Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 02fa69b6

History | View | Annotate | Download (20.2 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "qemu-timer.h"
26
#include "sysemu.h"
27
#include "pc.h"
28
#include "apic.h"
29
#include "isa.h"
30
#include "mc146818rtc.h"
31

    
32
//#define DEBUG_CMOS
33
//#define DEBUG_COALESCED
34

    
35
#ifdef DEBUG_CMOS
36
# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
37
#else
38
# define CMOS_DPRINTF(format, ...)      do { } while (0)
39
#endif
40

    
41
#ifdef DEBUG_COALESCED
42
# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
43
#else
44
# define DPRINTF_C(format, ...)      do { } while (0)
45
#endif
46

    
47
#define RTC_REINJECT_ON_ACK_COUNT 20
48

    
49
#define RTC_SECONDS             0
50
#define RTC_SECONDS_ALARM       1
51
#define RTC_MINUTES             2
52
#define RTC_MINUTES_ALARM       3
53
#define RTC_HOURS               4
54
#define RTC_HOURS_ALARM         5
55
#define RTC_ALARM_DONT_CARE    0xC0
56

    
57
#define RTC_DAY_OF_WEEK         6
58
#define RTC_DAY_OF_MONTH        7
59
#define RTC_MONTH               8
60
#define RTC_YEAR                9
61

    
62
#define RTC_REG_A               10
63
#define RTC_REG_B               11
64
#define RTC_REG_C               12
65
#define RTC_REG_D               13
66

    
67
#define REG_A_UIP 0x80
68

    
69
#define REG_B_SET  0x80
70
#define REG_B_PIE  0x40
71
#define REG_B_AIE  0x20
72
#define REG_B_UIE  0x10
73
#define REG_B_SQWE 0x08
74
#define REG_B_DM   0x04
75
#define REG_B_24H  0x02
76

    
77
#define REG_C_UF   0x10
78
#define REG_C_IRQF 0x80
79
#define REG_C_PF   0x40
80
#define REG_C_AF   0x20
81

    
82
typedef struct RTCState {
83
    ISADevice dev;
84
    uint8_t cmos_data[128];
85
    uint8_t cmos_index;
86
    struct tm current_tm;
87
    int32_t base_year;
88
    qemu_irq irq;
89
    qemu_irq sqw_irq;
90
    int it_shift;
91
    /* periodic timer */
92
    QEMUTimer *periodic_timer;
93
    int64_t next_periodic_time;
94
    /* second update */
95
    int64_t next_second_time;
96
    uint16_t irq_reinject_on_ack_count;
97
    uint32_t irq_coalesced;
98
    uint32_t period;
99
    QEMUTimer *coalesced_timer;
100
    QEMUTimer *second_timer;
101
    QEMUTimer *second_timer2;
102
    Notifier clock_reset_notifier;
103
} RTCState;
104

    
105
static void rtc_set_time(RTCState *s);
106
static void rtc_copy_date(RTCState *s);
107

    
108
#ifdef TARGET_I386
109
static void rtc_coalesced_timer_update(RTCState *s)
110
{
111
    if (s->irq_coalesced == 0) {
112
        qemu_del_timer(s->coalesced_timer);
113
    } else {
114
        /* divide each RTC interval to 2 - 8 smaller intervals */
115
        int c = MIN(s->irq_coalesced, 7) + 1; 
116
        int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
117
            muldiv64(s->period / c, get_ticks_per_sec(), 32768);
118
        qemu_mod_timer(s->coalesced_timer, next_clock);
119
    }
120
}
121

    
122
static void rtc_coalesced_timer(void *opaque)
123
{
124
    RTCState *s = opaque;
125

    
126
    if (s->irq_coalesced != 0) {
127
        apic_reset_irq_delivered();
128
        s->cmos_data[RTC_REG_C] |= 0xc0;
129
        DPRINTF_C("cmos: injecting from timer\n");
130
        qemu_irq_raise(s->irq);
131
        if (apic_get_irq_delivered()) {
132
            s->irq_coalesced--;
133
            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
134
                      s->irq_coalesced);
135
        }
136
    }
137

