Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 0fd53fec

History | View | Annotate | Download (71.3 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21
#include <linux/kvm_para.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu/sysemu.h"
25
#include "sysemu/kvm.h"
26
#include "kvm_i386.h"
27
#include "cpu.h"
28
#include "exec/gdbstub.h"
29
#include "qemu/host-utils.h"
30
#include "qemu/config-file.h"
31
#include "hw/i386/pc.h"
32
#include "hw/i386/apic.h"
33
#include "exec/ioport.h"
34
#include <asm/hyperv.h>
35
#include "hw/pci/pci.h"
36

    
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58
    KVM_CAP_INFO(SET_TSS_ADDR),
59
    KVM_CAP_INFO(EXT_CPUID),
60
    KVM_CAP_INFO(MP_STATE),
61
    KVM_CAP_LAST_INFO
62
};
63

    
64
static bool has_msr_star;
65
static bool has_msr_hsave_pa;
66
static bool has_msr_tsc_adjust;
67
static bool has_msr_tsc_deadline;
68
static bool has_msr_feature_control;
69
static bool has_msr_async_pf_en;
70
static bool has_msr_pv_eoi_en;
71
static bool has_msr_misc_enable;
72
static bool has_msr_kvm_steal_time;
73
static int lm_capable_kernel;
74

    
75
static bool has_msr_architectural_pmu;
76
static uint32_t num_architectural_pmu_counters;
77

    
78
bool kvm_allows_irq0_override(void)
79
{
80
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
81
}
82

    
83
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
84
{
85
    struct kvm_cpuid2 *cpuid;
86
    int r, size;
87

    
88
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
89
    cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
90
    cpuid->nent = max;
91
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
92
    if (r == 0 && cpuid->nent >= max) {
93
        r = -E2BIG;
94
    }
95
    if (r < 0) {
96
        if (r == -E2BIG) {
97
            g_free(cpuid);
98
            return NULL;
99
        } else {
100
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
101
                    strerror(-r));
102
            exit(1);
103
        }
104
    }
105
    return cpuid;
106
}
107

    
108
/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
109
 * for all entries.
110
 */
111
static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
112
{
113
    struct kvm_cpuid2 *cpuid;
114
    int max = 1;
115
    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
116
        max *= 2;
117
    }
118
    return cpuid;
119
}
120

    
121
struct kvm_para_features {
122
    int cap;
123
    int feature;
124
} para_features[] = {
125
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
126
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
127
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
128
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
129
    { -1, -1 }
130
};
131

    
132
static int get_para_features(KVMState *s)
133
{
134
    int i, features = 0;
135

    
136
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
137
        if (kvm_check_extension(s, para_features[i].cap)) {
138
            features |= (1 << para_features[i].feature);
139
        }
140
    }
141

    
142
    return features;
143
}
144

    
145

    
146
/* Returns the value for a specific register on the cpuid entry
147
 */
148
static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
149
{
150
    uint32_t ret = 0;
151
    switch (reg) {
152
    case R_EAX:
153
        ret = entry->eax;
154
        break;
155
    case R_EBX:
156
        ret = entry->ebx;
157
        break;
158
    case R_ECX:
159
        ret = entry->ecx;
160
        break;
161
    case R_EDX:
162
        ret = entry->edx;
163
        break;
164
    }
165
    return ret;
166
}
167

    
168
/* Find matching entry for function/index on kvm_cpuid2 struct
169
 */
170
static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
171
                                                 uint32_t function,
172
                                                 uint32_t index)
173
{
174
    int i;
175
    for (i = 0; i < cpuid->nent; ++i) {
176
        if (cpuid->entries[i].function == function &&
177
            cpuid->entries[i].index == index) {
178
            return &cpuid->entries[i];
179
        }
180
    }
181
    /* not found: */
182
    return NULL;
183
}
184

    
185
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
186
                                      uint32_t index, int reg)
187
{
188
    struct kvm_cpuid2 *cpuid;
189
    uint32_t ret = 0;
190
    uint32_t cpuid_1_edx;
191
    bool found = false;
192

    
193
    cpuid = get_supported_cpuid(s);
194

    
195
    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
196
    if (entry) {
197
        found = true;
198
        ret = cpuid_entry_get_reg(entry, reg);
199
    }
200

    
201
    /* Fixups for the data returned by KVM, below */
202

    
203
    if (function == 1 && reg == R_EDX) {
204
        /* KVM before 2.6.30 misreports the following features */
205
        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
206
    } else if (function == 1 && reg == R_ECX) {
207
        /* We can set the hypervisor flag, even if KVM does not return it on
208
         * GET_SUPPORTED_CPUID
209
         */
210
        ret |= CPUID_EXT_HYPERVISOR;
211
        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
212
         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
213
         * and the irqchip is in the kernel.
214
         */
215
        if (kvm_irqchip_in_kernel() &&
216
                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
217
            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
218
        }
219

    
220
        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
221
         * without the in-kernel irqchip
222
         */
223
        if (!kvm_irqchip_in_kernel()) {
224
            ret &= ~CPUID_EXT_X2APIC;
225
        }
226
    } else if (function == 0x80000001 && reg == R_EDX) {
227
        /* On Intel, kvm returns cpuid according to the Intel spec,
228
         * so add missing bits according to the AMD spec:
229
         */
230
        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
231
        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
232
    }
233

    
234
    g_free(cpuid);
235

    
236
    /* fallback for older kernels */
237
    if ((function == KVM_CPUID_FEATURES) && !found) {
238
        ret = get_para_features(s);
239
    }
240

    
241
    return ret;
242
}
243

    
244
typedef struct HWPoisonPage {
245
    ram_addr_t ram_addr;
246
    QLIST_ENTRY(HWPoisonPage) list;
247
} HWPoisonPage;
248

    
249
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
250
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
251

    
252
static void kvm_unpoison_all(void *param)
253
{
254
    HWPoisonPage *page, *next_page;
255

    
256
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
257
        QLIST_REMOVE(page, list);
258
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
259
        g_free(page);
260
    }
261
}
262

    
263
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
264
{
265
    HWPoisonPage *page;
266

    
267
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
268
        if (page->ram_addr == ram_addr) {
269
            return;
270
        }
271
    }
272
    page = g_malloc(sizeof(HWPoisonPage));
273
    page->ram_addr = ram_addr;
274
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
275
}
276

    
277
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
278
                                     int *max_banks)
279
{
280
    int r;
281

    
282
    r = kvm_check_extension(s, KVM_CAP_MCE);
283
    if (r > 0) {
284
        *max_banks = r;
285
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
286
    }
287
    return -ENOSYS;
288
}
289

