{display} and redirect the VGA
320
display over the VNC session.  It is very useful to enable the usb
321
tablet device when using this option (option @option{-usbdevice
322
tablet}). When using the VNC display, you must use the @option{-k}
323
parameter to set the keyboard layout if you are not using en-us. Valid
324
syntax for the @var{display} is
325

    
326
@table @code
327

    
328
@item @var{interface:d}
329

    
330
TCP connections will only be allowed from @var{interface} on display @var{d}.
331
By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
332
be omitted in which case the server will bind to all interfaces.
333

    
334
@item @var{unix:path}
335

    
336
Connections will be allowed over UNIX domain sockets where @var{path} is the
337
location of a unix socket to listen for connections on.
338

    
339
@item @var{none}
340

    
341
VNC is initialized by not started. The monitor @code{change} command can be used
342
to later start the VNC server.
343

    
344
@end table
345

    
346
Following the @var{display} value there may be one or more @var{option} flags
347
separated by commas. Valid options are
348

    
349
@table @code
350

    
351
@item @var{password}
352

    
353
Require that password based authentication is used for client connections.
354
The password must be set separately using the @code{change} command in the
355
@ref{pcsys_monitor}
356

    
357
@item @var{tls}
358

    
359
Require that client use TLS when communicating with the VNC server. This
360
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
361
attack. It is recommended that this option be combined with either the
362
@var{x509} or @var{x509verify} options.
363

    
364
@item @var{x509=/path/to/certificate/dir}
365

    
366
Valid if @var{tls} is specified. Require that x509 credentials are used
367
for negotiating the TLS session. The server will send its x509 certificate
368
to the client. It is recommended that a password be set on the VNC server
369
to provide authentication of the client when this is used. The path following
370
this option specifies where the x509 certificates are to be loaded from.
371
See the @ref{vnc_security} section for details on generating certificates.
372

    
373
@item @var{x509verify=/path/to/certificate/dir}
374

    
375
Valid if @var{tls} is specified. Require that x509 credentials are used
376
for negotiating the TLS session. The server will send its x509 certificate
377
to the client, and request that the client send its own x509 certificate.
378
The server will validate the client's certificate against the CA certificate,
379
and reject clients when validation fails. If the certificate authority is
380
trusted, this is a sufficient authentication mechanism. You may still wish
381
to set a password on the VNC server as a second authentication layer. The
382
path following this option specifies where the x509 certificates are to
383
be loaded from. See the @ref{vnc_security} section for details on generating
384
certificates.
385

    
386
@end table
387

    
388
@item -k language
389

    
390
Use keyboard layout @var{language} (for example @code{fr} for
391
French). This option is only needed where it is not easy to get raw PC
392
keycodes (e.g. on Macs, with some X11 servers or with a VNC
393
display). You don't normally need to use it on PC/Linux or PC/Windows
394
hosts.
395

    
396
The available layouts are:
397
@example
398
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
399
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
400
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
401
@end example
402

    
403
The default is @code{en-us}.
404

    
405
@end table
406

    
407
USB options:
408
@table @option
409

    
410
@item -usb
411
Enable the USB driver (will be the default soon)
412

    
413
@item -usbdevice devname
414
Add the USB device @var{devname}. @xref{usb_devices}.
415
@end table
416

    
417
Network options:
418

    
419
@table @option
420

    
421
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
422
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
423
= 0 is the default). The NIC is an ne2k_pci by default on the PC
424
target. Optionally, the MAC address can be changed. If no
425
@option{-net} option is specified, a single NIC is created.
426
Qemu can emulate several different models of network card.
427
Valid values for @var{type} are
428
@code{i82551}, @code{i82557b}, @code{i82559er},
429
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
430
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
431
Not all devices are supported on all targets.  Use -net nic,model=?
432
for a list of available devices for your target.
433

    
434
@item -net user[,vlan=n][,hostname=name]
435
Use the user mode network stack which requires no administrator
436
privilege to run.  @option{hostname=name} can be used to specify the client
437
hostname reported by the builtin DHCP server.
438

    
439
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
440
Connect the host TAP network interface @var{name} to VLAN @var{n} and
441
use the network script @var{file} to configure it. The default
442
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
443
disable script execution. If @var{name} is not
444
provided, the OS automatically provides one.  @option{fd=h} can be
445
used to specify the handle of an already opened host TAP interface. Example:
446

    
447
@example
448
qemu linux.img -net nic -net tap
449
@end example
450

    
451
More complicated example (two NICs, each one connected to a TAP device)
452
@example
453
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
454
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
455
@end example
456

    
457

    
458
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
459

    
460
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
461
machine using a TCP socket connection. If @option{listen} is
462
specified, QEMU waits for incoming connections on @var{port}
463
(@var{host} is optional). @option{connect} is used to connect to
464
another QEMU instance using the @option{listen} option. @option{fd=h}
465
specifies an already opened TCP socket.
466

    
467
Example:
468
@example
469
# launch a first QEMU instance
470
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
471
               -net socket,listen=:1234
472
# connect the VLAN 0 of this instance to the VLAN 0
473
# of the first instance
474
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
475
               -net socket,connect=127.0.0.1:1234
476
@end example
477

    
478
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
479

    
480
Create a VLAN @var{n} shared with another QEMU virtual
481
machines using a UDP multicast socket, effectively making a bus for
482
every QEMU with same multicast address @var{maddr} and @var{port}.
483
NOTES:
484
@enumerate
485
@item
486
Several QEMU can be running on different hosts and share same bus (assuming
487
correct multicast setup for these hosts).
488
@item
489
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
490
@url{http://user-mode-linux.sf.net}.
491
@item
492
Use @option{fd=h} to specify an already opened UDP multicast socket.
493
@end enumerate
494

    
495
Example:
496
@example
497
# launch one QEMU instance
498
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
499
               -net socket,mcast=230.0.0.1:1234
500
# launch another QEMU instance on same "bus"
501
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
502
               -net socket,mcast=230.0.0.1:1234
503
# launch yet another QEMU instance on same "bus"
504
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
505
               -net socket,mcast=230.0.0.1:1234
506
@end example
507

    
508
Example (User Mode Linux compat.):
509
@example
510
# launch QEMU instance (note mcast address selected
511
# is UML's default)
512
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
513
               -net socket,mcast=239.192.168.1:1102
514
# launch UML
515
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
516
@end example
517

    
518
@item -net none
519
Indicate that no network devices should be configured. It is used to
520
override the default configuration (@option{-net nic -net user}) which
521
is activated if no @option{-net} options are provided.
522

    
523
@item -tftp dir
524
When using the user mode network stack, activate a built-in TFTP
525
server. The files in @var{dir} will be exposed as the root of a TFTP server.
526
The TFTP client on the guest must be configured in binary mode (use the command
527
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
528
usual 10.0.2.2.
529

    
530
@item -bootp file
531
When using the user mode network stack, broadcast @var{file} as the BOOTP
532
filename.  In conjunction with @option{-tftp}, this can be used to network boot
533
a guest from a local directory.
534

    
535
Example (using pxelinux):
536
@example
537
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
538
@end example
539

    
540
@item -smb dir
541
When using the user mode network stack, activate a built-in SMB
542
server so that Windows OSes can access to the host files in @file{dir}
543
transparently.
544

    
545
In the guest Windows OS, the line:
546
@example
547
10.0.2.4 smbserver
548
@end example
549
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
550
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
551

    
552
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
553

    
554
Note that a SAMBA server must be installed on the host OS in
555
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
556
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
557

    
558
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
559

    
560
When using the user mode network stack, redirect incoming TCP or UDP
561
connections to the host port @var{host-port} to the guest
562
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
563
is not specified, its value is 10.0.2.15 (default address given by the
564
built-in DHCP server).
565

    
566
For example, to redirect host X11 connection from screen 1 to guest
567
screen 0, use the following:
568

    
569
@example
570
# on the host
571
qemu -redir tcp:6001::6000 [...]
572
# this host xterm should open in the guest X11 server
573
xterm -display :1
574
@end example
575

    
576
To redirect telnet connections from host port 5555 to telnet port on
577
the guest, use the following:
578

    
579
@example
580
# on the host
581
qemu -redir tcp:5555::23 [...]
582
telnet localhost 5555
583
@end example
584

    
585
Then when you use on the host @code{telnet localhost 5555}, you
586
connect to the guest telnet server.
587

    
588
@end table
589

    
590
Linux boot specific: When using these options, you can use a given
591
Linux kernel without installing it in the disk image. It can be useful
592
for easier testing of various kernels.
593

    
594
@table @option
595

    
596
@item -kernel bzImage
597
Use @var{bzImage} as kernel image.
598

    
599
@item -append cmdline
600
Use @var{cmdline} as kernel command line
601

    
602
@item -initrd file
603
Use @var{file} as initial ram disk.
604

    
605
@end table
606

    
607
Debug/Expert options:
608
@table @option
609

    
610
@item -serial dev
611
Redirect the virtual serial port to host character device
612
@var{dev}. The default device is @code{vc} in graphical mode and
613
@code{stdio} in non graphical mode.
614