    
138
    rtc_coalesced_timer_update(s);
139
}
140
#endif
141

    
142
static void rtc_timer_update(RTCState *s, int64_t current_time)
143
{
144
    int period_code, period;
145
    int64_t cur_clock, next_irq_clock;
146

    
147
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
148
    if (period_code != 0
149
        && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
150
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
151
        if (period_code <= 2)
152
            period_code += 7;
153
        /* period in 32 Khz cycles */
154
        period = 1 << (period_code - 1);
155
#ifdef TARGET_I386
156
        if (period != s->period) {
157
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
158
            DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
159
        }
160
        s->period = period;
161
#endif
162
        /* compute 32 khz clock */
163
        cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
164
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
165
        s->next_periodic_time =
166
            muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
167
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
168
    } else {
169
#ifdef TARGET_I386
170
        s->irq_coalesced = 0;
171
#endif
172
        qemu_del_timer(s->periodic_timer);
173
    }
174
}
175

    
176
static void rtc_periodic_timer(void *opaque)
177
{
178
    RTCState *s = opaque;
179

    
180
    rtc_timer_update(s, s->next_periodic_time);
181
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
182
        s->cmos_data[RTC_REG_C] |= 0xc0;
183
#ifdef TARGET_I386
184
        if(rtc_td_hack) {
185
            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
186
                s->irq_reinject_on_ack_count = 0;                
187
            apic_reset_irq_delivered();
188
            qemu_irq_raise(s->irq);
189
            if (!apic_get_irq_delivered()) {
190
                s->irq_coalesced++;
191
                rtc_coalesced_timer_update(s);
192
                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
193
                          s->irq_coalesced);
194
            }
195
        } else
196
#endif
197
        qemu_irq_raise(s->irq);
198
    }
199
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
200
        /* Not square wave at all but we don't want 2048Hz interrupts!
201
           Must be seen as a pulse.  */
202
        qemu_irq_raise(s->sqw_irq);
203
    }
204
}
205

    
206
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
207
{
208
    RTCState *s = opaque;
209

    
210
    if ((addr & 1) == 0) {
211
        s->cmos_index = data & 0x7f;
212
    } else {
213
        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
214
                     s->cmos_index, data);
215
        switch(s->cmos_index) {
216
        case RTC_SECONDS_ALARM:
217
        case RTC_MINUTES_ALARM:
218
        case RTC_HOURS_ALARM:
219
            s->cmos_data[s->cmos_index] = data;
220
            break;
221
        case RTC_SECONDS:
222
        case RTC_MINUTES:
223
        case RTC_HOURS:
224
        case RTC_DAY_OF_WEEK:
225
        case RTC_DAY_OF_MONTH:
226
        case RTC_MONTH:
227
        case RTC_YEAR:
228
            s->cmos_data[s->cmos_index] = data;
229
            /* if in set mode, do not update the time */
230
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
231
                rtc_set_time(s);
232
            }
233
            break;
234
        case RTC_REG_A:
235
            /* UIP bit is read only */
236
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
237
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
238
            rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
239
            break;
240
        case RTC_REG_B:
241
            if (data & REG_B_SET) {
242
                /* set mode: reset UIP mode */
243
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
244
                data &= ~REG_B_UIE;
245
            } else {
246
                /* if disabling set mode, update the time */
247
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
248
                    rtc_set_time(s);
249
                }
250
            }
251
            if (((s->cmos_data[RTC_REG_B] ^ data) & (REG_B_DM | REG_B_24H)) &&
252
                !(data & REG_B_SET)) {
253
                /* If the time format has changed and not in set mode,
254
                   update the registers immediately. */
255
                s->cmos_data[RTC_REG_B] = data;
256
                rtc_copy_date(s);
257
            } else {
258
                s->cmos_data[RTC_REG_B] = data;
259
            }
260
            rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
261
            break;
262
        case RTC_REG_C:
263
        case RTC_REG_D:
264
            /* cannot write to them */
265
            break;
266
        default:
267
            s->cmos_data[s->cmos_index] = data;
268
            break;
269
        }
270
    }
271
}
272

    
273
static inline int rtc_to_bcd(RTCState *s, int a)
274
{
275
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
276
        return a;
277
    } else {
278
        return ((a / 10) << 4) | (a % 10);
279
    }
280
}
281