    
290
static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
291
{
292
    CPUX86State *env = &cpu->env;
293
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
294
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
295
    uint64_t mcg_status = MCG_STATUS_MCIP;
296

    
297
    if (code == BUS_MCEERR_AR) {
298
        status |= MCI_STATUS_AR | 0x134;
299
        mcg_status |= MCG_STATUS_EIPV;
300
    } else {
301
        status |= 0xc0;
302
        mcg_status |= MCG_STATUS_RIPV;
303
    }
304
    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
305
                       (MCM_ADDR_PHYS << 6) | 0xc,
306
                       cpu_x86_support_mca_broadcast(env) ?
307
                       MCE_INJECT_BROADCAST : 0);
308
}
309

    
310
static void hardware_memory_error(void)
311
{
312
    fprintf(stderr, "Hardware memory error!\n");
313
    exit(1);
314
}
315

    
316
int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
317
{
318
    X86CPU *cpu = X86_CPU(c);
319
    CPUX86State *env = &cpu->env;
320
    ram_addr_t ram_addr;
321
    hwaddr paddr;
322

    
323
    if ((env->mcg_cap & MCG_SER_P) && addr
324
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
325
        if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
326
            !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
327
            fprintf(stderr, "Hardware memory error for memory used by "
328
                    "QEMU itself instead of guest system!\n");
329
            /* Hope we are lucky for AO MCE */
330
            if (code == BUS_MCEERR_AO) {
331
                return 0;
332
            } else {
333
                hardware_memory_error();
334
            }
335
        }
336
        kvm_hwpoison_page_add(ram_addr);
337
        kvm_mce_inject(cpu, paddr, code);
338
    } else {
339
        if (code == BUS_MCEERR_AO) {
340
            return 0;
341
        } else if (code == BUS_MCEERR_AR) {
342
            hardware_memory_error();
343
        } else {
344
            return 1;
345
        }
346
    }
347
    return 0;
348
}
349

    
350
int kvm_arch_on_sigbus(int code, void *addr)
351
{
352
    X86CPU *cpu = X86_CPU(first_cpu);
353

    
354
    if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
355
        ram_addr_t ram_addr;
356
        hwaddr paddr;
357

    
358
        /* Hope we are lucky for AO MCE */
359
        if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
360
            !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
361
                                                addr, &paddr)) {
362
            fprintf(stderr, "Hardware memory error for memory used by "
363
                    "QEMU itself instead of guest system!: %p\n", addr);
364
            return 0;
365
        }
366
        kvm_hwpoison_page_add(ram_addr);
367
        kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
368
    } else {
369
        if (code == BUS_MCEERR_AO) {
370
            return 0;
371
        } else if (code == BUS_MCEERR_AR) {
372
            hardware_memory_error();
373
        } else {
374
            return 1;
375
        }
376
    }
377
    return 0;
378
}
379

    
380
static int kvm_inject_mce_oldstyle(X86CPU *cpu)
381
{
382
    CPUX86State *env = &cpu->env;
383

    
384
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
385
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
386
        struct kvm_x86_mce mce;
387

    
388
        env->exception_injected = -1;
389

    
390
        /*
391
         * There must be at least one bank in use if an MCE is pending.
392
         * Find it and use its values for the event injection.
393
         */
394
        for (bank = 0; bank < bank_num; bank++) {
395
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
396
                break;
397
            }
398
        }
399
        assert(bank < bank_num);
400

    
401
        mce.bank = bank;
402
        mce.status = env->mce_banks[bank * 4 + 1];
403
        mce.mcg_status = env->mcg_status;
404
        mce.addr = env->mce_banks[bank * 4 + 2];
405
        mce.misc = env->mce_banks[bank * 4 + 3];
406

    
407
        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
408
    }
409
    return 0;
410
}
411

    
412
static void cpu_update_state(void *opaque, int running, RunState state)
413
{
414
    CPUX86State *env = opaque;
415

    
416
    if (running) {
417
        env->tsc_valid = false;
418
    }
419
}
420

    
421
unsigned long kvm_arch_vcpu_id(CPUState *cs)
422
{
423
    X86CPU *cpu = X86_CPU(cs);
424
    return cpu->env.cpuid_apic_id;
425
}
426

    
427
#ifndef KVM_CPUID_SIGNATURE_NEXT
428
#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
429
#endif
430

    
431
static bool hyperv_hypercall_available(X86CPU *cpu)
432
{
433
    return cpu->hyperv_vapic ||
434
           (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
435
}
436

    
437
static bool hyperv_enabled(X86CPU *cpu)
438
{
439
    return hyperv_hypercall_available(cpu) ||
440
           cpu->hyperv_relaxed_timing;
441
}
442

    
443
#define KVM_MAX_CPUID_ENTRIES  100
444

    
445
int kvm_arch_init_vcpu(CPUState *cs)
446
{
447
    struct {
448
        struct kvm_cpuid2 cpuid;
449
        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
450
    } QEMU_PACKED cpuid_data;
451
    X86CPU *cpu = X86_CPU(cs);
452
    CPUX86State *env = &cpu->env;
453
    uint32_t limit, i, j, cpuid_i;
454
    uint32_t unused;
455
    struct kvm_cpuid_entry2 *c;
456
    uint32_t signature[3];
457
    int r;
458

    
459
    cpuid_i = 0;
460

    
461
    /* Paravirtualization CPUIDs */
462
    c = &cpuid_data.entries[cpuid_i++];
463
    memset(c, 0, sizeof(*c));
464
    c->function = KVM_CPUID_SIGNATURE;
465
    if (!hyperv_enabled(cpu)) {
466
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
467
        c->eax = 0;
468
    } else {
469
        memcpy(signature, "Microsoft Hv", 12);
470
        c->eax = HYPERV_CPUID_MIN;
471
    }
472
    c->ebx = signature[0];
473
    c->ecx = signature[1];
474
    c->edx = signature[2];
475

    
476
    c = &cpuid_data.entries[cpuid_i++];
477
    memset(c, 0, sizeof(*c));
478
    c->function = KVM_CPUID_FEATURES;
479
    c->eax = env->features[FEAT_KVM];
480

    
481
    if (hyperv_enabled(cpu)) {
482
        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
483
        c->eax = signature[0];
484

    
485
        c = &cpuid_data.entries[cpuid_i++];
486
        memset(c, 0, sizeof(*c));
487
        c->function = HYPERV_CPUID_VERSION;
488
        c->eax = 0x00001bbc;
489
        c->ebx = 0x00060001;
490