    
615
This option can be used several times to simulate up to 4 serials
616
ports.
617

    
618
Use @code{-serial none} to disable all serial ports.
619

    
620
Available character devices are:
621
@table @code
622
@item vc[:WxH]
623
Virtual console. Optionally, a width and height can be given in pixel with
624
@example
625
vc:800x600
626
@end example
627
It is also possible to specify width or height in characters:
628
@example
629
vc:80Cx24C
630
@end example
631
@item pty
632
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
633
@item none
634
No device is allocated.
635
@item null
636
void device
637
@item /dev/XXX
638
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
639
parameters are set according to the emulated ones.
640
@item /dev/parportN
641
[Linux only, parallel port only] Use host parallel port
642
@var{N}. Currently SPP and EPP parallel port features can be used.
643
@item file:filename
644
Write output to filename. No character can be read.
645
@item stdio
646
[Unix only] standard input/output
647
@item pipe:filename
648
name pipe @var{filename}
649
@item COMn
650
[Windows only] Use host serial port @var{n}
651
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
652
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
653

    
654
If you just want a simple readonly console you can use @code{netcat} or
655
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
656
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
657
will appear in the netconsole session.
658

    
659
If you plan to send characters back via netconsole or you want to stop
660
and start qemu a lot of times, you should have qemu use the same
661
source port each time by using something like @code{-serial
662
udp::4555@@:4556} to qemu. Another approach is to use a patched
663
version of netcat which can listen to a TCP port and send and receive
664
characters via udp.  If you have a patched version of netcat which
665
activates telnet remote echo and single char transfer, then you can
666
use the following options to step up a netcat redirector to allow
667
telnet on port 5555 to access the qemu port.
668
@table @code
669
@item Qemu Options:
670
-serial udp::4555@@:4556
671
@item netcat options:
672
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
673
@item telnet options:
674
localhost 5555
675
@end table
676

    
677

    
678
@item tcp:[host]:port[,server][,nowait][,nodelay]
679
The TCP Net Console has two modes of operation.  It can send the serial
680
I/O to a location or wait for a connection from a location.  By default
681
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
682
the @var{server} option QEMU will wait for a client socket application
683
to connect to the port before continuing, unless the @code{nowait}
684
option was specified.  The @code{nodelay} option disables the Nagle buffering
685
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
686
one TCP connection at a time is accepted. You can use @code{telnet} to
687
connect to the corresponding character device.
688
@table @code
689
@item Example to send tcp console to 192.168.0.2 port 4444
690
-serial tcp:192.168.0.2:4444
691
@item Example to listen and wait on port 4444 for connection
692
-serial tcp::4444,server
693
@item Example to not wait and listen on ip 192.168.0.100 port 4444
694
-serial tcp:192.168.0.100:4444,server,nowait
695
@end table
696

    
697
@item telnet:host:port[,server][,nowait][,nodelay]
698
The telnet protocol is used instead of raw tcp sockets.  The options
699
work the same as if you had specified @code{-serial tcp}.  The
700
difference is that the port acts like a telnet server or client using
701
telnet option negotiation.  This will also allow you to send the
702
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
703
sequence.  Typically in unix telnet you do it with Control-] and then
704
type "send break" followed by pressing the enter key.
705

    
706
@item unix:path[,server][,nowait]
707
A unix domain socket is used instead of a tcp socket.  The option works the
708
same as if you had specified @code{-serial tcp} except the unix domain socket
709
@var{path} is used for connections.
710

    
711
@item mon:dev_string
712
This is a special option to allow the monitor to be multiplexed onto
713
another serial port.  The monitor is accessed with key sequence of
714
@key{Control-a} and then pressing @key{c}. See monitor access
715
@ref{pcsys_keys} in the -nographic section for more keys.
716
@var{dev_string} should be any one of the serial devices specified
717
above.  An example to multiplex the monitor onto a telnet server
718
listening on port 4444 would be:
719
@table @code
720
@item -serial mon:telnet::4444,server,nowait
721
@end table
722

    
723
@end table
724

    
725
@item -parallel dev
726
Redirect the virtual parallel port to host device @var{dev} (same
727
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
728
be used to use hardware devices connected on the corresponding host
729
parallel port.
730

    
731
This option can be used several times to simulate up to 3 parallel
732
ports.
733

    
734
Use @code{-parallel none} to disable all parallel ports.
735

    
736
@item -monitor dev
737
Redirect the monitor to host device @var{dev} (same devices as the
738
serial port).
739
The default device is @code{vc} in graphical mode and @code{stdio} in
740
non graphical mode.
741

    
742
@item -echr numeric_ascii_value
743
Change the escape character used for switching to the monitor when using
744
monitor and serial sharing.  The default is @code{0x01} when using the
745
@code{-nographic} option.  @code{0x01} is equal to pressing
746
@code{Control-a}.  You can select a different character from the ascii
747
control keys where 1 through 26 map to Control-a through Control-z.  For
748
instance you could use the either of the following to change the escape
749
character to Control-t.
750
@table @code
751
@item -echr 0x14
752
@item -echr 20
753
@end table
754

    
755
@item -s
756
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
757
@item -p port
758
Change gdb connection port.  @var{port} can be either a decimal number
759
to specify a TCP port, or a host device (same devices as the serial port).
760
@item -S
761
Do not start CPU at startup (you must type 'c' in the monitor).
762
@item -d
763
Output log in /tmp/qemu.log
764
@item -hdachs c,h,s,[,t]
765
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
766
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
767
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
768
all those parameters. This option is useful for old MS-DOS disk
769
images.
770

    
771
@item -L path
772
Set the directory for the BIOS, VGA BIOS and keymaps.
773

    
774
@item -std-vga
775
Simulate a standard VGA card with Bochs VBE extensions (default is
776
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
777
VBE extensions (e.g. Windows XP) and if you want to use high
778
resolution modes (>= 1280x1024x16) then you should use this option.
779

    
780
@item -no-acpi
781
Disable ACPI (Advanced Configuration and Power Interface) support. Use
782
it if your guest OS complains about ACPI problems (PC target machine
783
only).
784

    
785
@item -no-reboot
786
Exit instead of rebooting.
787

    
788
@item -loadvm file
789
Start right away with a saved state (@code{loadvm} in monitor)
790

    
791
@item -semihosting
792
Enable semihosting syscall emulation (ARM and M68K target machines only).
793

    
794
On ARM this implements the "Angel" interface.
795
On M68K this implements the "ColdFire GDB" interface used by libgloss.
796

    
797
Note that this allows guest direct access to the host filesystem,
798
so should only be used with trusted guest OS.
799
@end table
800

    
801
@c man end
802

    
803
@node pcsys_keys
804
@section Keys
805

    
806
@c man begin OPTIONS
807

    
808
During the graphical emulation, you can use the following keys:
809
@table @key
810
@item Ctrl-Alt-f
811
Toggle full screen
812

    
813
@item Ctrl-Alt-n
814
Switch to virtual console 'n'. Standard console mappings are:
815
@table @emph
816
@item 1
817
Target system display
818
@item 2
819
Monitor
820
@item 3
821
Serial port
822
@end table
823

    
824
@item Ctrl-Alt
825
Toggle mouse and keyboard grab.
826
@end table
827

    
828
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
829
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
830

    
831
During emulation, if you are using the @option{-nographic} option, use
832
@key{Ctrl-a h} to get terminal commands:
833

    
834
@table @key
835
@item Ctrl-a h
836
Print this help
837
@item Ctrl-a x
838
Exit emulator
839
@item Ctrl-a s
840
Save disk data back to file (if -snapshot)
841
@item Ctrl-a t
842
toggle console timestamps
843
@item Ctrl-a b
844
Send break (magic sysrq in Linux)
845
@item Ctrl-a c
846
Switch between console and monitor
847
@item Ctrl-a Ctrl-a
848
Send Ctrl-a
849
@end table
850
@c man end
851

    
852
@ignore
853

    
854
@c man begin SEEALSO
855
The HTML documentation of QEMU for more precise information and Linux
856
user mode emulator invocation.
857
@c man end
858

    
859
@c man begin AUTHOR
860
Fabrice Bellard
861
@c man end
862

    
863
@end ignore
864

    
865
@node pcsys_monitor
866
@section QEMU Monitor
867

    
868
The QEMU monitor is used to give complex commands to the QEMU
869
emulator. You can use it to:
870

    
871
@itemize @minus
872

    
873
@item
874
Remove or insert removable media images
875
(such as CD-ROM or floppies)
876

    
877
@item
878
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
879
from a disk file.
880

    
881
@item Inspect the VM state without an external debugger.
882

    
883
@end itemize
884

    
885
@subsection Commands
886

    
887
The following commands are available:
888

    
889
@table @option
890

    
891
@item help or ? [cmd]
892
Show the help for all commands or just for command @var{cmd}.
893