    
282
static inline int rtc_from_bcd(RTCState *s, int a)
283
{
284
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
285
        return a;
286
    } else {
287
        return ((a >> 4) * 10) + (a & 0x0f);
288
    }
289
}
290

    
291
static void rtc_set_time(RTCState *s)
292
{
293
    struct tm *tm = &s->current_tm;
294

    
295
    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
296
    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
297
    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
298
    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H) &&
299
        (s->cmos_data[RTC_HOURS] & 0x80)) {
300
        tm->tm_hour += 12;
301
    }
302
    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
303
    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
304
    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
305
    tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
306

    
307
    rtc_change_mon_event(tm);
308
}
309

    
310
static void rtc_copy_date(RTCState *s)
311
{
312
    const struct tm *tm = &s->current_tm;
313
    int year;
314

    
315
    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
316
    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
317
    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
318
        /* 24 hour format */
319
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
320
    } else {
321
        /* 12 hour format */
322
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
323
        if (tm->tm_hour >= 12)
324
            s->cmos_data[RTC_HOURS] |= 0x80;
325
    }
326
    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
327
    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
328
    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
329
    year = (tm->tm_year - s->base_year) % 100;
330
    if (year < 0)
331
        year += 100;
332
    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
333
}
334

    
335
/* month is between 0 and 11. */
336
static int get_days_in_month(int month, int year)
337
{
338
    static const int days_tab[12] = {
339
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
340
    };
341
    int d;
342
    if ((unsigned )month >= 12)
343
        return 31;
344
    d = days_tab[month];
345
    if (month == 1) {
346
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
347
            d++;
348
    }
349
    return d;
350
}
351

    
352
/* update 'tm' to the next second */
353
static void rtc_next_second(struct tm *tm)
354
{
355
    int days_in_month;
356

    
357
    tm->tm_sec++;
358
    if ((unsigned)tm->tm_sec >= 60) {
359
        tm->tm_sec = 0;
360
        tm->tm_min++;
361
        if ((unsigned)tm->tm_min >= 60) {
362
            tm->tm_min = 0;
363
            tm->tm_hour++;
364
            if ((unsigned)tm->tm_hour >= 24) {
365
                tm->tm_hour = 0;
366
                /* next day */
367
                tm->tm_wday++;
368
                if ((unsigned)tm->tm_wday >= 7)
369
                    tm->tm_wday = 0;
370
                days_in_month = get_days_in_month(tm->tm_mon,
371
                                                  tm->tm_year + 1900);
372
                tm->tm_mday++;
373
                if (tm->tm_mday < 1) {
374
                    tm->tm_mday = 1;
375
                } else if (tm->tm_mday > days_in_month) {
376
                    tm->tm_mday = 1;
377
                    tm->tm_mon++;
378
                    if (tm->tm_mon >= 12) {
379
                        tm->tm_mon = 0;
380
                        tm->tm_year++;
381
                    }
382
                }
383
            }
384
        }
385
    }
386
}
387

    
388

    
389
static void rtc_update_second(void *opaque)
390
{
391
    RTCState *s = opaque;
392
    int64_t delay;
393

    
394
    /* if the oscillator is not in normal operation, we do not update */
395
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
396
        s->next_second_time += get_ticks_per_sec();
397
        qemu_mod_timer(s->second_timer, s->next_second_time);
398
    } else {
399
        rtc_next_second(&s->current_tm);
400

    
401
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
402
            /* update in progress bit */
403
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
404
        }
405
        /* should be 244 us = 8 / 32768 seconds, but currently the
406
           timers do not have the necessary resolution. */
407
        delay = (get_ticks_per_sec() * 1) / 100;
408
        if (delay < 1)
409
            delay = 1;
410
        qemu_mod_timer(s->second_timer2,
411
                       s->next_second_time + delay);
412
    }
413
}
414

    
415
static void rtc_update_second2(void *opaque)
416
{
417
    RTCState *s = opaque;
418

    
419
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
420
        rtc_copy_date(s);
421
    }
422

    
423
    /* check alarm */
424
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
425
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
426
             rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
427
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
428
             rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
429
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
430
             rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
431

