Statistics
| Branch: | Revision:

root / cpu-exec.c @ 07ce05ea

History | View | Annotate | Download (23.9 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
int tb_invalidated_flag;
25

    
26
//#define DEBUG_EXEC
27
//#define DEBUG_SIGNAL
28

    
29
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
30
/* XXX: unify with i386 target */
31
void cpu_loop_exit(void)
32
{
33
    longjmp(env->jmp_env, 1);
34
}
35
#endif
36

    
37
/* main execution loop */
38

    
39
int cpu_exec(CPUState *env1)
40
{
41
    int saved_T0, saved_T1, saved_T2;
42
    CPUState *saved_env;
43
#ifdef reg_EAX
44
    int saved_EAX;
45
#endif
46
#ifdef reg_ECX
47
    int saved_ECX;
48
#endif
49
#ifdef reg_EDX
50
    int saved_EDX;
51
#endif
52
#ifdef reg_EBX
53
    int saved_EBX;
54
#endif
55
#ifdef reg_ESP
56
    int saved_ESP;
57
#endif
58
#ifdef reg_EBP
59
    int saved_EBP;
60
#endif
61
#ifdef reg_ESI
62
    int saved_ESI;
63
#endif
64
#ifdef reg_EDI
65
    int saved_EDI;
66
#endif
67
#ifdef __sparc__
68
    int saved_i7, tmp_T0;
69
#endif
70
    int code_gen_size, ret, interrupt_request;
71
    void (*gen_func)(void);
72
    TranslationBlock *tb, **ptb;
73
    uint8_t *tc_ptr, *cs_base, *pc;
74
    unsigned int flags;
75

    
76
    /* first we save global registers */
77
    saved_T0 = T0;
78
    saved_T1 = T1;
79
    saved_T2 = T2;
80
    saved_env = env;
81
    env = env1;
82
#ifdef __sparc__
83
    /* we also save i7 because longjmp may not restore it */
84
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
85
#endif
86

    
87
#if defined(TARGET_I386)
88
#ifdef reg_EAX
89
    saved_EAX = EAX;
90
    EAX = env->regs[R_EAX];
91
#endif
92
#ifdef reg_ECX
93
    saved_ECX = ECX;
94
    ECX = env->regs[R_ECX];
95
#endif
96
#ifdef reg_EDX
97
    saved_EDX = EDX;
98
    EDX = env->regs[R_EDX];
99
#endif
100
#ifdef reg_EBX
101
    saved_EBX = EBX;
102
    EBX = env->regs[R_EBX];
103
#endif
104
#ifdef reg_ESP
105
    saved_ESP = ESP;
106
    ESP = env->regs[R_ESP];
107
#endif
108
#ifdef reg_EBP
109
    saved_EBP = EBP;
110
    EBP = env->regs[R_EBP];
111
#endif
112
#ifdef reg_ESI
113
    saved_ESI = ESI;
114
    ESI = env->regs[R_ESI];
115
#endif
116
#ifdef reg_EDI
117
    saved_EDI = EDI;
118
    EDI = env->regs[R_EDI];
119
#endif
120
    
121
    /* put eflags in CPU temporary format */
122
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
123
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
124
    CC_OP = CC_OP_EFLAGS;
125
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
126
#elif defined(TARGET_ARM)
127
    {
128
        unsigned int psr;
129
        psr = env->cpsr;
130
        env->CF = (psr >> 29) & 1;
131
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
132
        env->VF = (psr << 3) & 0x80000000;
133
        env->cpsr = psr & ~0xf0000000;
134
    }
135
#elif defined(TARGET_SPARC)
136
#elif defined(TARGET_PPC)
137
#else
138
#error unsupported target CPU
139
#endif
140
    env->exception_index = -1;
141

