Statistics
| Branch: | Revision:

root / cpu-all.h @ 0497d2f4

History | View | Annotate | Download (29.2 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19
 */
20
#ifndef CPU_ALL_H
21
#define CPU_ALL_H
22

    
23
#include "qemu-common.h"
24

    
25
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
26
#define WORDS_ALIGNED
27
#endif
28

    
29
/* some important defines:
30
 *
31
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
32
 * memory accesses.
33
 *
34
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
35
 * otherwise little endian.
36
 *
37
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
38
 *
39
 * TARGET_WORDS_BIGENDIAN : same for target cpu
40
 */
41

    
42
#include "bswap.h"
43
#include "softfloat.h"
44

    
45
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
46
#define BSWAP_NEEDED
47
#endif
48

    
49
#ifdef BSWAP_NEEDED
50

    
51
static inline uint16_t tswap16(uint16_t s)
52
{
53
    return bswap16(s);
54
}
55

    
56
static inline uint32_t tswap32(uint32_t s)
57
{
58
    return bswap32(s);
59
}
60

    
61
static inline uint64_t tswap64(uint64_t s)
62
{
63
    return bswap64(s);
64
}
65

    
66
static inline void tswap16s(uint16_t *s)
67
{
68
    *s = bswap16(*s);
69
}
70

    
71
static inline void tswap32s(uint32_t *s)
72
{
73
    *s = bswap32(*s);
74
}
75

    
76
static inline void tswap64s(uint64_t *s)
77
{
78
    *s = bswap64(*s);
79
}
80

    
81
#else
82

    
83
static inline uint16_t tswap16(uint16_t s)
84
{
85
    return s;
86
}
87

    
88
static inline uint32_t tswap32(uint32_t s)
89
{
90
    return s;
91
}
92

    
93
static inline uint64_t tswap64(uint64_t s)
94
{
95
    return s;
96
}
97

    
98
static inline void tswap16s(uint16_t *s)
99
{
100
}
101

    
102
static inline void tswap32s(uint32_t *s)
103
{
104
}
105

    
106
static inline void tswap64s(uint64_t *s)
107
{
108
}
109

    
110
#endif
111

    
112
#if TARGET_LONG_SIZE == 4
113
#define tswapl(s) tswap32(s)
114
#define tswapls(s) tswap32s((uint32_t *)(s))
115
#define bswaptls(s) bswap32s(s)
116
#else
117
#define tswapl(s) tswap64(s)
118
#define tswapls(s) tswap64s((uint64_t *)(s))
119
#define bswaptls(s) bswap64s(s)
120
#endif
121

    
122
typedef union {
123
    float32 f;
124
    uint32_t l;
125
} CPU_FloatU;
126

    
127
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
128
   endian ! */
129
typedef union {
130
    float64 d;
131
#if defined(WORDS_BIGENDIAN) \
132
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
133
    struct {
134
        uint32_t upper;
135
        uint32_t lower;
136
    } l;
137
#else
138
    struct {
139
        uint32_t lower;
140
        uint32_t upper;
141
    } l;
142
#endif
143
    uint64_t ll;
144
} CPU_DoubleU;
145

    
146
#ifdef TARGET_SPARC
147
typedef union {
148
    float128 q;
149
#if defined(WORDS_BIGENDIAN) \
150
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
151
    struct {
152
        uint32_t upmost;
153
        uint32_t upper;
154
        uint32_t lower;
155
        uint32_t lowest;
156
    } l;
157
    struct {
158
        uint64_t upper;
159
        uint64_t lower;
160
    } ll;
161
#else
162
    struct {
163
        uint32_t lowest;
164
        uint32_t lower;
165
        uint32_t upper;
166
        uint32_t upmost;
167
    } l;
168
    struct {
169
        uint64_t lower;
170
        uint64_t upper;
171
    } ll;
172
#endif
173
} CPU_QuadU;
174
#endif
175