    
894
@item commit
895
Commit changes to the disk images (if -snapshot is used)
896

    
897
@item info subcommand
898
show various information about the system state
899

    
900
@table @option
901
@item info network
902
show the various VLANs and the associated devices
903
@item info block
904
show the block devices
905
@item info registers
906
show the cpu registers
907
@item info history
908
show the command line history
909
@item info pci
910
show emulated PCI device
911
@item info usb
912
show USB devices plugged on the virtual USB hub
913
@item info usbhost
914
show all USB host devices
915
@item info capture
916
show information about active capturing
917
@item info snapshots
918
show list of VM snapshots
919
@item info mice
920
show which guest mouse is receiving events
921
@end table
922

    
923
@item q or quit
924
Quit the emulator.
925

    
926
@item eject [-f] device
927
Eject a removable medium (use -f to force it).
928

    
929
@item change device setting
930

    
931
Change the configuration of a device
932

    
933
@table @option
934
@item change @var{diskdevice} @var{filename}
935
Change the medium for a removable disk device to point to @var{filename}. eg
936

    
937
@example
938
(qemu) change cdrom /path/to/some.iso
939
@end example
940

    
941
@item change vnc @var{display,options}
942
Change the configuration of the VNC server. The valid syntax for @var{display}
943
and @var{options} are described at @ref{sec_invocation}. eg
944

    
945
@example
946
(qemu) change vnc localhost:1
947
@end example
948

    
949
@item change vnc password
950

    
951
Change the password associated with the VNC server. The monitor will prompt for
952
the new password to be entered. VNC passwords are only significant upto 8 letters.
953
eg.
954

    
955
@example
956
(qemu) change vnc password
957
Password: ********
958
@end example
959

    
960
@end table
961

    
962
@item screendump filename
963
Save screen into PPM image @var{filename}.
964

    
965
@item mouse_move dx dy [dz]
966
Move the active mouse to the specified coordinates @var{dx} @var{dy}
967
with optional scroll axis @var{dz}.
968

    
969
@item mouse_button val
970
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
971

    
972
@item mouse_set index
973
Set which mouse device receives events at given @var{index}, index
974
can be obtained with
975
@example
976
info mice
977
@end example
978

    
979
@item wavcapture filename [frequency [bits [channels]]]
980
Capture audio into @var{filename}. Using sample rate @var{frequency}
981
bits per sample @var{bits} and number of channels @var{channels}.
982

    
983
Defaults:
984
@itemize @minus
985
@item Sample rate = 44100 Hz - CD quality
986
@item Bits = 16
987
@item Number of channels = 2 - Stereo
988
@end itemize
989

    
990
@item stopcapture index
991
Stop capture with a given @var{index}, index can be obtained with
992
@example
993
info capture
994
@end example
995

    
996
@item log item1[,...]
997
Activate logging of the specified items to @file{/tmp/qemu.log}.
998

    
999
@item savevm [tag|id]
1000
Create a snapshot of the whole virtual machine. If @var{tag} is
1001
provided, it is used as human readable identifier. If there is already
1002
a snapshot with the same tag or ID, it is replaced. More info at
1003
@ref{vm_snapshots}.
1004

    
1005
@item loadvm tag|id
1006
Set the whole virtual machine to the snapshot identified by the tag
1007
@var{tag} or the unique snapshot ID @var{id}.
1008

    
1009
@item delvm tag|id
1010
Delete the snapshot identified by @var{tag} or @var{id}.
1011

    
1012
@item stop
1013
Stop emulation.
1014

    
1015
@item c or cont
1016
Resume emulation.
1017

    
1018
@item gdbserver [port]
1019
Start gdbserver session (default port=1234)
1020

    
1021
@item x/fmt addr
1022
Virtual memory dump starting at @var{addr}.
1023

    
1024
@item xp /fmt addr
1025
Physical memory dump starting at @var{addr}.
1026

    
1027
@var{fmt} is a format which tells the command how to format the
1028
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1029

    
1030
@table @var
1031
@item count
1032
is the number of items to be dumped.
1033

    
1034
@item format
1035
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1036
c (char) or i (asm instruction).
1037

    
1038
@item size
1039
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1040
@code{h} or @code{w} can be specified with the @code{i} format to
1041
respectively select 16 or 32 bit code instruction size.
1042

    
1043
@end table
1044

    
1045
Examples:
1046
@itemize
1047
@item
1048
Dump 10 instructions at the current instruction pointer:
1049
@example
1050
(qemu) x/10i $eip
1051
0x90107063:  ret
1052
0x90107064:  sti
1053
0x90107065:  lea    0x0(%esi,1),%esi
1054
0x90107069:  lea    0x0(%edi,1),%edi
1055
0x90107070:  ret
1056
0x90107071:  jmp    0x90107080
1057
0x90107073:  nop
1058
0x90107074:  nop
1059
0x90107075:  nop
1060
0x90107076:  nop
1061
@end example
1062

    
1063
@item
1064
Dump 80 16 bit values at the start of the video memory.
1065
@smallexample
1066
(qemu) xp/80hx 0xb8000
1067
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1068
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1069
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1070
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1071
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1072
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1073
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1074
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1075
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1076
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1077
@end smallexample
1078
@end itemize
1079

    
1080
@item p or print/fmt expr
1081

    
1082
Print expression value. Only the @var{format} part of @var{fmt} is
1083
used.
1084

    
1085
@item sendkey keys
1086

    
1087
Send @var{keys} to the emulator. Use @code{-} to press several keys
1088
simultaneously. Example:
1089
@example
1090
sendkey ctrl-alt-f1
1091
@end example
1092

    
1093
This command is useful to send keys that your graphical user interface
1094
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1095

    
1096
@item system_reset
1097

    
1098
Reset the system.
1099

    
1100
@item usb_add devname
1101

    
1102
Add the USB device @var{devname}.  For details of available devices see
1103
@ref{usb_devices}
1104

    
1105
@item usb_del devname
1106

    
1107
Remove the USB device @var{devname} from the QEMU virtual USB
1108
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1109
command @code{info usb} to see the devices you can remove.
1110

    
1111
@end table
1112

    
1113
@subsection Integer expressions
1114

    
1115
The monitor understands integers expressions for every integer
1116
argument. You can use register names to get the value of specifics
1117
CPU registers by prefixing them with @emph{$}.
1118

    
1119
@node disk_images
1120
@section Disk Images
1121

    
1122
Since version 0.6.1, QEMU supports many disk image formats, including
1123
growable disk images (their size increase as non empty sectors are
1124
written), compressed and encrypted disk images. Version 0.8.3 added
1125
the new qcow2 disk image format which is essential to support VM
1126
snapshots.
1127

    
1128
@menu
1129
* disk_images_quickstart::    Quick start for disk image creation
1130
* disk_images_snapshot_mode:: Snapshot mode
1131
* vm_snapshots::              VM snapshots
1132
* qemu_img_invocation::       qemu-img Invocation
1133
* host_drives::               Using host drives
1134
* disk_images_fat_images::    Virtual FAT disk images
1135
@end menu
1136

    
1137
@node disk_images_quickstart
1138
@subsection Quick start for disk image creation
1139

    
1140
You can create a disk image with the command:
1141
@example
1142
qemu-img create myimage.img mysize
1143
@end example
1144
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1145
size in kilobytes. You can add an @code{M} suffix to give the size in
1146
megabytes and a @code{G} suffix for gigabytes.
1147

    
1148
See @ref{qemu_img_invocation} for more information.
1149

    
1150
@node disk_images_snapshot_mode
1151
@subsection Snapshot mode
1152

    
1153
If you use the option @option{-snapshot}, all disk images are
1154
considered as read only. When sectors in written, they are written in
1155
a temporary file created in @file{/tmp}. You can however force the
1156
write back to the raw disk images by using the @code{commit} monitor
1157
command (or @key{C-a s} in the serial console).
1158

    
1159
@node vm_snapshots
1160
@subsection VM snapshots
1161

    
1162
VM snapshots are snapshots of the complete virtual machine including
1163
CPU state, RAM, device state and the content of all the writable
1164
disks. In order to use VM snapshots, you must have at least one non
1165
removable and writable block device using the @code{qcow2} disk image
1166
format. Normally this device is the first virtual hard drive.
1167

    
1168
Use the monitor command @code{savevm} to create a new VM snapshot or
1169
replace an existing one. A human readable name can be assigned to each
1170
snapshot in addition to its numerical ID.
1171

    
1172
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1173
a VM snapshot. @code{info snapshots} lists the available snapshots
1174
with their associated information:
1175

    
1176
@example
1177
(qemu) info snapshots
1178
Snapshot devices: hda
1179
Snapshot list (from hda):
1180
ID        TAG                 VM SIZE                DATE       VM CLOCK
1181
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1182
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1183
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1184
@end example
1185