    
142
    /* prepare setjmp context for exception handling */
143
    for(;;) {
144
        if (setjmp(env->jmp_env) == 0) {
145
            env->current_tb = NULL;
146
            /* if an exception is pending, we execute it here */
147
            if (env->exception_index >= 0) {
148
                if (env->exception_index >= EXCP_INTERRUPT) {
149
                    /* exit request from the cpu execution loop */
150
                    ret = env->exception_index;
151
                    break;
152
                } else if (env->user_mode_only) {
153
                    /* if user mode only, we simulate a fake exception
154
                       which will be hanlded outside the cpu execution
155
                       loop */
156
#if defined(TARGET_I386)
157
                    do_interrupt_user(env->exception_index, 
158
                                      env->exception_is_int, 
159
                                      env->error_code, 
160
                                      env->exception_next_eip);
161
#endif
162
                    ret = env->exception_index;
163
                    break;
164
                } else {
165
#if defined(TARGET_I386)
166
                    /* simulate a real cpu exception. On i386, it can
167
                       trigger new exceptions, but we do not handle
168
                       double or triple faults yet. */
169
                    do_interrupt(env->exception_index, 
170
                                 env->exception_is_int, 
171
                                 env->error_code, 
172
                                 env->exception_next_eip, 0);
173
#elif defined(TARGET_PPC)
174
                    do_interrupt(env);
175
#endif
176
                }
177
                env->exception_index = -1;
178
            }
179
            T0 = 0; /* force lookup of first TB */
180
            for(;;) {
181
#ifdef __sparc__
182
                /* g1 can be modified by some libc? functions */ 
183
                tmp_T0 = T0;
184
#endif            
185
                interrupt_request = env->interrupt_request;
186
                if (__builtin_expect(interrupt_request, 0)) {
187
#if defined(TARGET_I386)
188
                    /* if hardware interrupt pending, we execute it */
189
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
190
                        (env->eflags & IF_MASK) && 
191
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
192
                        int intno;
193
                        intno = cpu_x86_get_pic_interrupt(env);
194
                        if (loglevel) {
195
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
196
                        }
197
                        do_interrupt(intno, 0, 0, 0, 1);
198
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
199
                        /* ensure that no TB jump will be modified as
200
                           the program flow was changed */
201
#ifdef __sparc__
202
                        tmp_T0 = 0;
203
#else
204
                        T0 = 0;
205
#endif
206
                    }
207
#elif defined(TARGET_PPC)
208
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
209
                        do_queue_exception(EXCP_EXTERNAL);
210
                        if (check_exception_state(env))
211
                            do_interrupt(env);
212
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
213
                    }
214
#endif
215
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
216
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
217
                        env->exception_index = EXCP_INTERRUPT;
218
                        cpu_loop_exit();
219
                    }
220
                }
221
#ifdef DEBUG_EXEC
222
                if (loglevel) {
223
#if defined(TARGET_I386)
224
                    /* restore flags in standard format */
225
                    env->regs[R_EAX] = EAX;
226
                    env->regs[R_EBX] = EBX;
227
                    env->regs[R_ECX] = ECX;
228
                    env->regs[R_EDX] = EDX;
229
                    env->regs[R_ESI] = ESI;
230
                    env->regs[R_EDI] = EDI;
231
                    env->regs[R_EBP] = EBP;
232
                    env->regs[R_ESP] = ESP;
233
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
234
                    cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
235
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
236
#elif defined(TARGET_ARM)
237
                    env->cpsr = compute_cpsr();
238
                    cpu_arm_dump_state(env, logfile, 0);
239
                    env->cpsr &= ~0xf0000000;
240
#elif defined(TARGET_SPARC)
241
                    cpu_sparc_dump_state (env, logfile, 0);
242
#elif defined(TARGET_PPC)
243
                    cpu_ppc_dump_state(env, logfile, 0);
244
#else
245
#error unsupported target CPU 
246
#endif
247
                }
248
#endif
249
                /* we record a subset of the CPU state. It will
250
                   always be the same before a given translated block
251
                   is executed. */
252
#if defined(TARGET_I386)
253
                flags = env->hflags;
254
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
255
                cs_base = env->segs[R_CS].base;
256
                pc = cs_base + env->eip;
257
#elif defined(TARGET_ARM)
258
                flags = 0;
259
                cs_base = 0;
260
                pc = (uint8_t *)env->regs[15];
261
#elif defined(TARGET_SPARC)
262
                flags = 0;
263
                cs_base = (uint8_t *)env->npc;
264
                pc = (uint8_t *) env->pc;
265
#elif defined(TARGET_PPC)
266
                flags = 0;
267
                cs_base = 0;
268
                pc = (uint8_t *)env->nip;
269
#else
270
#error unsupported CPU
271
#endif
272
                tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
273
                             flags);
274
                if (!tb) {
275
                    TranslationBlock **ptb1;
276
                    unsigned int h;
277
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
278
                    