    
176
/* CPU memory access without any memory or io remapping */
177

    
178
/*
179
 * the generic syntax for the memory accesses is:
180
 *
181
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
182
 *
183
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
184
 *
185
 * type is:
186
 * (empty): integer access
187
 *   f    : float access
188
 *
189
 * sign is:
190
 * (empty): for floats or 32 bit size
191
 *   u    : unsigned
192
 *   s    : signed
193
 *
194
 * size is:
195
 *   b: 8 bits
196
 *   w: 16 bits
197
 *   l: 32 bits
198
 *   q: 64 bits
199
 *
200
 * endian is:
201
 * (empty): target cpu endianness or 8 bit access
202
 *   r    : reversed target cpu endianness (not implemented yet)
203
 *   be   : big endian (not implemented yet)
204
 *   le   : little endian (not implemented yet)
205
 *
206
 * access_type is:
207
 *   raw    : host memory access
208
 *   user   : user mode access using soft MMU
209
 *   kernel : kernel mode access using soft MMU
210
 */
211
static inline int ldub_p(const void *ptr)
212
{
213
    return *(uint8_t *)ptr;
214
}
215

    
216
static inline int ldsb_p(const void *ptr)
217
{
218
    return *(int8_t *)ptr;
219
}
220

    
221
static inline void stb_p(void *ptr, int v)
222
{
223
    *(uint8_t *)ptr = v;
224
}
225

    
226
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
227
   kernel handles unaligned load/stores may give better results, but
228
   it is a system wide setting : bad */
229
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
230

    
231
/* conservative code for little endian unaligned accesses */
232
static inline int lduw_le_p(const void *ptr)
233
{
234
#ifdef _ARCH_PPC
235
    int val;
236
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
237
    return val;
238
#else
239
    const uint8_t *p = ptr;
240
    return p[0] | (p[1] << 8);
241
#endif
242
}
243

    
244
static inline int ldsw_le_p(const void *ptr)
245
{
246
#ifdef _ARCH_PPC
247
    int val;
248
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
249
    return (int16_t)val;
250
#else
251
    const uint8_t *p = ptr;
252
    return (int16_t)(p[0] | (p[1] << 8));
253
#endif
254
}
255

    
256
static inline int ldl_le_p(const void *ptr)
257
{
258
#ifdef _ARCH_PPC
259
    int val;
260
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
261
    return val;
262
#else
263
    const uint8_t *p = ptr;
264
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
265
#endif
266
}
267

    
268
static inline uint64_t ldq_le_p(const void *ptr)
269
{
270
    const uint8_t *p = ptr;
271
    uint32_t v1, v2;
272
    v1 = ldl_le_p(p);
273
    v2 = ldl_le_p(p + 4);
274
    return v1 | ((uint64_t)v2 << 32);
275
}
276

    
277
static inline void stw_le_p(void *ptr, int v)
278
{
279
#ifdef _ARCH_PPC
280
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
281
#else
282
    uint8_t *p = ptr;
283
    p[0] = v;
284
    p[1] = v >> 8;
285
#endif
286
}
287

    
288
static inline void stl_le_p(void *ptr, int v)
289
{
290
#ifdef _ARCH_PPC
291
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
292
#else
293
    uint8_t *p = ptr;
294
    p[0] = v;
295
    p[1] = v >> 8;
296
    p[2] = v >> 16;
297
    p[3] = v >> 24;
298
#endif
299
}
300

    
301
static inline void stq_le_p(void *ptr, uint64_t v)
302
{
303
    uint8_t *p = ptr;
304
    stl_le_p(p, (uint32_t)v);
305
    stl_le_p(p + 4, v >> 32);
306
}
307

    
308
/* float access */
309

    
310
static inline float32 ldfl_le_p(const void *ptr)
311
{
312
    union {
313
        float32 f;
314
        uint32_t i;
315
    } u;
316
    u.i = ldl_le_p(ptr);
317
    return u.f;
318
}
319

    
320
static inline void stfl_le_p(void *ptr, float32 v)
321
{
322
    union {
323
        float32 f;
324
        uint32_t i;
325
    } u;
326
    u.f = v;
327
    stl_le_p(ptr, u.i);
328
}
329

    
330
static inline float64 ldfq_le_p(const void *ptr)
331
{
332
    CPU_DoubleU u;
333
    u.l.lower = ldl_le_p(ptr);
334
    u.l.upper = ldl_le_p(ptr + 4);
335
    return u.d;
336
}
337

    
338
static inline void stfq_le_p(void *ptr, float64 v)
339
{
340
    CPU_DoubleU u;
341
    u.d = v;
342
    stl_le_p(ptr, u.l.lower);
343
    stl_le_p(ptr + 4, u.l.upper);
344
}
345

    
346
#else
347

    
348
static inline int lduw_le_p(const void *ptr)
349
{
350
    return *(uint16_t *)ptr;
351
}
352