    
1186
A VM snapshot is made of a VM state info (its size is shown in
1187
@code{info snapshots}) and a snapshot of every writable disk image.
1188
The VM state info is stored in the first @code{qcow2} non removable
1189
and writable block device. The disk image snapshots are stored in
1190
every disk image. The size of a snapshot in a disk image is difficult
1191
to evaluate and is not shown by @code{info snapshots} because the
1192
associated disk sectors are shared among all the snapshots to save
1193
disk space (otherwise each snapshot would need a full copy of all the
1194
disk images).
1195

    
1196
When using the (unrelated) @code{-snapshot} option
1197
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1198
but they are deleted as soon as you exit QEMU.
1199

    
1200
VM snapshots currently have the following known limitations:
1201
@itemize
1202
@item
1203
They cannot cope with removable devices if they are removed or
1204
inserted after a snapshot is done.
1205
@item
1206
A few device drivers still have incomplete snapshot support so their
1207
state is not saved or restored properly (in particular USB).
1208
@end itemize
1209

    
1210
@node qemu_img_invocation
1211
@subsection @code{qemu-img} Invocation
1212

    
1213
@include qemu-img.texi
1214

    
1215
@node host_drives
1216
@subsection Using host drives
1217

    
1218
In addition to disk image files, QEMU can directly access host
1219
devices. We describe here the usage for QEMU version >= 0.8.3.
1220

    
1221
@subsubsection Linux
1222

    
1223
On Linux, you can directly use the host device filename instead of a
1224
disk image filename provided you have enough privileges to access
1225
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1226
@file{/dev/fd0} for the floppy.
1227

    
1228
@table @code
1229
@item CD
1230
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1231
specific code to detect CDROM insertion or removal. CDROM ejection by
1232
the guest OS is supported. Currently only data CDs are supported.
1233
@item Floppy
1234
You can specify a floppy device even if no floppy is loaded. Floppy
1235
removal is currently not detected accurately (if you change floppy
1236
without doing floppy access while the floppy is not loaded, the guest
1237
OS will think that the same floppy is loaded).
1238
@item Hard disks
1239
Hard disks can be used. Normally you must specify the whole disk
1240
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1241
see it as a partitioned disk. WARNING: unless you know what you do, it
1242
is better to only make READ-ONLY accesses to the hard disk otherwise
1243
you may corrupt your host data (use the @option{-snapshot} command
1244
line option or modify the device permissions accordingly).
1245
@end table
1246

    
1247
@subsubsection Windows
1248

    
1249
@table @code
1250
@item CD
1251
The preferred syntax is the drive letter (e.g. @file{d:}). The
1252
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1253
supported as an alias to the first CDROM drive.
1254

    
1255
Currently there is no specific code to handle removable media, so it
1256
is better to use the @code{change} or @code{eject} monitor commands to
1257
change or eject media.
1258
@item Hard disks
1259
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1260
where @var{N} is the drive number (0 is the first hard disk).
1261

    
1262
WARNING: unless you know what you do, it is better to only make
1263
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1264
host data (use the @option{-snapshot} command line so that the
1265
modifications are written in a temporary file).
1266
@end table
1267

    
1268

    
1269
@subsubsection Mac OS X
1270

    
1271
@file{/dev/cdrom} is an alias to the first CDROM.
1272

    
1273
Currently there is no specific code to handle removable media, so it
1274
is better to use the @code{change} or @code{eject} monitor commands to
1275
change or eject media.
1276

    
1277
@node disk_images_fat_images
1278
@subsection Virtual FAT disk images
1279

    
1280
QEMU can automatically create a virtual FAT disk image from a
1281
directory tree. In order to use it, just type:
1282

    
1283
@example
1284
qemu linux.img -hdb fat:/my_directory
1285
@end example
1286

    
1287
Then you access access to all the files in the @file{/my_directory}
1288
directory without having to copy them in a disk image or to export
1289
them via SAMBA or NFS. The default access is @emph{read-only}.
1290

    
1291
Floppies can be emulated with the @code{:floppy:} option:
1292

    
1293
@example
1294
qemu linux.img -fda fat:floppy:/my_directory
1295
@end example
1296

    
1297
A read/write support is available for testing (beta stage) with the
1298
@code{:rw:} option:
1299

    
1300
@example
1301
qemu linux.img -fda fat:floppy:rw:/my_directory
1302
@end example
1303

    
1304
What you should @emph{never} do:
1305
@itemize
1306
@item use non-ASCII filenames ;
1307
@item use "-snapshot" together with ":rw:" ;
1308
@item expect it to work when loadvm'ing ;
1309
@item write to the FAT directory on the host system while accessing it with the guest system.
1310
@end itemize
1311

    
1312
@node pcsys_network
1313
@section Network emulation
1314

    
1315
QEMU can simulate several network cards (PCI or ISA cards on the PC
1316
target) and can connect them to an arbitrary number of Virtual Local
1317
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1318
VLAN. VLAN can be connected between separate instances of QEMU to
1319
simulate large networks. For simpler usage, a non privileged user mode
1320
network stack can replace the TAP device to have a basic network
1321
connection.
1322

    
1323
@subsection VLANs
1324

    
1325
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1326
connection between several network devices. These devices can be for
1327
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1328
(TAP devices).
1329

    
1330
@subsection Using TAP network interfaces
1331

    
1332
This is the standard way to connect QEMU to a real network. QEMU adds
1333
a virtual network device on your host (called @code{tapN}), and you
1334
can then configure it as if it was a real ethernet card.
1335

    
1336
@subsubsection Linux host
1337

    
1338
As an example, you can download the @file{linux-test-xxx.tar.gz}
1339
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1340
configure properly @code{sudo} so that the command @code{ifconfig}
1341
contained in @file{qemu-ifup} can be executed as root. You must verify
1342
that your host kernel supports the TAP network interfaces: the
1343
device @file{/dev/net/tun} must be present.
1344

    
1345
See @ref{sec_invocation} to have examples of command lines using the
1346
TAP network interfaces.
1347

    
1348
@subsubsection Windows host
1349

    
1350
There is a virtual ethernet driver for Windows 2000/XP systems, called
1351
TAP-Win32. But it is not included in standard QEMU for Windows,
1352
so you will need to get it separately. It is part of OpenVPN package,
1353
so download OpenVPN from : @url{http://openvpn.net/}.
1354

    
1355
@subsection Using the user mode network stack
1356

    
1357
By using the option @option{-net user} (default configuration if no
1358
@option{-net} option is specified), QEMU uses a completely user mode
1359
network stack (you don't need root privilege to use the virtual
1360
network). The virtual network configuration is the following:
1361

    
1362
@example
1363

    
1364
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1365
                           |          (10.0.2.2)
1366
                           |
1367
                           ---->  DNS server (10.0.2.3)
1368
                           |
1369
                           ---->  SMB server (10.0.2.4)
1370
@end example
1371

    
1372
The QEMU VM behaves as if it was behind a firewall which blocks all
1373
incoming connections. You can use a DHCP client to automatically
1374
configure the network in the QEMU VM. The DHCP server assign addresses
1375
to the hosts starting from 10.0.2.15.
1376

    
1377
In order to check that the user mode network is working, you can ping
1378
the address 10.0.2.2 and verify that you got an address in the range
1379
10.0.2.x from the QEMU virtual DHCP server.
1380

    
1381
Note that @code{ping} is not supported reliably to the internet as it
1382
would require root privileges. It means you can only ping the local
1383
router (10.0.2.2).
1384

    
1385
When using the built-in TFTP server, the router is also the TFTP
1386
server.
1387

    
1388
When using the @option{-redir} option, TCP or UDP connections can be
1389
redirected from the host to the guest. It allows for example to
1390
redirect X11, telnet or SSH connections.
1391

    
1392
@subsection Connecting VLANs between QEMU instances
1393

    
1394
Using the @option{-net socket} option, it is possible to make VLANs
1395
that span several QEMU instances. See @ref{sec_invocation} to have a
1396
basic example.
1397

    
1398
@node direct_linux_boot
1399
@section Direct Linux Boot
1400

    
1401
This section explains how to launch a Linux kernel inside QEMU without
1402
having to make a full bootable image. It is very useful for fast Linux
1403
kernel testing.
1404

    
1405
The syntax is:
1406
@example
1407
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1408
@end example
1409

    
1410
Use @option{-kernel} to provide the Linux kernel image and
1411
@option{-append} to give the kernel command line arguments. The
1412
@option{-initrd} option can be used to provide an INITRD image.
1413

    
1414
When using the direct Linux boot, a disk image for the first hard disk
1415
@file{hda} is required because its boot sector is used to launch the
1416
Linux kernel.
1417

    
1418
If you do not need graphical output, you can disable it and redirect
1419
the virtual serial port and the QEMU monitor to the console with the
1420
@option{-nographic} option. The typical command line is:
1421
@example
1422
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1423
     -append "root=/dev/hda console=ttyS0" -nographic
1424
@end example
1425