279
                    
280
                    spin_lock(&tb_lock);
281

    
282
                    tb_invalidated_flag = 0;
283

    
284
                    /* find translated block using physical mappings */
285
                    phys_pc = get_phys_addr_code(env, (unsigned long)pc);
286
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
287
                    phys_page2 = -1;
288
                    h = tb_phys_hash_func(phys_pc);
289
                    ptb1 = &tb_phys_hash[h];
290
                    for(;;) {
291
                        tb = *ptb1;
292
                        if (!tb)
293
                            goto not_found;
294
                        if (tb->pc == (unsigned long)pc && 
295
                            tb->page_addr[0] == phys_page1 &&
296
                            tb->cs_base == (unsigned long)cs_base && 
297
                            tb->flags == flags) {
298
                            /* check next page if needed */
299
                            if (tb->page_addr[1] != -1) {
300
                                virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) + 
301
                                    TARGET_PAGE_SIZE;
302
                                phys_page2 = get_phys_addr_code(env, virt_page2);
303
                                if (tb->page_addr[1] == phys_page2)
304
                                    goto found;
305
                            } else {
306
                                goto found;
307
                            }
308
                        }
309
                        ptb1 = &tb->phys_hash_next;
310
                    }
311
                not_found:
312
                    /* if no translated code available, then translate it now */
313
                    tb = tb_alloc((unsigned long)pc);
314
                    if (!tb) {
315
                        /* flush must be done */
316
                        tb_flush(env);
317
                        /* cannot fail at this point */
318
                        tb = tb_alloc((unsigned long)pc);
319
                        /* don't forget to invalidate previous TB info */
320
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
321
                        T0 = 0;
322
                    }
323
                    tc_ptr = code_gen_ptr;
324
                    tb->tc_ptr = tc_ptr;
325
                    tb->cs_base = (unsigned long)cs_base;
326
                    tb->flags = flags;
327
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
328
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
329
                    
330
                    /* check next page if needed */
331
                    virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
332
                    phys_page2 = -1;
333
                    if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
334
                        phys_page2 = get_phys_addr_code(env, virt_page2);
335
                    }
336
                    tb_link_phys(tb, phys_pc, phys_page2);
337

    
338
                found:
339
                    if (tb_invalidated_flag) {
340
                        /* as some TB could have been invalidated because
341
                           of memory exceptions while generating the code, we
342
                           must recompute the hash index here */
343
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
344
                        while (*ptb != NULL)
345
                            ptb = &(*ptb)->hash_next;
346
                        T0 = 0;
347
                    }
348
                    /* we add the TB in the virtual pc hash table */
349
                    *ptb = tb;
350
                    tb->hash_next = NULL;
351
                    tb_link(tb);
352
                    spin_unlock(&tb_lock);
353
                }
354
#ifdef DEBUG_EXEC
355
                if (loglevel) {
356
                    fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
357
                            (long)tb->tc_ptr, (long)tb->pc,
358
                            lookup_symbol((void *)tb->pc));
359
                }
360
#endif
361
#ifdef __sparc__
362
                T0 = tmp_T0;
363
#endif            
364
                /* see if we can patch the calling TB. */
365
                if (T0 != 0) {
366
                    spin_lock(&tb_lock);
367
                    tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
368
                    spin_unlock(&tb_lock);
369
                }
370
                tc_ptr = tb->tc_ptr;
371
                env->current_tb = tb;
372
                /* execute the generated code */
373
                gen_func = (void *)tc_ptr;
374
#if defined(__sparc__)
375
                __asm__ __volatile__("call        %0\n\t"
376
                                     "mov        %%o7,%%i0"
377
                                     : /* no outputs */
378
                                     : "r" (gen_func) 
379
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
380
#elif defined(__arm__)
381
                asm volatile ("mov pc, %0\n\t"
382
                              ".global exec_loop\n\t"
383
                              "exec_loop:\n\t"
384
                              : /* no outputs */
385
                              : "r" (gen_func)
386
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
387
#else
388
                gen_func();
389
#endif
390
                env->current_tb = NULL;
391
                /* reset soft MMU for next block (it can currently
392
                   only be set by a memory fault) */
393
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
394
                if (env->hflags & HF_SOFTMMU_MASK) {
395
                    env->hflags &= ~HF_SOFTMMU_MASK;
396
                    /* do not allow linking to another block */
397
                    T0 = 0;
398
                }
399
#endif
400
            }
401
        } else {
402
        }
403
    } /* for(;;) */
404