    
353
static inline int ldsw_le_p(const void *ptr)
354
{
355
    return *(int16_t *)ptr;
356
}
357

    
358
static inline int ldl_le_p(const void *ptr)
359
{
360
    return *(uint32_t *)ptr;
361
}
362

    
363
static inline uint64_t ldq_le_p(const void *ptr)
364
{
365
    return *(uint64_t *)ptr;
366
}
367

    
368
static inline void stw_le_p(void *ptr, int v)
369
{
370
    *(uint16_t *)ptr = v;
371
}
372

    
373
static inline void stl_le_p(void *ptr, int v)
374
{
375
    *(uint32_t *)ptr = v;
376
}
377

    
378
static inline void stq_le_p(void *ptr, uint64_t v)
379
{
380
    *(uint64_t *)ptr = v;
381
}
382

    
383
/* float access */
384

    
385
static inline float32 ldfl_le_p(const void *ptr)
386
{
387
    return *(float32 *)ptr;
388
}
389

    
390
static inline float64 ldfq_le_p(const void *ptr)
391
{
392
    return *(float64 *)ptr;
393
}
394

    
395
static inline void stfl_le_p(void *ptr, float32 v)
396
{
397
    *(float32 *)ptr = v;
398
}
399

    
400
static inline void stfq_le_p(void *ptr, float64 v)
401
{
402
    *(float64 *)ptr = v;
403
}
404
#endif
405

    
406
#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
407

    
408
static inline int lduw_be_p(const void *ptr)
409
{
410
#if defined(__i386__)
411
    int val;
412
    asm volatile ("movzwl %1, %0\n"
413
                  "xchgb %b0, %h0\n"
414
                  : "=q" (val)
415
                  : "m" (*(uint16_t *)ptr));
416
    return val;
417
#else
418
    const uint8_t *b = ptr;
419
    return ((b[0] << 8) | b[1]);
420
#endif
421
}
422

    
423
static inline int ldsw_be_p(const void *ptr)
424
{
425
#if defined(__i386__)
426
    int val;
427
    asm volatile ("movzwl %1, %0\n"
428
                  "xchgb %b0, %h0\n"
429
                  : "=q" (val)
430
                  : "m" (*(uint16_t *)ptr));
431
    return (int16_t)val;
432
#else
433
    const uint8_t *b = ptr;
434
    return (int16_t)((b[0] << 8) | b[1]);
435
#endif
436
}
437

    
438
static inline int ldl_be_p(const void *ptr)
439
{
440
#if defined(__i386__) || defined(__x86_64__)
441
    int val;
442
    asm volatile ("movl %1, %0\n"
443
                  "bswap %0\n"
444
                  : "=r" (val)
445
                  : "m" (*(uint32_t *)ptr));
446
    return val;
447
#else
448
    const uint8_t *b = ptr;
449
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
450
#endif
451
}
452

    
453
static inline uint64_t ldq_be_p(const void *ptr)
454
{
455
    uint32_t a,b;
456
    a = ldl_be_p(ptr);
457
    b = ldl_be_p((uint8_t *)ptr + 4);
458
    return (((uint64_t)a<<32)|b);
459
}
460

    
461
static inline void stw_be_p(void *ptr, int v)
462
{
463
#if defined(__i386__)
464
    asm volatile ("xchgb %b0, %h0\n"
465
                  "movw %w0, %1\n"
466
                  : "=q" (v)
467
                  : "m" (*(uint16_t *)ptr), "0" (v));
468
#else
469
    uint8_t *d = (uint8_t *) ptr;
470
    d[0] = v >> 8;
471
    d[1] = v;
472
#endif
473
}
474

    
475
static inline void stl_be_p(void *ptr, int v)
476
{
477
#if defined(__i386__) || defined(__x86_64__)
478
    asm volatile ("bswap %0\n"
479
                  "movl %0, %1\n"
480
                  : "=r" (v)
481
                  : "m" (*(uint32_t *)ptr), "0" (v));
482
#else
483
    uint8_t *d = (uint8_t *) ptr;
484
    d[0] = v >> 24;
485
    d[1] = v >> 16;
486
    d[2] = v >> 8;
487
    d[3] = v;
488
#endif
489
}
490

    
491
static inline void stq_be_p(void *ptr, uint64_t v)
492
{
493
    stl_be_p(ptr, v >> 32);
494
    stl_be_p((uint8_t *)ptr + 4, v);
495
}
496