    
432
            s->cmos_data[RTC_REG_C] |= 0xa0;
433
            qemu_irq_raise(s->irq);
434
        }
435
    }
436

    
437
    /* update ended interrupt */
438
    s->cmos_data[RTC_REG_C] |= REG_C_UF;
439
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
440
        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
441
        qemu_irq_raise(s->irq);
442
    }
443

    
444
    /* clear update in progress bit */
445
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
446

    
447
    s->next_second_time += get_ticks_per_sec();
448
    qemu_mod_timer(s->second_timer, s->next_second_time);
449
}
450

    
451
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
452
{
453
    RTCState *s = opaque;
454
    int ret;
455
    if ((addr & 1) == 0) {
456
        return 0xff;
457
    } else {
458
        switch(s->cmos_index) {
459
        case RTC_SECONDS:
460
        case RTC_MINUTES:
461
        case RTC_HOURS:
462
        case RTC_DAY_OF_WEEK:
463
        case RTC_DAY_OF_MONTH:
464
        case RTC_MONTH:
465
        case RTC_YEAR:
466
            ret = s->cmos_data[s->cmos_index];
467
            break;
468
        case RTC_REG_A:
469
            ret = s->cmos_data[s->cmos_index];
470
            break;
471
        case RTC_REG_C:
472
            ret = s->cmos_data[s->cmos_index];
473
            qemu_irq_lower(s->irq);
474
#ifdef TARGET_I386
475
            if(s->irq_coalesced &&
476
                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
477
                s->irq_reinject_on_ack_count++;
478
                apic_reset_irq_delivered();
479
                DPRINTF_C("cmos: injecting on ack\n");
480
                qemu_irq_raise(s->irq);
481
                if (apic_get_irq_delivered()) {
482
                    s->irq_coalesced--;
483
                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
484
                              s->irq_coalesced);
485
                }
486
                break;
487
            }
488
#endif
489

    
490
            s->cmos_data[RTC_REG_C] = 0x00;
491
            break;
492
        default:
493
            ret = s->cmos_data[s->cmos_index];
494
            break;
495
        }
496
        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
497
                     s->cmos_index, ret);
498
        return ret;
499
    }
500
}
501

    
502
void rtc_set_memory(ISADevice *dev, int addr, int val)
503
{
504
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
505
    if (addr >= 0 && addr <= 127)
506
        s->cmos_data[addr] = val;
507
}
508

    
509
void rtc_set_date(ISADevice *dev, const struct tm *tm)
510
{
511
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
512
    s->current_tm = *tm;
513
    rtc_copy_date(s);
514
}
515

    
516
/* PC cmos mappings */
517
#define REG_IBM_CENTURY_BYTE        0x32
518
#define REG_IBM_PS2_CENTURY_BYTE    0x37
519

    
520
static void rtc_set_date_from_host(ISADevice *dev)
521
{
522
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
523
    struct tm tm;
524
    int val;
525

    
526
    /* set the CMOS date */
527
    qemu_get_timedate(&tm, 0);
528
    rtc_set_date(dev, &tm);
529

    
530
    val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
531
    rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
532
    rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
533
}
534

    
535
static int rtc_post_load(void *opaque, int version_id)
536
{
537
#ifdef TARGET_I386
538
    RTCState *s = opaque;
539

    
540
    if (version_id >= 2) {
541
        if (rtc_td_hack) {
542
            rtc_coalesced_timer_update(s);
543
        }
544
    }
545
#endif
546
    return 0;
547
}
548

    
549
static const VMStateDescription vmstate_rtc = {
550
    .name = "mc146818rtc",
551
    .version_id = 2,
552
    .minimum_version_id = 1,
553
    .minimum_version_id_old = 1,
554
    .post_load = rtc_post_load,
555
    .fields      = (VMStateField []) {
556
        VMSTATE_BUFFER(cmos_data, RTCState),
557
        VMSTATE_UINT8(cmos_index, RTCState),
558
        VMSTATE_INT32(current_tm.tm_sec, RTCState),
559
        VMSTATE_INT32(current_tm.tm_min, RTCState),
560
        VMSTATE_INT32(current_tm.tm_hour, RTCState),
561
        VMSTATE_INT32(current_tm.tm_wday, RTCState),
562
        VMSTATE_INT32(current_tm.tm_mday, RTCState),
563
        VMSTATE_INT32(current_tm.tm_mon, RTCState),
564
        VMSTATE_INT32(current_tm.tm_year, RTCState),
565
        VMSTATE_TIMER(periodic_timer, RTCState),
566
        VMSTATE_INT64(next_periodic_time, RTCState),
567
        VMSTATE_INT64(next_second_time, RTCState),
568
        VMSTATE_TIMER(second_timer, RTCState),
569
        VMSTATE_TIMER(second_timer2, RTCState),
570
        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
571
        VMSTATE_UINT32_V(period, RTCState, 2),
572
        VMSTATE_END_OF_LIST()
573
    }
574
};
575