    
491
        c = &cpuid_data.entries[cpuid_i++];
492
        memset(c, 0, sizeof(*c));
493
        c->function = HYPERV_CPUID_FEATURES;
494
        if (cpu->hyperv_relaxed_timing) {
495
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
496
        }
497
        if (cpu->hyperv_vapic) {
498
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
499
            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
500
        }
501

    
502
        c = &cpuid_data.entries[cpuid_i++];
503
        memset(c, 0, sizeof(*c));
504
        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
505
        if (cpu->hyperv_relaxed_timing) {
506
            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
507
        }
508
        if (cpu->hyperv_vapic) {
509
            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
510
        }
511
        c->ebx = cpu->hyperv_spinlock_attempts;
512

    
513
        c = &cpuid_data.entries[cpuid_i++];
514
        memset(c, 0, sizeof(*c));
515
        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
516
        c->eax = 0x40;
517
        c->ebx = 0x40;
518

    
519
        c = &cpuid_data.entries[cpuid_i++];
520
        memset(c, 0, sizeof(*c));
521
        c->function = KVM_CPUID_SIGNATURE_NEXT;
522
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
523
        c->eax = 0;
524
        c->ebx = signature[0];
525
        c->ecx = signature[1];
526
        c->edx = signature[2];
527
    }
528

    
529
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
530

    
531
    has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
532

    
533
    has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
534

    
535
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
536

    
537
    for (i = 0; i <= limit; i++) {
538
        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
539
            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
540
            abort();
541
        }
542
        c = &cpuid_data.entries[cpuid_i++];
543

    
544
        switch (i) {
545
        case 2: {
546
            /* Keep reading function 2 till all the input is received */
547
            int times;
548

    
549
            c->function = i;
550
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
551
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
552
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
553
            times = c->eax & 0xff;
554

    
555
            for (j = 1; j < times; ++j) {
556
                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
557
                    fprintf(stderr, "cpuid_data is full, no space for "
558
                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
559
                    abort();
560
                }
561
                c = &cpuid_data.entries[cpuid_i++];
562
                c->function = i;
563
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
564
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
565
            }
566
            break;
567
        }
568
        case 4:
569
        case 0xb:
570
        case 0xd:
571
            for (j = 0; ; j++) {
572
                if (i == 0xd && j == 64) {
573
                    break;
574
                }
575
                c->function = i;
576
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
577
                c->index = j;
578
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
579

    
580
                if (i == 4 && c->eax == 0) {
581
                    break;
582
                }
583
                if (i == 0xb && !(c->ecx & 0xff00)) {
584
                    break;
585
                }
586
                if (i == 0xd && c->eax == 0) {
587
                    continue;
588
                }
589
                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
590
                    fprintf(stderr, "cpuid_data is full, no space for "
591
                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
592
                    abort();
593
                }
594
                c = &cpuid_data.entries[cpuid_i++];
595
            }
596
            break;
597
        default:
598
            c->function = i;
599
            c->flags = 0;
600
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
601
            break;
602
        }
603
    }
604

    
605
    if (limit >= 0x0a) {
606
        uint32_t ver;
607

    
608
        cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
609
        if ((ver & 0xff) > 0) {
610
            has_msr_architectural_pmu = true;
611
            num_architectural_pmu_counters = (ver & 0xff00) >> 8;
612

    
613
            /* Shouldn't be more than 32, since that's the number of bits
614
             * available in EBX to tell us _which_ counters are available.
615
             * Play it safe.
616
             */
617
            if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
618
                num_architectural_pmu_counters = MAX_GP_COUNTERS;
619
            }
620
        }
621
    }
622

    
623
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
624

    
625
    for (i = 0x80000000; i <= limit; i++) {
626
        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
627
            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
628
            abort();
629
        }
630
        c = &cpuid_data.entries[cpuid_i++];
631

    
632
        c->function = i;
633
        c->flags = 0;
634
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
635
    }
636

    
637
    /* Call Centaur's CPUID instructions they are supported. */
638
    if (env->cpuid_xlevel2 > 0) {
639
        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
640

    
641
        for (i = 0xC0000000; i <= limit; i++) {
642
            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
643
                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
644
                abort();
645
            }
646
            c = &cpuid_data.entries[cpuid_i++];
647

    
648
            c->function = i;
649
            c->flags = 0;
650
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
651
        }
652
    }
653

    
654
    cpuid_data.cpuid.nent = cpuid_i;
655

    
656
    if (((env->cpuid_version >> 8)&0xF) >= 6
657
        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
658
           (CPUID_MCE | CPUID_MCA)
659
        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
660
        uint64_t mcg_cap;
661
        int banks;
662
        int ret;
663

    
664
        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
665
        if (ret < 0) {
666
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
667
            return ret;
668
        }
669

    
670
        if (banks > MCE_BANKS_DEF) {
671
            banks = MCE_BANKS_DEF;
672
        }
673
        mcg_cap &= MCE_CAP_DEF;
674
        mcg_cap |= banks;
675
        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
676
        if (ret < 0) {
677
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
678
            return ret;
679
        }
680

    
681
        env->mcg_cap = mcg_cap;
682
    }
683

    
684
    qemu_add_vm_change_state_handler(cpu_update_state, env);
685

    
686
    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
687
    if (c) {
688
        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
689
                                  !!(c->ecx & CPUID_EXT_SMX);
690
    }
691

    
692
    cpuid_data.cpuid.padding = 0;
693
    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
694
    if (r) {
695
        return r;
696
    }
697

    
698
    r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
699
    if (r && env->tsc_khz) {
700
        r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
701
        if (r < 0) {
702
            fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
703
            return r;
704
        }
705
    }
706

    
707
    if (kvm_has_xsave()) {
708
        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
709
    }
710

    
711
    return 0;
712
}
713

    
714
void kvm_arch_reset_vcpu(CPUState *cs)
715
{
716
    X86CPU *cpu = X86_CPU(cs);
717
    CPUX86State *env = &cpu->env;
718

    
719
    env->exception_injected = -1;
720
    env->interrupt_injected = -1;
721
    env->xcr0 = 1;
722
    if (kvm_irqchip_in_kernel()) {
723
        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
724
                                          KVM_MP_STATE_UNINITIALIZED;
725
    } else {
726
        env->mp_state = KVM_MP_STATE_RUNNABLE;
727
    }
728
}
729

    
730
static int kvm_get_supported_msrs(KVMState *s)
731
{
732
    static int kvm_supported_msrs;
733
    int ret = 0;
734