    
497
/* float access */
498

    
499
static inline float32 ldfl_be_p(const void *ptr)
500
{
501
    union {
502
        float32 f;
503
        uint32_t i;
504
    } u;
505
    u.i = ldl_be_p(ptr);
506
    return u.f;
507
}
508

    
509
static inline void stfl_be_p(void *ptr, float32 v)
510
{
511
    union {
512
        float32 f;
513
        uint32_t i;
514
    } u;
515
    u.f = v;
516
    stl_be_p(ptr, u.i);
517
}
518

    
519
static inline float64 ldfq_be_p(const void *ptr)
520
{
521
    CPU_DoubleU u;
522
    u.l.upper = ldl_be_p(ptr);
523
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
524
    return u.d;
525
}
526

    
527
static inline void stfq_be_p(void *ptr, float64 v)
528
{
529
    CPU_DoubleU u;
530
    u.d = v;
531
    stl_be_p(ptr, u.l.upper);
532
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
533
}
534

    
535
#else
536

    
537
static inline int lduw_be_p(const void *ptr)
538
{
539
    return *(uint16_t *)ptr;
540
}
541

    
542
static inline int ldsw_be_p(const void *ptr)
543
{
544
    return *(int16_t *)ptr;
545
}
546

    
547
static inline int ldl_be_p(const void *ptr)
548
{
549
    return *(uint32_t *)ptr;
550
}
551

    
552
static inline uint64_t ldq_be_p(const void *ptr)
553
{
554
    return *(uint64_t *)ptr;
555
}
556

    
557
static inline void stw_be_p(void *ptr, int v)
558
{
559
    *(uint16_t *)ptr = v;
560
}
561

    
562
static inline void stl_be_p(void *ptr, int v)
563
{
564
    *(uint32_t *)ptr = v;
565
}
566

    
567
static inline void stq_be_p(void *ptr, uint64_t v)
568
{
569
    *(uint64_t *)ptr = v;
570
}
571

    
572
/* float access */
573

    
574
static inline float32 ldfl_be_p(const void *ptr)
575
{
576
    return *(float32 *)ptr;
577
}
578

    
579
static inline float64 ldfq_be_p(const void *ptr)
580
{
581
    return *(float64 *)ptr;
582
}
583

    
584
static inline void stfl_be_p(void *ptr, float32 v)
585
{
586
    *(float32 *)ptr = v;
587
}
588

    
589
static inline void stfq_be_p(void *ptr, float64 v)
590
{
591
    *(float64 *)ptr = v;
592
}
593

    
594
#endif
595

    
596
/* target CPU memory access functions */
597
#if defined(TARGET_WORDS_BIGENDIAN)
598
#define lduw_p(p) lduw_be_p(p)
599
#define ldsw_p(p) ldsw_be_p(p)
600
#define ldl_p(p) ldl_be_p(p)
601
#define ldq_p(p) ldq_be_p(p)
602
#define ldfl_p(p) ldfl_be_p(p)
603
#define ldfq_p(p) ldfq_be_p(p)
604
#define stw_p(p, v) stw_be_p(p, v)
605
#define stl_p(p, v) stl_be_p(p, v)
606
#define stq_p(p, v) stq_be_p(p, v)
607
#define stfl_p(p, v) stfl_be_p(p, v)
608
#define stfq_p(p, v) stfq_be_p(p, v)
609
#else
610
#define lduw_p(p) lduw_le_p(p)
611
#define ldsw_p(p) ldsw_le_p(p)
612
#define ldl_p(p) ldl_le_p(p)
613
#define ldq_p(p) ldq_le_p(p)
614
#define ldfl_p(p) ldfl_le_p(p)
615
#define ldfq_p(p) ldfq_le_p(p)
616
#define stw_p(p, v) stw_le_p(p, v)
617
#define stl_p(p, v) stl_le_p(p, v)
618
#define stq_p(p, v) stq_le_p(p, v)
619
#define stfl_p(p, v) stfl_le_p(p, v)
620
#define stfq_p(p, v) stfq_le_p(p, v)
621
#endif
622

    
623
/* MMU memory access macros */
624

    
625
#if defined(CONFIG_USER_ONLY)
626
#include <assert.h>
627
#include "qemu-types.h"
628

    
629
/* On some host systems the guest address space is reserved on the host.
630
 * This allows the guest address space to be offset to a convenient location.
631
 */
632
//#define GUEST_BASE 0x20000000
633
#define GUEST_BASE 0
634