    
1426
Use @key{Ctrl-a c} to switch between the serial console and the
1427
monitor (@pxref{pcsys_keys}).
1428

    
1429
@node pcsys_usb
1430
@section USB emulation
1431

    
1432
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1433
virtual USB devices or real host USB devices (experimental, works only
1434
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1435
as necessary to connect multiple USB devices.
1436

    
1437
@menu
1438
* usb_devices::
1439
* host_usb_devices::
1440
@end menu
1441
@node usb_devices
1442
@subsection Connecting USB devices
1443

    
1444
USB devices can be connected with the @option{-usbdevice} commandline option
1445
or the @code{usb_add} monitor command.  Available devices are:
1446

    
1447
@table @var
1448
@item @code{mouse}
1449
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1450
@item @code{tablet}
1451
Pointer device that uses absolute coordinates (like a touchscreen).
1452
This means qemu is able to report the mouse position without having
1453
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1454
@item @code{disk:file}
1455
Mass storage device based on @var{file} (@pxref{disk_images})
1456
@item @code{host:bus.addr}
1457
Pass through the host device identified by @var{bus.addr}
1458
(Linux only)
1459
@item @code{host:vendor_id:product_id}
1460
Pass through the host device identified by @var{vendor_id:product_id}
1461
(Linux only)
1462
@item @code{wacom-tablet}
1463
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1464
above but it can be used with the tslib library because in addition to touch
1465
coordinates it reports touch pressure.
1466
@item @code{keyboard}
1467
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1468
@end table
1469

    
1470
@node host_usb_devices
1471
@subsection Using host USB devices on a Linux host
1472

    
1473
WARNING: this is an experimental feature. QEMU will slow down when
1474
using it. USB devices requiring real time streaming (i.e. USB Video
1475
Cameras) are not supported yet.
1476

    
1477
@enumerate
1478
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1479
is actually using the USB device. A simple way to do that is simply to
1480
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1481
to @file{mydriver.o.disabled}.
1482

    
1483
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1484
@example
1485
ls /proc/bus/usb
1486
001  devices  drivers
1487
@end example
1488

    
1489
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1490
@example
1491
chown -R myuid /proc/bus/usb
1492
@end example
1493

    
1494
@item Launch QEMU and do in the monitor:
1495
@example
1496
info usbhost
1497
  Device 1.2, speed 480 Mb/s
1498
    Class 00: USB device 1234:5678, USB DISK
1499
@end example
1500
You should see the list of the devices you can use (Never try to use
1501
hubs, it won't work).
1502

    
1503
@item Add the device in QEMU by using:
1504
@example
1505
usb_add host:1234:5678
1506
@end example
1507

    
1508
Normally the guest OS should report that a new USB device is
1509
plugged. You can use the option @option{-usbdevice} to do the same.
1510

    
1511
@item Now you can try to use the host USB device in QEMU.
1512

    
1513
@end enumerate
1514

    
1515
When relaunching QEMU, you may have to unplug and plug again the USB
1516
device to make it work again (this is a bug).
1517

    
1518
@node vnc_security
1519
@section VNC security
1520

    
1521
The VNC server capability provides access to the graphical console
1522
of the guest VM across the network. This has a number of security
1523
considerations depending on the deployment scenarios.
1524

    
1525
@menu
1526
* vnc_sec_none::
1527
* vnc_sec_password::
1528
* vnc_sec_certificate::
1529
* vnc_sec_certificate_verify::
1530
* vnc_sec_certificate_pw::
1531
* vnc_generate_cert::
1532
@end menu
1533
@node vnc_sec_none
1534
@subsection Without passwords
1535

    
1536
The simplest VNC server setup does not include any form of authentication.
1537
For this setup it is recommended to restrict it to listen on a UNIX domain
1538
socket only. For example
1539

    
1540
@example
1541
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1542
@end example
1543

    
1544
This ensures that only users on local box with read/write access to that
1545
path can access the VNC server. To securely access the VNC server from a
1546
remote machine, a combination of netcat+ssh can be used to provide a secure
1547
tunnel.
1548

    
1549
@node vnc_sec_password
1550
@subsection With passwords
1551

    
1552
The VNC protocol has limited support for password based authentication. Since
1553
the protocol limits passwords to 8 characters it should not be considered
1554
to provide high security. The password can be fairly easily brute-forced by
1555
a client making repeat connections. For this reason, a VNC server using password
1556
authentication should be restricted to only listen on the loopback interface
1557
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1558
option, and then once QEMU is running the password is set with the monitor. Until
1559
the monitor is used to set the password all clients will be rejected.
1560

    
1561
@example
1562
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1563
(qemu) change vnc password
1564
Password: ********
1565
(qemu)
1566
@end example
1567

    
1568
@node vnc_sec_certificate
1569
@subsection With x509 certificates
1570

    
1571
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1572
TLS for encryption of the session, and x509 certificates for authentication.
1573
The use of x509 certificates is strongly recommended, because TLS on its
1574
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1575
support provides a secure session, but no authentication. This allows any
1576
client to connect, and provides an encrypted session.
1577

    
1578
@example
1579
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1580
@end example
1581

    
1582
In the above example @code{/etc/pki/qemu} should contain at least three files,
1583
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1584
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1585
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1586
only be readable by the user owning it.
1587

    
1588
@node vnc_sec_certificate_verify
1589
@subsection With x509 certificates and client verification
1590

    
1591
Certificates can also provide a means to authenticate the client connecting.
1592
The server will request that the client provide a certificate, which it will
1593
then validate against the CA certificate. This is a good choice if deploying
1594
in an environment with a private internal certificate authority.
1595

    
1596
@example
1597
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1598
@end example
1599

    
1600

    
1601
@node vnc_sec_certificate_pw
1602
@subsection With x509 certificates, client verification and passwords
1603

    
1604
Finally, the previous method can be combined with VNC password authentication
1605
to provide two layers of authentication for clients.
1606

    
1607
@example
1608
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1609
(qemu) change vnc password
1610
Password: ********
1611
(qemu)
1612
@end example
1613

    
1614
@node vnc_generate_cert
1615
@subsection Generating certificates for VNC
1616

    
1617
The GNU TLS packages provides a command called @code{certtool} which can
1618
be used to generate certificates and keys in PEM format. At a minimum it
1619
is neccessary to setup a certificate authority, and issue certificates to
1620
each server. If using certificates for authentication, then each client
1621
will also need to be issued a certificate. The recommendation is for the
1622
server to keep its certificates in either @code{/etc/pki/qemu} or for
1623
unprivileged users in @code{$HOME/.pki/qemu}.
1624

    
1625
@menu
1626
* vnc_generate_ca::
1627
* vnc_generate_server::
1628
* vnc_generate_client::
1629
@end menu
1630
@node vnc_generate_ca
1631
@subsubsection Setup the Certificate Authority
1632

    
1633
This step only needs to be performed once per organization / organizational
1634
unit. First the CA needs a private key. This key must be kept VERY secret
1635
and secure. If this key is compromised the entire trust chain of the certificates
1636
issued with it is lost.
1637

    
1638
@example
1639
# certtool --generate-privkey > ca-key.pem
1640
@end example
1641

    
1642
A CA needs to have a public certificate. For simplicity it can be a self-signed
1643
certificate, or one issue by a commercial certificate issuing authority. To
1644
generate a self-signed certificate requires one core piece of information, the
1645
name of the organization.
1646

    
1647
@example
1648
# cat > ca.info <<EOF
1649
cn = Name of your organization
1650
ca
1651
cert_signing_key
1652
EOF
1653
# certtool --generate-self-signed \
1654
           --load-privkey ca-key.pem
1655
           --template ca.info \
1656
           --outfile ca-cert.pem
1657
@end example
1658

    
1659
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1660
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1661

    
1662
@node vnc_generate_server
1663
@subsubsection Issuing server certificates
1664

    
1665
Each server (or host) needs to be issued with a key and certificate. When connecting
1666
the certificate is sent to the client which validates it against the CA certificate.
1667
The core piece of information for a server certificate is the hostname. This should
1668
be the fully qualified hostname that the client will connect with, since the client
1669
will typically also verify the hostname in the certificate. On the host holding the
1670
secure CA private key:
1671

    
1672
@example
1673
# cat > server.info <<EOF
1674
organization = Name  of your organization
1675
cn = server.foo.example.com
1676
tls_www_server
1677
encryption_key
1678
signing_key
1679
EOF
1680
# certtool --generate-privkey > server-key.pem
1681
# certtool --generate-certificate \
1682
           --load-ca-certificate ca-cert.pem \
1683
           --load-ca-privkey ca-key.pem \
1684
           --load-privkey server server-key.pem \
1685
           --template server.info \
1686
           --outfile server-cert.pem
1687
@end example
1688

    
1689
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1690
to the server for which they were generated. The @code{server-key.pem} is security
1691
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1692

    
1693
@node vnc_generate_client
1694
@subsubsection Issuing client certificates
1695