    
735
    /* first time */
736
    if (kvm_supported_msrs == 0) {
737
        struct kvm_msr_list msr_list, *kvm_msr_list;
738

    
739
        kvm_supported_msrs = -1;
740

    
741
        /* Obtain MSR list from KVM.  These are the MSRs that we must
742
         * save/restore */
743
        msr_list.nmsrs = 0;
744
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
745
        if (ret < 0 && ret != -E2BIG) {
746
            return ret;
747
        }
748
        /* Old kernel modules had a bug and could write beyond the provided
749
           memory. Allocate at least a safe amount of 1K. */
750
        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
751
                                              msr_list.nmsrs *
752
                                              sizeof(msr_list.indices[0])));
753

    
754
        kvm_msr_list->nmsrs = msr_list.nmsrs;
755
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
756
        if (ret >= 0) {
757
            int i;
758

    
759
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
760
                if (kvm_msr_list->indices[i] == MSR_STAR) {
761
                    has_msr_star = true;
762
                    continue;
763
                }
764
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
765
                    has_msr_hsave_pa = true;
766
                    continue;
767
                }
768
                if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
769
                    has_msr_tsc_adjust = true;
770
                    continue;
771
                }
772
                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
773
                    has_msr_tsc_deadline = true;
774
                    continue;
775
                }
776
                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
777
                    has_msr_misc_enable = true;
778
                    continue;
779
                }
780
            }
781
        }
782

    
783
        g_free(kvm_msr_list);
784
    }
785

    
786
    return ret;
787
}
788

    
789
int kvm_arch_init(KVMState *s)
790
{
791
    uint64_t identity_base = 0xfffbc000;
792
    uint64_t shadow_mem;
793
    int ret;
794
    struct utsname utsname;
795

    
796
    ret = kvm_get_supported_msrs(s);
797
    if (ret < 0) {
798
        return ret;
799
    }
800

    
801
    uname(&utsname);
802
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
803

    
804
    /*
805
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
806
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
807
     * Since these must be part of guest physical memory, we need to allocate
808
     * them, both by setting their start addresses in the kernel and by
809
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
810
     *
811
     * Older KVM versions may not support setting the identity map base. In
812
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
813
     * size.
814
     */
815
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
816
        /* Allows up to 16M BIOSes. */
817
        identity_base = 0xfeffc000;
818

    
819
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
820
        if (ret < 0) {
821
            return ret;
822
        }
823
    }
824

    
825
    /* Set TSS base one page after EPT identity map. */
826
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
827
    if (ret < 0) {
828
        return ret;
829
    }
830

    
831
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
832
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
833
    if (ret < 0) {
834
        fprintf(stderr, "e820_add_entry() table is full\n");
835
        return ret;
836
    }
837
    qemu_register_reset(kvm_unpoison_all, NULL);
838

    
839
    shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
840
                                   "kvm_shadow_mem", -1);
841
    if (shadow_mem != -1) {
842
        shadow_mem /= 4096;
843
        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
844
        if (ret < 0) {
845
            return ret;
846
        }
847
    }
848
    return 0;
849
}
850

    
851
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
852
{
853
    lhs->selector = rhs->selector;
854
    lhs->base = rhs->base;
855
    lhs->limit = rhs->limit;
856
    lhs->type = 3;
857
    lhs->present = 1;
858
    lhs->dpl = 3;
859
    lhs->db = 0;
860
    lhs->s = 1;
861
    lhs->l = 0;
862
    lhs->g = 0;
863
    lhs->avl = 0;
864
    lhs->unusable = 0;
865
}
866

    
867
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
868
{
869
    unsigned flags = rhs->flags;
870
    lhs->selector = rhs->selector;
871
    lhs->base = rhs->base;
872
    lhs->limit = rhs->limit;
873
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
874
    lhs->present = (flags & DESC_P_MASK) != 0;
875
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
876
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
877
    lhs->s = (flags & DESC_S_MASK) != 0;
878
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
879
    lhs->g = (flags & DESC_G_MASK) != 0;
880
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
881
    lhs->unusable = 0;
882
    lhs->padding = 0;
883
}
884

    
885
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
886
{
887
    lhs->selector = rhs->selector;
888
    lhs->base = rhs->base;
889
    lhs->limit = rhs->limit;
890
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
891
                 (rhs->present * DESC_P_MASK) |
892
                 (rhs->dpl << DESC_DPL_SHIFT) |
893
                 (rhs->db << DESC_B_SHIFT) |
894
                 (rhs->s * DESC_S_MASK) |
895
                 (rhs->l << DESC_L_SHIFT) |
896
                 (rhs->g * DESC_G_MASK) |
897
                 (rhs->avl * DESC_AVL_MASK);
898
}
899

    
900
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
901
{
902
    if (set) {
903
        *kvm_reg = *qemu_reg;
904
    } else {
905
        *qemu_reg = *kvm_reg;
906
    }
907
}
908

    
909
static int kvm_getput_regs(X86CPU *cpu, int set)
910
{
911
    CPUX86State *env = &cpu->env;
912
    struct kvm_regs regs;
913
    int ret = 0;
914

    
915
    if (!set) {
916
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
917
        if (ret < 0) {
918
            return ret;
919
        }
920
    }
921

    
922
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
923
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
924
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
925
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
926
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
927
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
928
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
929
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
930
#ifdef TARGET_X86_64
931
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
932
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
933
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
934
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
935
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
936
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
937
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
938
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
939
#endif
940

    
941
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
942
    kvm_getput_reg(&regs.rip, &env->eip, set);
943

    
944
    if (set) {
945
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
946
    }
947

    
948
    return ret;
949
}
950

    
951
static int kvm_put_fpu(X86CPU *cpu)
952
{
953
    CPUX86State *env = &cpu->env;
954
    struct kvm_fpu fpu;
955
    int i;
956

    
957
    memset(&fpu, 0, sizeof fpu);
958
    fpu.fsw = env->fpus & ~(7 << 11);
959
    fpu.fsw |= (env->fpstt & 7) << 11;
960
    fpu.fcw = env->fpuc;
961
    fpu.last_opcode = env->fpop;
962
    fpu.last_ip = env->fpip;
963
    fpu.last_dp = env->fpdp;
964
    for (i = 0; i < 8; ++i) {
965
        fpu.ftwx |= (!env->fptags[i]) << i;
966
    }
967
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
968
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
969
    fpu.mxcsr = env->mxcsr;
970