    
635
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
636
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
637
#define h2g(x) ({ \
638
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
639
    /* Check if given address fits target address space */ \
640
    assert(__ret == (abi_ulong)__ret); \
641
    (abi_ulong)__ret; \
642
})
643
#define h2g_valid(x) ({ \
644
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
645
    (__guest == (abi_ulong)__guest); \
646
})
647

    
648
#define saddr(x) g2h(x)
649
#define laddr(x) g2h(x)
650

    
651
#else /* !CONFIG_USER_ONLY */
652
/* NOTE: we use double casts if pointers and target_ulong have
653
   different sizes */
654
#define saddr(x) (uint8_t *)(long)(x)
655
#define laddr(x) (uint8_t *)(long)(x)
656
#endif
657

    
658
#define ldub_raw(p) ldub_p(laddr((p)))
659
#define ldsb_raw(p) ldsb_p(laddr((p)))
660
#define lduw_raw(p) lduw_p(laddr((p)))
661
#define ldsw_raw(p) ldsw_p(laddr((p)))
662
#define ldl_raw(p) ldl_p(laddr((p)))
663
#define ldq_raw(p) ldq_p(laddr((p)))
664
#define ldfl_raw(p) ldfl_p(laddr((p)))
665
#define ldfq_raw(p) ldfq_p(laddr((p)))
666
#define stb_raw(p, v) stb_p(saddr((p)), v)
667
#define stw_raw(p, v) stw_p(saddr((p)), v)
668
#define stl_raw(p, v) stl_p(saddr((p)), v)
669
#define stq_raw(p, v) stq_p(saddr((p)), v)
670
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
671
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
672

    
673

    
674
#if defined(CONFIG_USER_ONLY)
675

    
676
/* if user mode, no other memory access functions */
677
#define ldub(p) ldub_raw(p)
678
#define ldsb(p) ldsb_raw(p)
679
#define lduw(p) lduw_raw(p)
680
#define ldsw(p) ldsw_raw(p)
681
#define ldl(p) ldl_raw(p)
682
#define ldq(p) ldq_raw(p)
683
#define ldfl(p) ldfl_raw(p)
684
#define ldfq(p) ldfq_raw(p)
685
#define stb(p, v) stb_raw(p, v)
686
#define stw(p, v) stw_raw(p, v)
687
#define stl(p, v) stl_raw(p, v)
688
#define stq(p, v) stq_raw(p, v)
689
#define stfl(p, v) stfl_raw(p, v)
690
#define stfq(p, v) stfq_raw(p, v)
691

    
692
#define ldub_code(p) ldub_raw(p)
693
#define ldsb_code(p) ldsb_raw(p)
694
#define lduw_code(p) lduw_raw(p)
695
#define ldsw_code(p) ldsw_raw(p)
696
#define ldl_code(p) ldl_raw(p)
697
#define ldq_code(p) ldq_raw(p)
698

    
699
#define ldub_kernel(p) ldub_raw(p)
700
#define ldsb_kernel(p) ldsb_raw(p)
701
#define lduw_kernel(p) lduw_raw(p)
702
#define ldsw_kernel(p) ldsw_raw(p)
703
#define ldl_kernel(p) ldl_raw(p)
704
#define ldq_kernel(p) ldq_raw(p)
705
#define ldfl_kernel(p) ldfl_raw(p)
706
#define ldfq_kernel(p) ldfq_raw(p)
707
#define stb_kernel(p, v) stb_raw(p, v)
708
#define stw_kernel(p, v) stw_raw(p, v)
709
#define stl_kernel(p, v) stl_raw(p, v)
710
#define stq_kernel(p, v) stq_raw(p, v)
711
#define stfl_kernel(p, v) stfl_raw(p, v)
712
#define stfq_kernel(p, vt) stfq_raw(p, v)
713

    
714
#endif /* defined(CONFIG_USER_ONLY) */
715

    
716
/* page related stuff */
717

    
718
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
719
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
720
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
721

    
722
/* ??? These should be the larger of unsigned long and target_ulong.  */
723
extern unsigned long qemu_real_host_page_size;
724
extern unsigned long qemu_host_page_bits;
725
extern unsigned long qemu_host_page_size;
726
extern unsigned long qemu_host_page_mask;
727