    
405

    
406
#if defined(TARGET_I386)
407
    /* restore flags in standard format */
408
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
409

    
410
    /* restore global registers */
411
#ifdef reg_EAX
412
    EAX = saved_EAX;
413
#endif
414
#ifdef reg_ECX
415
    ECX = saved_ECX;
416
#endif
417
#ifdef reg_EDX
418
    EDX = saved_EDX;
419
#endif
420
#ifdef reg_EBX
421
    EBX = saved_EBX;
422
#endif
423
#ifdef reg_ESP
424
    ESP = saved_ESP;
425
#endif
426
#ifdef reg_EBP
427
    EBP = saved_EBP;
428
#endif
429
#ifdef reg_ESI
430
    ESI = saved_ESI;
431
#endif
432
#ifdef reg_EDI
433
    EDI = saved_EDI;
434
#endif
435
#elif defined(TARGET_ARM)
436
    env->cpsr = compute_cpsr();
437
#elif defined(TARGET_SPARC)
438
#elif defined(TARGET_PPC)
439
#else
440
#error unsupported target CPU
441
#endif
442
#ifdef __sparc__
443
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
444
#endif
445
    T0 = saved_T0;
446
    T1 = saved_T1;
447
    T2 = saved_T2;
448
    env = saved_env;
449
    return ret;
450
}
451

    
452
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
453

    
454
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
455
{
456
    CPUX86State *saved_env;
457

    
458
    saved_env = env;
459
    env = s;
460
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
461
        selector &= 0xffff;
462
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
463
                               (uint8_t *)(selector << 4), 0xffff, 0);
464
    } else {
465
        load_seg(seg_reg, selector);
466
    }
467
    env = saved_env;
468
}
469

    
470
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
471
{
472
    CPUX86State *saved_env;
473

    
474
    saved_env = env;
475
    env = s;
476
    
477
    helper_fsave(ptr, data32);
478

    
479
    env = saved_env;
480
}
481

    
482
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
483
{
484
    CPUX86State *saved_env;
485

    
486
    saved_env = env;
487
    env = s;
488
    
489
    helper_frstor(ptr, data32);
490

    
491
    env = saved_env;
492
}
493

    
494
#endif /* TARGET_I386 */
495

    
496
#undef EAX
497
#undef ECX
498
#undef EDX
499
#undef EBX
500
#undef ESP
501
#undef EBP
502
#undef ESI
503
#undef EDI
504
#undef EIP
505
#include <signal.h>
506
#include <sys/ucontext.h>
507

    
508
#if defined(TARGET_I386)
509

    
510
/* 'pc' is the host PC at which the exception was raised. 'address' is
511
   the effective address of the memory exception. 'is_write' is 1 if a
512
   write caused the exception and otherwise 0'. 'old_set' is the
513
   signal set which should be restored */
514
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
515
                                    int is_write, sigset_t *old_set)
516
{
517
    TranslationBlock *tb;
518
    int ret;
519