    
971
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
972
}
973

    
974
#define XSAVE_FCW_FSW     0
975
#define XSAVE_FTW_FOP     1
976
#define XSAVE_CWD_RIP     2
977
#define XSAVE_CWD_RDP     4
978
#define XSAVE_MXCSR       6
979
#define XSAVE_ST_SPACE    8
980
#define XSAVE_XMM_SPACE   40
981
#define XSAVE_XSTATE_BV   128
982
#define XSAVE_YMMH_SPACE  144
983

    
984
static int kvm_put_xsave(X86CPU *cpu)
985
{
986
    CPUX86State *env = &cpu->env;
987
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
988
    uint16_t cwd, swd, twd;
989
    int i, r;
990

    
991
    if (!kvm_has_xsave()) {
992
        return kvm_put_fpu(cpu);
993
    }
994

    
995
    memset(xsave, 0, sizeof(struct kvm_xsave));
996
    twd = 0;
997
    swd = env->fpus & ~(7 << 11);
998
    swd |= (env->fpstt & 7) << 11;
999
    cwd = env->fpuc;
1000
    for (i = 0; i < 8; ++i) {
1001
        twd |= (!env->fptags[i]) << i;
1002
    }
1003
    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1004
    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
1005
    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1006
    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
1007
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1008
            sizeof env->fpregs);
1009
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1010
            sizeof env->xmm_regs);
1011
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
1012
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1013
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1014
            sizeof env->ymmh_regs);
1015
    r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1016
    return r;
1017
}
1018

    
1019
static int kvm_put_xcrs(X86CPU *cpu)
1020
{
1021
    CPUX86State *env = &cpu->env;
1022
    struct kvm_xcrs xcrs;
1023

    
1024
    if (!kvm_has_xcrs()) {
1025
        return 0;
1026
    }
1027

    
1028
    xcrs.nr_xcrs = 1;
1029
    xcrs.flags = 0;
1030
    xcrs.xcrs[0].xcr = 0;
1031
    xcrs.xcrs[0].value = env->xcr0;
1032
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1033
}
1034

    
1035
static int kvm_put_sregs(X86CPU *cpu)
1036
{
1037
    CPUX86State *env = &cpu->env;
1038
    struct kvm_sregs sregs;
1039

    
1040
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1041
    if (env->interrupt_injected >= 0) {
1042
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1043
                (uint64_t)1 << (env->interrupt_injected % 64);
1044
    }
1045

    
1046
    if ((env->eflags & VM_MASK)) {
1047
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1048
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1049
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1050
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1051
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1052
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1053
    } else {
1054
        set_seg(&sregs.cs, &env->segs[R_CS]);
1055
        set_seg(&sregs.ds, &env->segs[R_DS]);
1056
        set_seg(&sregs.es, &env->segs[R_ES]);
1057
        set_seg(&sregs.fs, &env->segs[R_FS]);
1058
        set_seg(&sregs.gs, &env->segs[R_GS]);
1059
        set_seg(&sregs.ss, &env->segs[R_SS]);
1060
    }
1061

    
1062
    set_seg(&sregs.tr, &env->tr);
1063
    set_seg(&sregs.ldt, &env->ldt);
1064

    
1065
    sregs.idt.limit = env->idt.limit;
1066
    sregs.idt.base = env->idt.base;
1067
    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1068
    sregs.gdt.limit = env->gdt.limit;
1069
    sregs.gdt.base = env->gdt.base;
1070
    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1071

    
1072
    sregs.cr0 = env->cr[0];
1073
    sregs.cr2 = env->cr[2];
1074
    sregs.cr3 = env->cr[3];
1075
    sregs.cr4 = env->cr[4];
1076

    
1077
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1078
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
1079

    
1080
    sregs.efer = env->efer;
1081

    
1082
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1083
}
1084

    
1085
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1086
                              uint32_t index, uint64_t value)
1087
{
1088
    entry->index = index;
1089
    entry->data = value;
1090
}
1091

    
1092
static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1093
{
1094
    CPUX86State *env = &cpu->env;
1095
    struct {
1096
        struct kvm_msrs info;
1097
        struct kvm_msr_entry entries[1];
1098
    } msr_data;
1099
    struct kvm_msr_entry *msrs = msr_data.entries;
1100

    
1101
    if (!has_msr_tsc_deadline) {
1102
        return 0;
1103
    }
1104

    
1105
    kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1106

    
1107
    msr_data.info.nmsrs = 1;
1108

    
1109
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1110
}
1111

    
1112
static int kvm_put_msrs(X86CPU *cpu, int level)
1113
{
1114
    CPUX86State *env = &cpu->env;
1115
    struct {
1116
        struct kvm_msrs info;
1117
        struct kvm_msr_entry entries[100];
1118
    } msr_data;
1119
    struct kvm_msr_entry *msrs = msr_data.entries;
1120
    int n = 0, i;
1121

    
1122
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1123
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1124
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1125
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1126
    if (has_msr_star) {
1127
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1128
    }
1129
    if (has_msr_hsave_pa) {
1130
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1131
    }
1132
    if (has_msr_tsc_adjust) {
1133
        kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1134
    }
1135
    if (has_msr_misc_enable) {
1136
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1137
                          env->msr_ia32_misc_enable);
1138
    }
1139
#ifdef TARGET_X86_64
1140
    if (lm_capable_kernel) {
1141
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1142
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1143
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1144
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1145
    }
1146
#endif
1147
    if (level == KVM_PUT_FULL_STATE) {
1148
        /*
1149
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1150
         * writeback. Until this is fixed, we only write the offset to SMP
1151
         * guests after migration, desynchronizing the VCPUs, but avoiding
1152
         * huge jump-backs that would occur without any writeback at all.
1153
         */
1154
        if (smp_cpus == 1 || env->tsc != 0) {
1155
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1156
        }
1157
    }
1158
    /*
1159
     * The following MSRs have side effects on the guest or are too heavy
1160
     * for normal writeback. Limit them to reset or full state updates.
1161
     */
1162
    if (level >= KVM_PUT_RESET_STATE) {
1163
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1164
                          env->system_time_msr);
1165
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1166
        if (has_msr_async_pf_en) {
1167
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1168
                              env->async_pf_en_msr);
1169
        }
1170
        if (has_msr_pv_eoi_en) {
1171
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1172
                              env->pv_eoi_en_msr);
1173
        }
1174
        if (has_msr_kvm_steal_time) {
1175
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1176
                              env->steal_time_msr);
1177
        }
1178
        if (has_msr_architectural_pmu) {
1179
            /* Stop the counter.  */
1180
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1181
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1182