    
728
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
729

    
730
/* same as PROT_xxx */
731
#define PAGE_READ      0x0001
732
#define PAGE_WRITE     0x0002
733
#define PAGE_EXEC      0x0004
734
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
735
#define PAGE_VALID     0x0008
736
/* original state of the write flag (used when tracking self-modifying
737
   code */
738
#define PAGE_WRITE_ORG 0x0010
739
#define PAGE_RESERVED  0x0020
740

    
741
void page_dump(FILE *f);
742
int page_get_flags(target_ulong address);
743
void page_set_flags(target_ulong start, target_ulong end, int flags);
744
int page_check_range(target_ulong start, target_ulong len, int flags);
745

    
746
void cpu_exec_init_all(unsigned long tb_size);
747
CPUState *cpu_copy(CPUState *env);
748

    
749
void cpu_dump_state(CPUState *env, FILE *f,
750
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
751
                    int flags);
752
void cpu_dump_statistics (CPUState *env, FILE *f,
753
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
754
                          int flags);
755

    
756
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
757
    __attribute__ ((__format__ (__printf__, 2, 3)));
758
extern CPUState *first_cpu;
759
extern CPUState *cpu_single_env;
760
extern int64_t qemu_icount;
761
extern int use_icount;
762

    
763
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
764
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
765
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
766
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
767
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
768
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
769
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
770
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
771
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
772
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
773

    
774
void cpu_interrupt(CPUState *s, int mask);
775
void cpu_reset_interrupt(CPUState *env, int mask);
776

    
777
/* Breakpoint/watchpoint flags */
778
#define BP_MEM_READ           0x01
779
#define BP_MEM_WRITE          0x02
780
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
781
#define BP_STOP_BEFORE_ACCESS 0x04
782
#define BP_WATCHPOINT_HIT     0x08
783
#define BP_GDB                0x10
784
#define BP_CPU                0x20
785

    
786
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
787
                          CPUBreakpoint **breakpoint);
788
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
789
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
790
void cpu_breakpoint_remove_all(CPUState *env, int mask);
791
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
792
                          int flags, CPUWatchpoint **watchpoint);
793
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
794
                          target_ulong len, int flags);
795
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
796
void cpu_watchpoint_remove_all(CPUState *env, int mask);
797

    
798
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
799
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
800
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
801

    
802
void cpu_single_step(CPUState *env, int enabled);
803
void cpu_reset(CPUState *s);
804

    
805
/* Return the physical page corresponding to a virtual one. Use it
806
   only for debugging because no protection checks are done. Return -1
807
   if no page found. */
808
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
809

    
810
#define CPU_LOG_TB_OUT_ASM (1 << 0)
811
#define CPU_LOG_TB_IN_ASM  (1 << 1)
812
#define CPU_LOG_TB_OP      (1 << 2)
813
#define CPU_LOG_TB_OP_OPT  (1 << 3)
814
#define CPU_LOG_INT        (1 << 4)
815
#define CPU_LOG_EXEC       (1 << 5)
816
#define CPU_LOG_PCALL      (1 << 6)
817
#define CPU_LOG_IOPORT     (1 << 7)
818
#define CPU_LOG_TB_CPU     (1 << 8)
819
#define CPU_LOG_RESET      (1 << 9)
820

    
821
/* define log items */
822
typedef struct CPULogItem {
823
    int mask;
824
    const char *name;
825
    const char *help;
826
} CPULogItem;
827

    
828
extern const CPULogItem cpu_log_items[];
829

    
830
void cpu_set_log(int log_flags);
831
void cpu_set_log_filename(const char *filename);
832
int cpu_str_to_log_mask(const char *str);
833

    
834
/* IO ports API */
835

    
836
/* NOTE: as these functions may be even used when there is an isa
837
   brige on non x86 targets, we always defined them */
838
#ifndef NO_CPU_IO_DEFS
839
void cpu_outb(CPUState *env, int addr, int val);
840
void cpu_outw(CPUState *env, int addr, int val);
841
void cpu_outl(CPUState *env, int addr, int val);
842
int cpu_inb(CPUState *env, int addr);
843
int cpu_inw(CPUState *env, int addr);
844
int cpu_inl(CPUState *env, int addr);
845
#endif
846

    
847
/* address in the RAM (different from a physical address) */
848
#ifdef USE_KQEMU
849
typedef uint32_t ram_addr_t;
850
#else
851
typedef unsigned long ram_addr_t;
852
#endif
853