    
1696
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1697
certificates as its authentication mechanism, each client also needs to be issued
1698
a certificate. The client certificate contains enough metadata to uniquely identify
1699
the client, typically organization, state, city, building, etc. On the host holding
1700
the secure CA private key:
1701

    
1702
@example
1703
# cat > client.info <<EOF
1704
country = GB
1705
state = London
1706
locality = London
1707
organiazation = Name of your organization
1708
cn = client.foo.example.com
1709
tls_www_client
1710
encryption_key
1711
signing_key
1712
EOF
1713
# certtool --generate-privkey > client-key.pem
1714
# certtool --generate-certificate \
1715
           --load-ca-certificate ca-cert.pem \
1716
           --load-ca-privkey ca-key.pem \
1717
           --load-privkey client-key.pem \
1718
           --template client.info \
1719
           --outfile client-cert.pem
1720
@end example
1721

    
1722
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1723
copied to the client for which they were generated.
1724

    
1725
@node gdb_usage
1726
@section GDB usage
1727

    
1728
QEMU has a primitive support to work with gdb, so that you can do
1729
'Ctrl-C' while the virtual machine is running and inspect its state.
1730

    
1731
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1732
gdb connection:
1733
@example
1734
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1735
       -append "root=/dev/hda"
1736
Connected to host network interface: tun0
1737
Waiting gdb connection on port 1234
1738
@end example
1739

    
1740
Then launch gdb on the 'vmlinux' executable:
1741
@example
1742
> gdb vmlinux
1743
@end example
1744

    
1745
In gdb, connect to QEMU:
1746
@example
1747
(gdb) target remote localhost:1234
1748
@end example
1749

    
1750
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1751
@example
1752
(gdb) c
1753
@end example
1754

    
1755
Here are some useful tips in order to use gdb on system code:
1756

    
1757
@enumerate
1758
@item
1759
Use @code{info reg} to display all the CPU registers.
1760
@item
1761
Use @code{x/10i $eip} to display the code at the PC position.
1762
@item
1763
Use @code{set architecture i8086} to dump 16 bit code. Then use
1764
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1765
@end enumerate
1766

    
1767
@node pcsys_os_specific
1768
@section Target OS specific information
1769

    
1770
@subsection Linux
1771

    
1772
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1773
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1774
color depth in the guest and the host OS.
1775

    
1776
When using a 2.6 guest Linux kernel, you should add the option
1777
@code{clock=pit} on the kernel command line because the 2.6 Linux
1778
kernels make very strict real time clock checks by default that QEMU
1779
cannot simulate exactly.
1780

    
1781
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1782
not activated because QEMU is slower with this patch. The QEMU
1783
Accelerator Module is also much slower in this case. Earlier Fedora
1784
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1785
patch by default. Newer kernels don't have it.
1786

    
1787
@subsection Windows
1788

    
1789
If you have a slow host, using Windows 95 is better as it gives the
1790
best speed. Windows 2000 is also a good choice.
1791

    
1792
@subsubsection SVGA graphic modes support
1793

    
1794
QEMU emulates a Cirrus Logic GD5446 Video
1795
card. All Windows versions starting from Windows 95 should recognize
1796
and use this graphic card. For optimal performances, use 16 bit color
1797
depth in the guest and the host OS.
1798

    
1799
If you are using Windows XP as guest OS and if you want to use high
1800
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1801
1280x1024x16), then you should use the VESA VBE virtual graphic card
1802
(option @option{-std-vga}).
1803

    
1804
@subsubsection CPU usage reduction
1805

    
1806
Windows 9x does not correctly use the CPU HLT
1807
instruction. The result is that it takes host CPU cycles even when
1808
idle. You can install the utility from
1809
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1810
problem. Note that no such tool is needed for NT, 2000 or XP.
1811

    
1812
@subsubsection Windows 2000 disk full problem
1813

    
1814
Windows 2000 has a bug which gives a disk full problem during its
1815
installation. When installing it, use the @option{-win2k-hack} QEMU
1816
option to enable a specific workaround. After Windows 2000 is
1817
installed, you no longer need this option (this option slows down the
1818
IDE transfers).
1819

    
1820
@subsubsection Windows 2000 shutdown
1821

    
1822
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1823
can. It comes from the fact that Windows 2000 does not automatically
1824
use the APM driver provided by the BIOS.
1825

    
1826
In order to correct that, do the following (thanks to Struan
1827
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1828
Add/Troubleshoot a device => Add a new device & Next => No, select the
1829
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1830
(again) a few times. Now the driver is installed and Windows 2000 now
1831
correctly instructs QEMU to shutdown at the appropriate moment.
1832

    
1833
@subsubsection Share a directory between Unix and Windows
1834

    
1835
See @ref{sec_invocation} about the help of the option @option{-smb}.
1836

    
1837
@subsubsection Windows XP security problem
1838

    
1839
Some releases of Windows XP install correctly but give a security
1840
error when booting:
1841
@example
1842
A problem is preventing Windows from accurately checking the
1843
license for this computer. Error code: 0x800703e6.
1844
@end example
1845

    
1846
The workaround is to install a service pack for XP after a boot in safe
1847
mode. Then reboot, and the problem should go away. Since there is no
1848
network while in safe mode, its recommended to download the full
1849
installation of SP1 or SP2 and transfer that via an ISO or using the
1850
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1851

    
1852
@subsection MS-DOS and FreeDOS
1853

    
1854
@subsubsection CPU usage reduction
1855

    
1856
DOS does not correctly use the CPU HLT instruction. The result is that
1857
it takes host CPU cycles even when idle. You can install the utility
1858
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1859
problem.
1860

    
1861
@node QEMU System emulator for non PC targets
1862
@chapter QEMU System emulator for non PC targets
1863

    
1864
QEMU is a generic emulator and it emulates many non PC
1865
machines. Most of the options are similar to the PC emulator. The
1866
differences are mentioned in the following sections.
1867

    
1868
@menu
1869
* QEMU PowerPC System emulator::
1870
* Sparc32 System emulator::
1871
* Sparc64 System emulator::
1872
* MIPS System emulator::
1873
* ARM System emulator::
1874
* ColdFire System emulator::
1875
@end menu
1876

    
1877
@node QEMU PowerPC System emulator
1878
@section QEMU PowerPC System emulator
1879

    
1880
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1881
or PowerMac PowerPC system.
1882

    
1883
QEMU emulates the following PowerMac peripherals:
1884

    
1885
@itemize @minus
1886
@item
1887
UniNorth PCI Bridge
1888
@item
1889
PCI VGA compatible card with VESA Bochs Extensions
1890
@item
1891
2 PMAC IDE interfaces with hard disk and CD-ROM support
1892
@item
1893
NE2000 PCI adapters
1894
@item
1895
Non Volatile RAM
1896
@item
1897
VIA-CUDA with ADB keyboard and mouse.
1898
@end itemize
1899

    
1900
QEMU emulates the following PREP peripherals:
1901

    
1902
@itemize @minus
1903
@item
1904
PCI Bridge
1905
@item
1906
PCI VGA compatible card with VESA Bochs Extensions
1907
@item
1908
2 IDE interfaces with hard disk and CD-ROM support
1909
@item
1910
Floppy disk
1911
@item
1912
NE2000 network adapters
1913
@item
1914
Serial port
1915
@item
1916
PREP Non Volatile RAM
1917
@item
1918
PC compatible keyboard and mouse.
1919
@end itemize
1920

    
1921
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1922
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1923

    
1924
@c man begin OPTIONS
1925

    
1926
The following options are specific to the PowerPC emulation:
1927

    
1928
@table @option
1929

    
1930
@item -g WxH[xDEPTH]
1931

    
1932
Set the initial VGA graphic mode. The default is 800x600x15.
1933

    
1934
@end table
1935

    
1936
@c man end
1937

    
1938

    
1939
More information is available at
1940
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1941

    
1942
@node Sparc32 System emulator
1943
@section Sparc32 System emulator
1944

    
1945
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1946
or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1947
SMP up to 16 CPUs is supported, but Linux limits the number of usable CPUs
1948
to 4.
1949

    
1950
QEMU emulates the following sun4m peripherals:
1951

    
1952
@itemize @minus
1953
@item
1954
IOMMU
1955
@item
1956
TCX Frame buffer
1957
@item
1958
Lance (Am7990) Ethernet
1959
@item
1960
Non Volatile RAM M48T08
1961
@item
1962
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1963
and power/reset logic
1964
@item
1965
ESP SCSI controller with hard disk and CD-ROM support
1966
@item
1967
Floppy drive
1968
@item
1969
CS4231 sound device (only on SS-5, not working yet)
1970
@end itemize
1971

    
1972
The number of peripherals is fixed in the architecture.  Maximum memory size
1973
depends on the machine type, for SS-5 it is 256MB and for SS-10 2047MB.
1974