    
1183
            /* Set the counter values.  */
1184
            for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1185
                kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1186
                                  env->msr_fixed_counters[i]);
1187
            }
1188
            for (i = 0; i < num_architectural_pmu_counters; i++) {
1189
                kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1190
                                  env->msr_gp_counters[i]);
1191
                kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1192
                                  env->msr_gp_evtsel[i]);
1193
            }
1194
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1195
                              env->msr_global_status);
1196
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1197
                              env->msr_global_ovf_ctrl);
1198

    
1199
            /* Now start the PMU.  */
1200
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1201
                              env->msr_fixed_ctr_ctrl);
1202
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1203
                              env->msr_global_ctrl);
1204
        }
1205
        if (hyperv_hypercall_available(cpu)) {
1206
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1207
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1208
        }
1209
        if (cpu->hyperv_vapic) {
1210
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1211
        }
1212
        if (has_msr_feature_control) {
1213
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_FEATURE_CONTROL,
1214
                              env->msr_ia32_feature_control);
1215
        }
1216
    }
1217
    if (env->mcg_cap) {
1218
        int i;
1219

    
1220
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1221
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1222
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1223
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1224
        }
1225
    }
1226

    
1227
    msr_data.info.nmsrs = n;
1228

    
1229
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1230

    
1231
}
1232

    
1233

    
1234
static int kvm_get_fpu(X86CPU *cpu)
1235
{
1236
    CPUX86State *env = &cpu->env;
1237
    struct kvm_fpu fpu;
1238
    int i, ret;
1239

    
1240
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1241
    if (ret < 0) {
1242
        return ret;
1243
    }
1244

    
1245
    env->fpstt = (fpu.fsw >> 11) & 7;
1246
    env->fpus = fpu.fsw;
1247
    env->fpuc = fpu.fcw;
1248
    env->fpop = fpu.last_opcode;
1249
    env->fpip = fpu.last_ip;
1250
    env->fpdp = fpu.last_dp;
1251
    for (i = 0; i < 8; ++i) {
1252
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1253
    }
1254
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1255
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1256
    env->mxcsr = fpu.mxcsr;
1257

    
1258
    return 0;
1259
}
1260

    
1261
static int kvm_get_xsave(X86CPU *cpu)
1262
{
1263
    CPUX86State *env = &cpu->env;
1264
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1265
    int ret, i;
1266
    uint16_t cwd, swd, twd;
1267

    
1268
    if (!kvm_has_xsave()) {
1269
        return kvm_get_fpu(cpu);
1270
    }
1271

    
1272
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1273
    if (ret < 0) {
1274
        return ret;
1275
    }
1276

    
1277
    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1278
    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1279
    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1280
    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1281
    env->fpstt = (swd >> 11) & 7;
1282
    env->fpus = swd;
1283
    env->fpuc = cwd;
1284
    for (i = 0; i < 8; ++i) {
1285
        env->fptags[i] = !((twd >> i) & 1);
1286
    }
1287
    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1288
    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1289
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1290
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1291
            sizeof env->fpregs);
1292
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1293
            sizeof env->xmm_regs);
1294
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1295
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1296
            sizeof env->ymmh_regs);
1297
    return 0;
1298
}
1299

    
1300
static int kvm_get_xcrs(X86CPU *cpu)
1301
{
1302
    CPUX86State *env = &cpu->env;
1303
    int i, ret;
1304
    struct kvm_xcrs xcrs;
1305

    
1306
    if (!kvm_has_xcrs()) {
1307
        return 0;
1308
    }
1309

    
1310
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1311
    if (ret < 0) {
1312
        return ret;
1313
    }
1314

    
1315
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1316
        /* Only support xcr0 now */
1317
        if (xcrs.xcrs[i].xcr == 0) {
1318
            env->xcr0 = xcrs.xcrs[i].value;
1319
            break;
1320
        }
1321
    }
1322
    return 0;
1323
}
1324

    
1325
static int kvm_get_sregs(X86CPU *cpu)
1326
{
1327
    CPUX86State *env = &cpu->env;
1328
    struct kvm_sregs sregs;
1329
    uint32_t hflags;
1330
    int bit, i, ret;
1331

    
1332
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1333
    if (ret < 0) {
1334
        return ret;
1335
    }
1336

    
1337
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1338
       to find it and save its number instead (-1 for none). */
1339
    env->interrupt_injected = -1;
1340
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1341
        if (sregs.interrupt_bitmap[i]) {
1342
            bit = ctz64(sregs.interrupt_bitmap[i]);
1343
            env->interrupt_injected = i * 64 + bit;
1344
            break;
1345
        }
1346
    }
1347

    
1348
    get_seg(&env->segs[R_CS], &sregs.cs);
1349
    get_seg(&env->segs[R_DS], &sregs.ds);
1350
    get_seg(&env->segs[R_ES], &sregs.es);
1351
    get_seg(&env->segs[R_FS], &sregs.fs);
1352
    get_seg(&env->segs[R_GS], &sregs.gs);
1353
    get_seg(&env->segs[R_SS], &sregs.ss);
1354

    
1355
    get_seg(&env->tr, &sregs.tr);
1356
    get_seg(&env->ldt, &sregs.ldt);
1357

    
1358
    env->idt.limit = sregs.idt.limit;
1359
    env->idt.base = sregs.idt.base;
1360
    env->gdt.limit = sregs.gdt.limit;
1361
    env->gdt.base = sregs.gdt.base;
1362

    
1363
    env->cr[0] = sregs.cr0;
1364
    env->cr[2] = sregs.cr2;
1365
    env->cr[3] = sregs.cr3;
1366
    env->cr[4] = sregs.cr4;
1367

    
1368
    env->efer = sregs.efer;
1369

    
1370
    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1371

    
1372
#define HFLAG_COPY_MASK \
1373
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1374
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1375
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1376
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1377

    
1378
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1379
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1380
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1381
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1382
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1383
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1384
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1385

    
1386
    if (env->efer & MSR_EFER_LMA) {
1387
        hflags |= HF_LMA_MASK;
1388
    }
1389

    
1390
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1391
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1392
    } else {
1393
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1394
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1395
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1396
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1397
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1398
            !(hflags & HF_CS32_MASK)) {
1399
            hflags |= HF_ADDSEG_MASK;
1400
        } else {
1401
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1402
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1403
        }
1404
    }
1405
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1406