    
854
/* memory API */
855

    
856
extern ram_addr_t phys_ram_size;
857
extern int phys_ram_fd;
858
extern uint8_t *phys_ram_base;
859
extern uint8_t *phys_ram_dirty;
860
extern ram_addr_t ram_size;
861

    
862
/* physical memory access */
863

    
864
/* MMIO pages are identified by a combination of an IO device index and
865
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
866
   so only a limited number of ids are avaiable.  */
867

    
868
#define IO_MEM_SHIFT       3
869
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
870

    
871
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
872
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
873
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
874
#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
875

    
876
/* Acts like a ROM when read and like a device when written.  */
877
#define IO_MEM_ROMD        (1)
878
#define IO_MEM_SUBPAGE     (2)
879
#define IO_MEM_SUBWIDTH    (4)
880

    
881
/* Flags stored in the low bits of the TLB virtual address.  These are
882
   defined so that fast path ram access is all zeros.  */
883
/* Zero if TLB entry is valid.  */
884
#define TLB_INVALID_MASK   (1 << 3)
885
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
886
   contain the page physical address.  */
887
#define TLB_NOTDIRTY    (1 << 4)
888
/* Set if TLB entry is an IO callback.  */
889
#define TLB_MMIO        (1 << 5)
890

    
891
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
892
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
893

    
894
void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
895
                                         ram_addr_t size,
896
                                         ram_addr_t phys_offset,
897
                                         ram_addr_t region_offset);
898
static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
899
                                                ram_addr_t size,
900
                                                ram_addr_t phys_offset)
901
{
902
    cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
903
}
904

    
905
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
906
ram_addr_t qemu_ram_alloc(ram_addr_t);
907
void qemu_ram_free(ram_addr_t addr);
908
int cpu_register_io_memory(int io_index,
909
                           CPUReadMemoryFunc **mem_read,
910
                           CPUWriteMemoryFunc **mem_write,
911
                           void *opaque);
912
void cpu_unregister_io_memory(int table_address);
913
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
914
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
915

    
916
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
917
                            int len, int is_write);
918
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
919
                                            uint8_t *buf, int len)
920
{
921
    cpu_physical_memory_rw(addr, buf, len, 0);
922
}
923
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
924
                                             const uint8_t *buf, int len)
925
{
926
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
927
}
928
void *cpu_physical_memory_map(target_phys_addr_t addr,
929
                              target_phys_addr_t *plen,
930
                              int is_write);
931
void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
932
                               int is_write, target_phys_addr_t access_len);
933
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
934
void cpu_unregister_map_client(void *cookie);
935

    
936
uint32_t ldub_phys(target_phys_addr_t addr);
937
uint32_t lduw_phys(target_phys_addr_t addr);
938
uint32_t ldl_phys(target_phys_addr_t addr);
939
uint64_t ldq_phys(target_phys_addr_t addr);
940
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
941
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
942
void stb_phys(target_phys_addr_t addr, uint32_t val);
943
void stw_phys(target_phys_addr_t addr, uint32_t val);
944
void stl_phys(target_phys_addr_t addr, uint32_t val);
945
void stq_phys(target_phys_addr_t addr, uint64_t val);
946

    
947
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
948
                                   const uint8_t *buf, int len);
949
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
950
                        uint8_t *buf, int len, int is_write);
951

    
952
#define VGA_DIRTY_FLAG       0x01
953
#define CODE_DIRTY_FLAG      0x02
954
#define KQEMU_DIRTY_FLAG     0x04
955
#define MIGRATION_DIRTY_FLAG 0x08
956

    
957
/* read dirty bit (return 0 or 1) */
958
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
959
{
960
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
961
}
962

    
963
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
964
                                                int dirty_flags)
965
{
966
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
967
}
968

    
969
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
970
{
971
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
972
}
973

    
974
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
975
                                     int dirty_flags);
976
void cpu_tlb_update_dirty(CPUState *env);
977

    
978
int cpu_physical_memory_set_dirty_tracking(int enable);
979

    
980
int cpu_physical_memory_get_dirty_tracking(void);
981

    
982
void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
983

    
984
void dump_exec_info(FILE *f,
985
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
986

    
987
/* Coalesced MMIO regions are areas where write operations can be reordered.
988
 * This usually implies that write operations are side-effect free.  This allows
989
 * batching which can make a major impact on performance when using
990
 * virtualization.
991
 */
992
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
993

    
994
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
995

    
996
/*******************************************/
997
/* host CPU ticks (if available) */
998