    
520
    if (cpu_single_env)
521
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
522
#if defined(DEBUG_SIGNAL)
523
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
524
           pc, address, is_write, *(unsigned long *)old_set);
525
#endif
526
    /* XXX: locking issue */
527
    if (is_write && page_unprotect(address)) {
528
        return 1;
529
    }
530
    /* see if it is an MMU fault */
531
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
532
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
533
    if (ret < 0)
534
        return 0; /* not an MMU fault */
535
    if (ret == 0)
536
        return 1; /* the MMU fault was handled without causing real CPU fault */
537
    /* now we have a real cpu fault */
538
    tb = tb_find_pc(pc);
539
    if (tb) {
540
        /* the PC is inside the translated code. It means that we have
541
           a virtual CPU fault */
542
        cpu_restore_state(tb, env, pc);
543
    }
544
    if (ret == 1) {
545
#if 0
546
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
547
               env->eip, env->cr[2], env->error_code);
548
#endif
549
        /* we restore the process signal mask as the sigreturn should
550
           do it (XXX: use sigsetjmp) */
551
        sigprocmask(SIG_SETMASK, old_set, NULL);
552
        raise_exception_err(EXCP0E_PAGE, env->error_code);
553
    } else {
554
        /* activate soft MMU for this block */
555
        env->hflags |= HF_SOFTMMU_MASK;
556
        sigprocmask(SIG_SETMASK, old_set, NULL);
557
        cpu_loop_exit();
558
    }
559
    /* never comes here */
560
    return 1;
561
}
562

    
563
#elif defined(TARGET_ARM)
564
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
565
                                    int is_write, sigset_t *old_set)
566
{
567
    /* XXX: do more */
568
    return 0;
569
}
570
#elif defined(TARGET_SPARC)
571
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
572
                                    int is_write, sigset_t *old_set)
573
{
574
    /* XXX: locking issue */
575
    if (is_write && page_unprotect(address)) {
576
        return 1;
577
    }
578
    return 0;
579
}
580
#elif defined (TARGET_PPC)
581
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
582
                                    int is_write, sigset_t *old_set)
583
{
584
    TranslationBlock *tb;
585
    int ret;
586
    
587
#if 1
588
    if (cpu_single_env)
589
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
590
#endif
591
#if defined(DEBUG_SIGNAL)
592
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
593
           pc, address, is_write, *(unsigned long *)old_set);
594
#endif
595
    /* XXX: locking issue */
596
    if (is_write && page_unprotect(address)) {
597
        return 1;
598
    }
599

    
600
    /* see if it is an MMU fault */
601
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
602
    if (ret < 0)
603
        return 0; /* not an MMU fault */
604
    if (ret == 0)
605
        return 1; /* the MMU fault was handled without causing real CPU fault */
606

    
607
    /* now we have a real cpu fault */
608
    tb = tb_find_pc(pc);
609
    if (tb) {
610
        /* the PC is inside the translated code. It means that we have
611
           a virtual CPU fault */
612
        cpu_restore_state(tb, env, pc);
613
    }
614
    if (ret == 1) {
615
#if 0
616
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
617
               env->nip, env->error_code, tb);
618
#endif
619
    /* we restore the process signal mask as the sigreturn should
620
       do it (XXX: use sigsetjmp) */
621
    sigprocmask(SIG_SETMASK, old_set, NULL);
622
        do_queue_exception_err(env->exception_index, env->error_code);
623
    } else {
624
        /* activate soft MMU for this block */
625
        sigprocmask(SIG_SETMASK, old_set, NULL);
626
        cpu_loop_exit();
627
    }
628
    /* never comes here */
629
    return 1;
630
}
631
#else
632
#error unsupported target CPU
633
#endif
634

    
635
#if defined(__i386__)
636

    
637
int cpu_signal_handler(int host_signum, struct siginfo *info, 
638
                       void *puc)
639
{
640
    struct ucontext *uc = puc;
641
    unsigned long pc;
642
    