    
1407
    return 0;
1408
}
1409

    
1410
static int kvm_get_msrs(X86CPU *cpu)
1411
{
1412
    CPUX86State *env = &cpu->env;
1413
    struct {
1414
        struct kvm_msrs info;
1415
        struct kvm_msr_entry entries[100];
1416
    } msr_data;
1417
    struct kvm_msr_entry *msrs = msr_data.entries;
1418
    int ret, i, n;
1419

    
1420
    n = 0;
1421
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1422
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1423
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1424
    msrs[n++].index = MSR_PAT;
1425
    if (has_msr_star) {
1426
        msrs[n++].index = MSR_STAR;
1427
    }
1428
    if (has_msr_hsave_pa) {
1429
        msrs[n++].index = MSR_VM_HSAVE_PA;
1430
    }
1431
    if (has_msr_tsc_adjust) {
1432
        msrs[n++].index = MSR_TSC_ADJUST;
1433
    }
1434
    if (has_msr_tsc_deadline) {
1435
        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1436
    }
1437
    if (has_msr_misc_enable) {
1438
        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1439
    }
1440
    if (has_msr_feature_control) {
1441
        msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1442
    }
1443

    
1444
    if (!env->tsc_valid) {
1445
        msrs[n++].index = MSR_IA32_TSC;
1446
        env->tsc_valid = !runstate_is_running();
1447
    }
1448

    
1449
#ifdef TARGET_X86_64
1450
    if (lm_capable_kernel) {
1451
        msrs[n++].index = MSR_CSTAR;
1452
        msrs[n++].index = MSR_KERNELGSBASE;
1453
        msrs[n++].index = MSR_FMASK;
1454
        msrs[n++].index = MSR_LSTAR;
1455
    }
1456
#endif
1457
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1458
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1459
    if (has_msr_async_pf_en) {
1460
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1461
    }
1462
    if (has_msr_pv_eoi_en) {
1463
        msrs[n++].index = MSR_KVM_PV_EOI_EN;
1464
    }
1465
    if (has_msr_kvm_steal_time) {
1466
        msrs[n++].index = MSR_KVM_STEAL_TIME;
1467
    }
1468
    if (has_msr_architectural_pmu) {
1469
        msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1470
        msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1471
        msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1472
        msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1473
        for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1474
            msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1475
        }
1476
        for (i = 0; i < num_architectural_pmu_counters; i++) {
1477
            msrs[n++].index = MSR_P6_PERFCTR0 + i;
1478
            msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1479
        }
1480
    }
1481

    
1482
    if (env->mcg_cap) {
1483
        msrs[n++].index = MSR_MCG_STATUS;
1484
        msrs[n++].index = MSR_MCG_CTL;
1485
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1486
            msrs[n++].index = MSR_MC0_CTL + i;
1487
        }
1488
    }
1489

    
1490
    msr_data.info.nmsrs = n;
1491
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1492
    if (ret < 0) {
1493
        return ret;
1494
    }
1495

    
1496
    for (i = 0; i < ret; i++) {
1497
        uint32_t index = msrs[i].index;
1498
        switch (index) {
1499
        case MSR_IA32_SYSENTER_CS:
1500
            env->sysenter_cs = msrs[i].data;
1501
            break;
1502
        case MSR_IA32_SYSENTER_ESP:
1503
            env->sysenter_esp = msrs[i].data;
1504
            break;
1505
        case MSR_IA32_SYSENTER_EIP:
1506
            env->sysenter_eip = msrs[i].data;
1507
            break;
1508
        case MSR_PAT:
1509
            env->pat = msrs[i].data;
1510
            break;
1511
        case MSR_STAR:
1512
            env->star = msrs[i].data;
1513
            break;
1514
#ifdef TARGET_X86_64
1515
        case MSR_CSTAR:
1516
            env->cstar = msrs[i].data;
1517
            break;
1518
        case MSR_KERNELGSBASE:
1519
            env->kernelgsbase = msrs[i].data;
1520
            break;
1521
        case MSR_FMASK:
1522
            env->fmask = msrs[i].data;
1523
            break;
1524
        case MSR_LSTAR:
1525
            env->lstar = msrs[i].data;
1526
            break;
1527
#endif
1528
        case MSR_IA32_TSC:
1529
            env->tsc = msrs[i].data;
1530
            break;
1531
        case MSR_TSC_ADJUST:
1532
            env->tsc_adjust = msrs[i].data;
1533
            break;
1534
        case MSR_IA32_TSCDEADLINE:
1535
            env->tsc_deadline = msrs[i].data;
1536
            break;
1537
        case MSR_VM_HSAVE_PA:
1538
            env->vm_hsave = msrs[i].data;
1539
            break;
1540
        case MSR_KVM_SYSTEM_TIME:
1541
            env->system_time_msr = msrs[i].data;
1542
            break;
1543
        case MSR_KVM_WALL_CLOCK:
1544
            env->wall_clock_msr = msrs[i].data;
1545
            break;
1546
        case MSR_MCG_STATUS:
1547
            env->mcg_status = msrs[i].data;
1548
            break;
1549
        case MSR_MCG_CTL:
1550
            env->mcg_ctl = msrs[i].data;
1551
            break;
1552
        case MSR_IA32_MISC_ENABLE:
1553
            env->msr_ia32_misc_enable = msrs[i].data;
1554
            break;
1555
        case MSR_IA32_FEATURE_CONTROL:
1556
            env->msr_ia32_feature_control = msrs[i].data;
1557
            break;
1558
        default:
1559
            if (msrs[i].index >= MSR_MC0_CTL &&
1560
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1561
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1562
            }
1563
            break;
1564
        case MSR_KVM_ASYNC_PF_EN:
1565
            env->async_pf_en_msr = msrs[i].data;
1566
            break;
1567
        case MSR_KVM_PV_EOI_EN:
1568
            env->pv_eoi_en_msr = msrs[i].data;
1569
            break;
1570
        case MSR_KVM_STEAL_TIME:
1571
            env->steal_time_msr = msrs[i].data;
1572
            break;
1573
        case MSR_CORE_PERF_FIXED_CTR_CTRL:
1574
            env->msr_fixed_ctr_ctrl = msrs[i].data;
1575
            break;
1576
        case MSR_CORE_PERF_GLOBAL_CTRL:
1577
            env->msr_global_ctrl = msrs[i].data;
1578
            break;
1579
        case MSR_CORE_PERF_GLOBAL_STATUS:
1580
            env->msr_global_status = msrs[i].data;
1581
            break;
1582
        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1583
            env->msr_global_ovf_ctrl = msrs[i].data;
1584
            break;
1585
        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1586
            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1587
            break;
1588
        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1589
            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1590
            break;
1591
        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1592
            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1593
            break;
1594
        }
1595
    }
1596