    
999
#if defined(_ARCH_PPC)
1000

    
1001
static inline int64_t cpu_get_real_ticks(void)
1002
{
1003
    int64_t retval;
1004
#ifdef _ARCH_PPC64
1005
    /* This reads timebase in one 64bit go and includes Cell workaround from:
1006
       http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
1007
     */
1008
    __asm__ __volatile__ (
1009
        "mftb    %0\n\t"
1010
        "cmpwi   %0,0\n\t"
1011
        "beq-    $-8"
1012
        : "=r" (retval));
1013
#else
1014
    /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
1015
    unsigned long junk;
1016
    __asm__ __volatile__ (
1017
        "mftbu   %1\n\t"
1018
        "mftb    %L0\n\t"
1019
        "mftbu   %0\n\t"
1020
        "cmpw    %0,%1\n\t"
1021
        "bne     $-16"
1022
        : "=r" (retval), "=r" (junk));
1023
#endif
1024
    return retval;
1025
}
1026

    
1027
#elif defined(__i386__)
1028

    
1029
static inline int64_t cpu_get_real_ticks(void)
1030
{
1031
    int64_t val;
1032
    asm volatile ("rdtsc" : "=A" (val));
1033
    return val;
1034
}
1035

    
1036
#elif defined(__x86_64__)
1037

    
1038
static inline int64_t cpu_get_real_ticks(void)
1039
{
1040
    uint32_t low,high;
1041
    int64_t val;
1042
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
1043
    val = high;
1044
    val <<= 32;
1045
    val |= low;
1046
    return val;
1047
}
1048

    
1049
#elif defined(__hppa__)
1050

    
1051
static inline int64_t cpu_get_real_ticks(void)
1052
{
1053
    int val;
1054
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1055
    return val;
1056
}
1057

    
1058
#elif defined(__ia64)
1059

    
1060
static inline int64_t cpu_get_real_ticks(void)
1061
{
1062
        int64_t val;
1063
        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1064
        return val;
1065
}
1066

    
1067
#elif defined(__s390__)
1068

    
1069
static inline int64_t cpu_get_real_ticks(void)
1070
{
1071
    int64_t val;
1072
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1073
    return val;
1074
}
1075

    
1076
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1077

    
1078
static inline int64_t cpu_get_real_ticks (void)
1079
{
1080
#if     defined(_LP64)
1081
        uint64_t        rval;
1082
        asm volatile("rd %%tick,%0" : "=r"(rval));
1083
        return rval;
1084
#else
1085
        union {
1086
                uint64_t i64;
1087
                struct {
1088
                        uint32_t high;
1089
                        uint32_t low;
1090
                }       i32;
1091
        } rval;
1092
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
1093
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
1094
        return rval.i64;
1095
#endif
1096
}
1097

    
1098
#elif defined(__mips__)
1099

    
1100
static inline int64_t cpu_get_real_ticks(void)
1101
{
1102
#if __mips_isa_rev >= 2
1103
    uint32_t count;
1104
    static uint32_t cyc_per_count = 0;
1105

    
1106
    if (!cyc_per_count)
1107
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1108

    
1109
    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1110
    return (int64_t)(count * cyc_per_count);
1111
#else
1112
    /* FIXME */
1113
    static int64_t ticks = 0;
1114
    return ticks++;
1115
#endif
1116
}
1117

    
1118
#else
1119
/* The host CPU doesn't have an easily accessible cycle counter.
1120
   Just return a monotonically increasing value.  This will be
1121
   totally wrong, but hopefully better than nothing.  */
1122
static inline int64_t cpu_get_real_ticks (void)
1123
{
1124
    static int64_t ticks = 0;
1125
    return ticks++;
1126
}
1127
#endif
1128

    
1129
/* profiling */
1130
#ifdef CONFIG_PROFILER
1131
static inline int64_t profile_getclock(void)
1132
{
1133
    return cpu_get_real_ticks();
1134
}
1135

    
1136
extern int64_t kqemu_time, kqemu_time_start;
1137
extern int64_t qemu_time, qemu_time_start;
1138
extern int64_t tlb_flush_time;
1139
extern int64_t kqemu_exec_count;
1140
extern int64_t dev_time;
1141
extern int64_t kqemu_ret_int_count;
1142
extern int64_t kqemu_ret_excp_count;
1143
extern int64_t kqemu_ret_intr_count;
1144
#endif
1145

    
1146
#endif /* CPU_ALL_H */