    
1975
Since version 0.8.2, QEMU uses OpenBIOS
1976
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1977
firmware implementation. The goal is to implement a 100% IEEE
1978
1275-1994 (referred to as Open Firmware) compliant firmware.
1979

    
1980
A sample Linux 2.6 series kernel and ram disk image are available on
1981
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1982
Solaris kernels don't work.
1983

    
1984
@c man begin OPTIONS
1985

    
1986
The following options are specific to the Sparc32 emulation:
1987

    
1988
@table @option
1989

    
1990
@item -g WxHx[xDEPTH]
1991

    
1992
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1993
the only other possible mode is 1024x768x24.
1994

    
1995
@item -prom-env string
1996

    
1997
Set OpenBIOS variables in NVRAM, for example:
1998

    
1999
@example
2000
qemu-system-sparc -prom-env 'auto-boot?=false' \
2001
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2002
@end example
2003

    
2004
@item -M [SS-5|SS-10]
2005

    
2006
Set the emulated machine type. Default is SS-5.
2007

    
2008
@end table
2009

    
2010
@c man end
2011

    
2012
@node Sparc64 System emulator
2013
@section Sparc64 System emulator
2014

    
2015
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2016
The emulator is not usable for anything yet.
2017

    
2018
QEMU emulates the following sun4u peripherals:
2019

    
2020
@itemize @minus
2021
@item
2022
UltraSparc IIi APB PCI Bridge
2023
@item
2024
PCI VGA compatible card with VESA Bochs Extensions
2025
@item
2026
Non Volatile RAM M48T59
2027
@item
2028
PC-compatible serial ports
2029
@end itemize
2030

    
2031
@node MIPS System emulator
2032
@section MIPS System emulator
2033

    
2034
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2035
Three different machine types are emulated:
2036

    
2037
@itemize @minus
2038
@item
2039
A generic ISA PC-like machine "mips"
2040
@item
2041
The MIPS Malta prototype board "malta"
2042
@item
2043
An ACER Pica "pica61"
2044
@item
2045
MIPS emulator pseudo board "mipssim"
2046
@end itemize
2047

    
2048
The generic emulation is supported by Debian 'Etch' and is able to
2049
install Debian into a virtual disk image. The following devices are
2050
emulated:
2051

    
2052
@itemize @minus
2053
@item
2054
A range of MIPS CPUs, default is the 24Kf
2055
@item
2056
PC style serial port
2057
@item
2058
PC style IDE disk
2059
@item
2060
NE2000 network card
2061
@end itemize
2062

    
2063
The Malta emulation supports the following devices:
2064

    
2065
@itemize @minus
2066
@item
2067
Core board with MIPS 24Kf CPU and Galileo system controller
2068
@item
2069
PIIX4 PCI/USB/SMbus controller
2070
@item
2071
The Multi-I/O chip's serial device
2072
@item
2073
PCnet32 PCI network card
2074
@item
2075
Malta FPGA serial device
2076
@item
2077
Cirrus VGA graphics card
2078
@end itemize
2079

    
2080
The ACER Pica emulation supports:
2081

    
2082
@itemize @minus
2083
@item
2084
MIPS R4000 CPU
2085
@item
2086
PC-style IRQ and DMA controllers
2087
@item
2088
PC Keyboard
2089
@item
2090
IDE controller
2091
@end itemize
2092

    
2093
The mipssim pseudo board emulation provides an environment similiar
2094
to what the proprietary MIPS emulator uses for running Linux.
2095
It supports:
2096

    
2097
@itemize @minus
2098
@item
2099
A range of MIPS CPUs, default is the 24Kf
2100
@item
2101
PC style serial port
2102
@item
2103
MIPSnet network emulation
2104
@end itemize
2105

    
2106
@node ARM System emulator
2107
@section ARM System emulator
2108

    
2109
Use the executable @file{qemu-system-arm} to simulate a ARM
2110
machine. The ARM Integrator/CP board is emulated with the following
2111
devices:
2112

    
2113
@itemize @minus
2114
@item
2115
ARM926E, ARM1026E or ARM946E CPU
2116
@item
2117
Two PL011 UARTs
2118
@item
2119
SMC 91c111 Ethernet adapter
2120
@item
2121
PL110 LCD controller
2122
@item
2123
PL050 KMI with PS/2 keyboard and mouse.
2124
@item
2125
PL181 MultiMedia Card Interface with SD card.
2126
@end itemize
2127

    
2128
The ARM Versatile baseboard is emulated with the following devices:
2129

    
2130
@itemize @minus
2131
@item
2132
ARM926E CPU
2133
@item
2134
PL190 Vectored Interrupt Controller
2135
@item
2136
Four PL011 UARTs
2137
@item
2138
SMC 91c111 Ethernet adapter
2139
@item
2140
PL110 LCD controller
2141
@item
2142
PL050 KMI with PS/2 keyboard and mouse.
2143
@item
2144
PCI host bridge.  Note the emulated PCI bridge only provides access to
2145
PCI memory space.  It does not provide access to PCI IO space.
2146
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2147
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2148
mapped control registers.
2149
@item
2150
PCI OHCI USB controller.
2151
@item
2152
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2153
@item
2154
PL181 MultiMedia Card Interface with SD card.
2155
@end itemize
2156

    
2157
The ARM RealView Emulation baseboard is emulated with the following devices:
2158

    
2159
@itemize @minus
2160
@item
2161
ARM926E CPU
2162
@item
2163
ARM AMBA Generic/Distributed Interrupt Controller
2164
@item
2165
Four PL011 UARTs
2166
@item
2167
SMC 91c111 Ethernet adapter
2168
@item
2169
PL110 LCD controller
2170
@item
2171
PL050 KMI with PS/2 keyboard and mouse
2172
@item
2173
PCI host bridge
2174
@item
2175
PCI OHCI USB controller
2176
@item
2177
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2178
@item
2179
PL181 MultiMedia Card Interface with SD card.
2180
@end itemize
2181

    
2182
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2183
and "Terrier") emulation includes the following peripherals:
2184

    
2185
@itemize @minus
2186
@item
2187
Intel PXA270 System-on-chip (ARM V5TE core)
2188
@item
2189
NAND Flash memory
2190
@item
2191
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2192
@item
2193
On-chip OHCI USB controller
2194
@item
2195
On-chip LCD controller
2196
@item
2197
On-chip Real Time Clock
2198
@item
2199
TI ADS7846 touchscreen controller on SSP bus
2200
@item
2201
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2202
@item
2203
GPIO-connected keyboard controller and LEDs
2204
@item
2205
Secure Digital card connected to PXA MMC/SD host
2206
@item
2207
Three on-chip UARTs
2208
@item
2209
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2210
@end itemize
2211

    
2212
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2213
following elements:
2214

    
2215
@itemize @minus
2216
@item
2217
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2218
@item
2219
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2220
@item
2221
On-chip LCD controller
2222
@item
2223
On-chip Real Time Clock
2224
@item
2225
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2226
CODEC, connected through MicroWire and I@math{^2}S busses
2227
@item
2228
GPIO-connected matrix keypad
2229
@item
2230
Secure Digital card connected to OMAP MMC/SD host
2231
@item
2232
Three on-chip UARTs
2233
@end itemize
2234

    
2235
A Linux 2.6 test image is available on the QEMU web site. More
2236
information is available in the QEMU mailing-list archive.
2237

    
2238
@node ColdFire System emulator
2239
@section ColdFire System emulator
2240

    
2241
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2242
The emulator is able to boot a uClinux kernel.
2243

    
2244
The M5208EVB emulation includes the following devices:
2245

    
2246
@itemize @minus
2247
@item
2248
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2249
@item
2250
Three Two on-chip UARTs.
2251
@item
2252
Fast Ethernet Controller (FEC)
2253
@end itemize
2254

    
2255
The AN5206 emulation includes the following devices:
2256

    
2257
@itemize @minus
2258
@item
2259
MCF5206 ColdFire V2 Microprocessor.
2260
@item
2261
Two on-chip UARTs.
2262
@end itemize
2263

    
2264
@node QEMU User space emulator
2265
@chapter QEMU User space emulator
2266

    
2267
@menu
2268
* Supported Operating Systems ::
2269
* Linux User space emulator::
2270
* Mac OS X/Darwin User space emulator ::
2271
@end menu
2272

    
2273
@node Supported Operating Systems
2274
@section Supported Operating Systems
2275

    
2276
The following OS are supported in user space emulation:
2277

    
2278
@itemize @minus
2279
@item
2280
Linux (referred as qemu-linux-user)
2281
@item
2282
Mac OS X/Darwin (referred as qemu-darwin-user)
2283
@end itemize
2284

    
2285
@node Linux User space emulator
2286
@section Linux User space emulator
2287

    
2288
@menu
2289
* Quick Start::
2290
* Wine launch::
2291
* Command line options::
2292
* Other binaries::
2293
@end menu
2294