643
#ifndef REG_EIP
644
/* for glibc 2.1 */
645
#define REG_EIP    EIP
646
#define REG_ERR    ERR
647
#define REG_TRAPNO TRAPNO
648
#endif
649
    pc = uc->uc_mcontext.gregs[REG_EIP];
650
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
651
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
652
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
653
                             &uc->uc_sigmask);
654
}
655

    
656
#elif defined(__powerpc)
657

    
658
int cpu_signal_handler(int host_signum, struct siginfo *info, 
659
                       void *puc)
660
{
661
    struct ucontext *uc = puc;
662
    struct pt_regs *regs = uc->uc_mcontext.regs;
663
    unsigned long pc;
664
    int is_write;
665

    
666
    pc = regs->nip;
667
    is_write = 0;
668
#if 0
669
    /* ppc 4xx case */
670
    if (regs->dsisr & 0x00800000)
671
        is_write = 1;
672
#else
673
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
674
        is_write = 1;
675
#endif
676
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
677
                             is_write, &uc->uc_sigmask);
678
}
679

    
680
#elif defined(__alpha__)
681

    
682
int cpu_signal_handler(int host_signum, struct siginfo *info, 
683
                           void *puc)
684
{
685
    struct ucontext *uc = puc;
686
    uint32_t *pc = uc->uc_mcontext.sc_pc;
687
    uint32_t insn = *pc;
688
    int is_write = 0;
689

    
690
    /* XXX: need kernel patch to get write flag faster */
691
    switch (insn >> 26) {
692
    case 0x0d: // stw
693
    case 0x0e: // stb
694
    case 0x0f: // stq_u
695
    case 0x24: // stf
696
    case 0x25: // stg
697
    case 0x26: // sts
698
    case 0x27: // stt
699
    case 0x2c: // stl
700
    case 0x2d: // stq
701
    case 0x2e: // stl_c
702
    case 0x2f: // stq_c
703
        is_write = 1;
704
    }
705

    
706
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
707
                             is_write, &uc->uc_sigmask);
708
}
709
#elif defined(__sparc__)
710

    
711
int cpu_signal_handler(int host_signum, struct siginfo *info, 
712
                       void *puc)
713
{
714
    uint32_t *regs = (uint32_t *)(info + 1);
715
    void *sigmask = (regs + 20);
716
    unsigned long pc;
717
    int is_write;
718
    uint32_t insn;
719
    
720
    /* XXX: is there a standard glibc define ? */
721
    pc = regs[1];
722
    /* XXX: need kernel patch to get write flag faster */
723
    is_write = 0;
724
    insn = *(uint32_t *)pc;
725
    if ((insn >> 30) == 3) {
726
      switch((insn >> 19) & 0x3f) {
727
      case 0x05: // stb
728
      case 0x06: // sth
729
      case 0x04: // st
730
      case 0x07: // std
731
      case 0x24: // stf
732
      case 0x27: // stdf
733
      case 0x25: // stfsr
734
        is_write = 1;
735
        break;
736
      }
737
    }
738
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
739
                             is_write, sigmask);
740
}
741

    
742
#elif defined(__arm__)
743

    
744
int cpu_signal_handler(int host_signum, struct siginfo *info, 
745
                       void *puc)
746
{
747
    struct ucontext *uc = puc;
748
    unsigned long pc;
749
    int is_write;
750
    
751
    pc = uc->uc_mcontext.gregs[R15];
752
    /* XXX: compute is_write */
753
    is_write = 0;
754
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
755
                             is_write,
756
                             &uc->uc_sigmask);
757
}
758

    
759
#elif defined(__mc68000)
760

    
761
int cpu_signal_handler(int host_signum, struct siginfo *info, 
762
                       void *puc)
763
{
764
    struct ucontext *uc = puc;
765
    unsigned long pc;
766
    int is_write;
767
    
768
    pc = uc->uc_mcontext.gregs[16];
769
    /* XXX: compute is_write */
770
    is_write = 0;
771
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
772
                             is_write,
773
                             &uc->uc_sigmask);
774
}
775

    
776
#else
777

    
778
#error host CPU specific signal handler needed
779

    
780
#endif