    
576
static void rtc_notify_clock_reset(Notifier *notifier, void *data)
577
{
578
    RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
579
    int64_t now = *(int64_t *)data;
580

    
581
    rtc_set_date_from_host(&s->dev);
582
    s->next_second_time = now + (get_ticks_per_sec() * 99) / 100;
583
    qemu_mod_timer(s->second_timer2, s->next_second_time);
584
    rtc_timer_update(s, now);
585
#ifdef TARGET_I386
586
    if (rtc_td_hack) {
587
        rtc_coalesced_timer_update(s);
588
    }
589
#endif
590
}
591

    
592
static void rtc_reset(void *opaque)
593
{
594
    RTCState *s = opaque;
595

    
596
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
597
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
598

    
599
    qemu_irq_lower(s->irq);
600

    
601
#ifdef TARGET_I386
602
    if (rtc_td_hack)
603
            s->irq_coalesced = 0;
604
#endif
605
}
606

    
607
static int rtc_initfn(ISADevice *dev)
608
{
609
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
610
    int base = 0x70;
611

    
612
    s->cmos_data[RTC_REG_A] = 0x26;
613
    s->cmos_data[RTC_REG_B] = 0x02;
614
    s->cmos_data[RTC_REG_C] = 0x00;
615
    s->cmos_data[RTC_REG_D] = 0x80;
616

    
617
    rtc_set_date_from_host(dev);
618

    
619
    s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
620
#ifdef TARGET_I386
621
    if (rtc_td_hack)
622
        s->coalesced_timer =
623
            qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
624
#endif
625
    s->second_timer = qemu_new_timer_ns(rtc_clock, rtc_update_second, s);
626
    s->second_timer2 = qemu_new_timer_ns(rtc_clock, rtc_update_second2, s);
627

    
628
    s->clock_reset_notifier.notify = rtc_notify_clock_reset;
629
    qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
630

    
631
    s->next_second_time =
632
        qemu_get_clock_ns(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
633
    qemu_mod_timer(s->second_timer2, s->next_second_time);
634

    
635
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
636
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
637
    isa_init_ioport_range(dev, base, 2);
638

    
639
    qdev_set_legacy_instance_id(&dev->qdev, base, 2);
640
    qemu_register_reset(rtc_reset, s);
641
    return 0;
642
}
643

    
644
ISADevice *rtc_init(int base_year, qemu_irq intercept_irq)
645
{
646
    ISADevice *dev;
647
    RTCState *s;
648

    
649
    dev = isa_create("mc146818rtc");
650
    s = DO_UPCAST(RTCState, dev, dev);
651
    qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
652
    qdev_init_nofail(&dev->qdev);
653
    if (intercept_irq) {
654
        s->irq = intercept_irq;
655
    } else {
656
        isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
657
    }
658
    return dev;
659
}
660

    
661
static ISADeviceInfo mc146818rtc_info = {
662
    .qdev.name     = "mc146818rtc",
663
    .qdev.size     = sizeof(RTCState),
664
    .qdev.no_user  = 1,
665
    .qdev.vmsd     = &vmstate_rtc,
666
    .init          = rtc_initfn,
667
    .qdev.props    = (Property[]) {
668
        DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
669
        DEFINE_PROP_END_OF_LIST(),
670
    }
671
};
672

    
673
static void mc146818rtc_register(void)
674
{
675
    isa_qdev_register(&mc146818rtc_info);
676
}
677
device_init(mc146818rtc_register)