    
2295
@node Quick Start
2296
@subsection Quick Start
2297

    
2298
In order to launch a Linux process, QEMU needs the process executable
2299
itself and all the target (x86) dynamic libraries used by it.
2300

    
2301
@itemize
2302

    
2303
@item On x86, you can just try to launch any process by using the native
2304
libraries:
2305

    
2306
@example
2307
qemu-i386 -L / /bin/ls
2308
@end example
2309

    
2310
@code{-L /} tells that the x86 dynamic linker must be searched with a
2311
@file{/} prefix.
2312

    
2313
@item Since QEMU is also a linux process, you can launch qemu with
2314
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2315

    
2316
@example
2317
qemu-i386 -L / qemu-i386 -L / /bin/ls
2318
@end example
2319

    
2320
@item On non x86 CPUs, you need first to download at least an x86 glibc
2321
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2322
@code{LD_LIBRARY_PATH} is not set:
2323

    
2324
@example
2325
unset LD_LIBRARY_PATH
2326
@end example
2327

    
2328
Then you can launch the precompiled @file{ls} x86 executable:
2329

    
2330
@example
2331
qemu-i386 tests/i386/ls
2332
@end example
2333
You can look at @file{qemu-binfmt-conf.sh} so that
2334
QEMU is automatically launched by the Linux kernel when you try to
2335
launch x86 executables. It requires the @code{binfmt_misc} module in the
2336
Linux kernel.
2337

    
2338
@item The x86 version of QEMU is also included. You can try weird things such as:
2339
@example
2340
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2341
          /usr/local/qemu-i386/bin/ls-i386
2342
@end example
2343

    
2344
@end itemize
2345

    
2346
@node Wine launch
2347
@subsection Wine launch
2348

    
2349
@itemize
2350

    
2351
@item Ensure that you have a working QEMU with the x86 glibc
2352
distribution (see previous section). In order to verify it, you must be
2353
able to do:
2354

    
2355
@example
2356
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2357
@end example
2358

    
2359
@item Download the binary x86 Wine install
2360
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2361

    
2362
@item Configure Wine on your account. Look at the provided script
2363
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2364
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2365

    
2366
@item Then you can try the example @file{putty.exe}:
2367

    
2368
@example
2369
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2370
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2371
@end example
2372

    
2373
@end itemize
2374

    
2375
@node Command line options
2376
@subsection Command line options
2377

    
2378
@example
2379
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2380
@end example
2381

    
2382
@table @option
2383
@item -h
2384
Print the help
2385
@item -L path
2386
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2387
@item -s size
2388
Set the x86 stack size in bytes (default=524288)
2389
@end table
2390

    
2391
Debug options:
2392

    
2393
@table @option
2394
@item -d
2395
Activate log (logfile=/tmp/qemu.log)
2396
@item -p pagesize
2397
Act as if the host page size was 'pagesize' bytes
2398
@end table
2399

    
2400
@node Other binaries
2401
@subsection Other binaries
2402

    
2403
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2404
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2405
configurations), and arm-uclinux bFLT format binaries.
2406

    
2407
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2408
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2409
coldfire uClinux bFLT format binaries.
2410

    
2411
The binary format is detected automatically.
2412

    
2413
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2414
(Sparc64 CPU, 32 bit ABI).
2415

    
2416
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2417
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2418

    
2419
@node Mac OS X/Darwin User space emulator
2420
@section Mac OS X/Darwin User space emulator
2421

    
2422
@menu
2423
* Mac OS X/Darwin Status::
2424
* Mac OS X/Darwin Quick Start::
2425
* Mac OS X/Darwin Command line options::
2426
@end menu
2427

    
2428
@node Mac OS X/Darwin Status
2429
@subsection Mac OS X/Darwin Status
2430

    
2431
@itemize @minus
2432
@item
2433
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2434
@item
2435
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2436
@item
2437
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2438
@item
2439
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2440
@end itemize
2441

    
2442
[1] If you're host commpage can be executed by qemu.
2443

    
2444
@node Mac OS X/Darwin Quick Start
2445
@subsection Quick Start
2446

    
2447
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2448
itself and all the target dynamic libraries used by it. If you don't have the FAT
2449
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2450
CD or compile them by hand.
2451

    
2452
@itemize
2453

    
2454
@item On x86, you can just try to launch any process by using the native
2455
libraries:
2456

    
2457
@example
2458
qemu-i386 /bin/ls
2459
@end example
2460

    
2461
or to run the ppc version of the executable:
2462

    
2463
@example
2464
qemu-ppc /bin/ls
2465
@end example
2466

    
2467
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2468
are installed:
2469

    
2470
@example
2471
qemu-i386 -L /opt/x86_root/ /bin/ls
2472
@end example
2473

    
2474
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2475
@file{/opt/x86_root/usr/bin/dyld}.
2476

    
2477
@end itemize
2478

    
2479
@node Mac OS X/Darwin Command line options
2480
@subsection Command line options
2481

    
2482
@example
2483
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2484
@end example
2485

    
2486
@table @option
2487
@item -h
2488
Print the help
2489
@item -L path
2490
Set the library root path (default=/)
2491
@item -s size
2492
Set the stack size in bytes (default=524288)
2493
@end table
2494

    
2495
Debug options:
2496

    
2497
@table @option
2498
@item -d
2499
Activate log (logfile=/tmp/qemu.log)
2500
@item -p pagesize
2501
Act as if the host page size was 'pagesize' bytes
2502
@end table
2503

    
2504
@node compilation
2505
@chapter Compilation from the sources
2506

    
2507
@menu
2508
* Linux/Unix::
2509
* Windows::
2510
* Cross compilation for Windows with Linux::
2511
* Mac OS X::
2512
@end menu
2513

    
2514
@node Linux/Unix
2515
@section Linux/Unix
2516

    
2517
@subsection Compilation
2518

    
2519
First you must decompress the sources:
2520
@example
2521
cd /tmp
2522
tar zxvf qemu-x.y.z.tar.gz
2523
cd qemu-x.y.z
2524
@end example
2525

    
2526
Then you configure QEMU and build it (usually no options are needed):
2527
@example
2528
./configure
2529
make
2530
@end example
2531

    
2532
Then type as root user:
2533
@example
2534
make install
2535
@end example
2536
to install QEMU in @file{/usr/local}.
2537

    
2538
@subsection GCC version
2539

    
2540
In order to compile QEMU successfully, it is very important that you
2541
have the right tools. The most important one is gcc. On most hosts and
2542
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2543
Linux distribution includes a gcc 4.x compiler, you can usually
2544
install an older version (it is invoked by @code{gcc32} or
2545
@code{gcc34}). The QEMU configure script automatically probes for
2546
these older versions so that usually you don't have to do anything.
2547

    
2548
@node Windows
2549
@section Windows
2550

    
2551
@itemize
2552
@item Install the current versions of MSYS and MinGW from
2553
@url{http://www.mingw.org/}. You can find detailed installation
2554
instructions in the download section and the FAQ.
2555

    
2556
@item Download
2557
the MinGW development library of SDL 1.2.x
2558
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2559
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2560
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2561
directory. Edit the @file{sdl-config} script so that it gives the
2562
correct SDL directory when invoked.
2563

    
2564
@item Extract the current version of QEMU.
2565

    
2566
@item Start the MSYS shell (file @file{msys.bat}).
2567

    
2568
@item Change to the QEMU directory. Launch @file{./configure} and
2569
@file{make}.  If you have problems using SDL, verify that
2570
@file{sdl-config} can be launched from the MSYS command line.
2571

    
2572
@item You can install QEMU in @file{Program Files/Qemu} by typing
2573
@file{make install}. Don't forget to copy @file{SDL.dll} in
2574
@file{Program Files/Qemu}.
2575

    
2576
@end itemize
2577

    
2578
@node Cross compilation for Windows with Linux
2579
@section Cross compilation for Windows with Linux
2580

    
2581
@itemize
2582
@item
2583
Install the MinGW cross compilation tools available at
2584
@url{http://www.mingw.org/}.
2585

    
2586
@item
2587
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2588
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2589
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2590
the QEMU configuration script.
2591

    
2592
@item
2593
Configure QEMU for Windows cross compilation:
2594
@example
2595
./configure --enable-mingw32
2596
@end example
2597
If necessary, you can change the cross-prefix according to the prefix
2598
chosen for the MinGW tools with --cross-prefix. You can also use
2599
--prefix to set the Win32 install path.
2600

    
2601
@item You can install QEMU in the installation directory by typing
2602
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2603
installation directory.
2604

    
2605
@end itemize
2606

    
2607
Note: Currently, Wine does not seem able to launch
2608
QEMU for Win32.
2609

    
2610
@node Mac OS X
2611
@section Mac OS X
2612

    
2613
The Mac OS X patches are not fully merged in QEMU, so you should look
2614
at the QEMU mailing list archive to have all the necessary
2615
information.
2616

    
2617
@node Index
2618
@chapter Index
2619
@printindex cp
2620

    
2621
@bye