    
1597
    return 0;
1598
}
1599

    
1600
static int kvm_put_mp_state(X86CPU *cpu)
1601
{
1602
    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1603

    
1604
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1605
}
1606

    
1607
static int kvm_get_mp_state(X86CPU *cpu)
1608
{
1609
    CPUState *cs = CPU(cpu);
1610
    CPUX86State *env = &cpu->env;
1611
    struct kvm_mp_state mp_state;
1612
    int ret;
1613

    
1614
    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1615
    if (ret < 0) {
1616
        return ret;
1617
    }
1618
    env->mp_state = mp_state.mp_state;
1619
    if (kvm_irqchip_in_kernel()) {
1620
        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1621
    }
1622
    return 0;
1623
}
1624

    
1625
static int kvm_get_apic(X86CPU *cpu)
1626
{
1627
    CPUX86State *env = &cpu->env;
1628
    DeviceState *apic = env->apic_state;
1629
    struct kvm_lapic_state kapic;
1630
    int ret;
1631

    
1632
    if (apic && kvm_irqchip_in_kernel()) {
1633
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1634
        if (ret < 0) {
1635
            return ret;
1636
        }
1637

    
1638
        kvm_get_apic_state(apic, &kapic);
1639
    }
1640
    return 0;
1641
}
1642

    
1643
static int kvm_put_apic(X86CPU *cpu)
1644
{
1645
    CPUX86State *env = &cpu->env;
1646
    DeviceState *apic = env->apic_state;
1647
    struct kvm_lapic_state kapic;
1648

    
1649
    if (apic && kvm_irqchip_in_kernel()) {
1650
        kvm_put_apic_state(apic, &kapic);
1651

    
1652
        return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1653
    }
1654
    return 0;
1655
}
1656

    
1657
static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1658
{
1659
    CPUX86State *env = &cpu->env;
1660
    struct kvm_vcpu_events events;
1661

    
1662
    if (!kvm_has_vcpu_events()) {
1663
        return 0;
1664
    }
1665

    
1666
    events.exception.injected = (env->exception_injected >= 0);
1667
    events.exception.nr = env->exception_injected;
1668
    events.exception.has_error_code = env->has_error_code;
1669
    events.exception.error_code = env->error_code;
1670
    events.exception.pad = 0;
1671

    
1672
    events.interrupt.injected = (env->interrupt_injected >= 0);
1673
    events.interrupt.nr = env->interrupt_injected;
1674
    events.interrupt.soft = env->soft_interrupt;
1675

    
1676
    events.nmi.injected = env->nmi_injected;
1677
    events.nmi.pending = env->nmi_pending;
1678
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1679
    events.nmi.pad = 0;
1680

    
1681
    events.sipi_vector = env->sipi_vector;
1682

    
1683
    events.flags = 0;
1684
    if (level >= KVM_PUT_RESET_STATE) {
1685
        events.flags |=
1686
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1687
    }
1688

    
1689
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1690
}
1691

    
1692
static int kvm_get_vcpu_events(X86CPU *cpu)
1693
{
1694
    CPUX86State *env = &cpu->env;
1695
    struct kvm_vcpu_events events;
1696
    int ret;
1697

    
1698
    if (!kvm_has_vcpu_events()) {
1699
        return 0;
1700
    }
1701

    
1702
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1703
    if (ret < 0) {
1704
       return ret;
1705
    }
1706
    env->exception_injected =
1707
       events.exception.injected ? events.exception.nr : -1;
1708
    env->has_error_code = events.exception.has_error_code;
1709
    env->error_code = events.exception.error_code;
1710

    
1711
    env->interrupt_injected =
1712
        events.interrupt.injected ? events.interrupt.nr : -1;
1713
    env->soft_interrupt = events.interrupt.soft;
1714

    
1715
    env->nmi_injected = events.nmi.injected;
1716
    env->nmi_pending = events.nmi.pending;
1717
    if (events.nmi.masked) {
1718
        env->hflags2 |= HF2_NMI_MASK;
1719
    } else {
1720
        env->hflags2 &= ~HF2_NMI_MASK;
1721
    }
1722

    
1723
    env->sipi_vector = events.sipi_vector;
1724

    
1725
    return 0;
1726
}
1727

    
1728
static int kvm_guest_debug_workarounds(X86CPU *cpu)
1729
{
1730
    CPUState *cs = CPU(cpu);
1731
    CPUX86State *env = &cpu->env;
1732
    int ret = 0;
1733
    unsigned long reinject_trap = 0;
1734

    
1735
    if (!kvm_has_vcpu_events()) {
1736
        if (env->exception_injected == 1) {
1737
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1738
        } else if (env->exception_injected == 3) {
1739
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1740
        }
1741
        env->exception_injected = -1;
1742
    }
1743

    
1744
    /*
1745
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1746
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1747
     * by updating the debug state once again if single-stepping is on.
1748
     * Another reason to call kvm_update_guest_debug here is a pending debug
1749
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1750
     * reinject them via SET_GUEST_DEBUG.
1751
     */
1752
    if (reinject_trap ||
1753
        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
1754
        ret = kvm_update_guest_debug(cs, reinject_trap);
1755
    }
1756
    return ret;
1757
}
1758

    
1759
static int kvm_put_debugregs(X86CPU *cpu)
1760
{
1761
    CPUX86State *env = &cpu->env;
1762
    struct kvm_debugregs dbgregs;
1763
    int i;
1764

    
1765
    if (!kvm_has_debugregs()) {
1766
        return 0;
1767
    }
1768

    
1769
    for (i = 0; i < 4; i++) {
1770
        dbgregs.db[i] = env->dr[i];
1771
    }
1772
    dbgregs.dr6 = env->dr[6];
1773
    dbgregs.dr7 = env->dr[7];
1774
    dbgregs.flags = 0;
1775

    
1776
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1777
}
1778

    
1779
static int kvm_get_debugregs(X86CPU *cpu)
1780
{
1781
    CPUX86State *env = &cpu->env;
1782
    struct kvm_debugregs dbgregs;
1783
    int i, ret;
1784

    
1785
    if (!kvm_has_debugregs()) {
1786
        return 0;
1787
    }
1788

    
1789
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1790
    if (ret < 0) {
1791
        return ret;
1792
    }
1793
    for (i = 0; i < 4; i++) {
1794
        env->dr[i] = dbgregs.db[i];
1795
    }
1796
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1797
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1798

    
1799
    return 0;
1800
}
1801

    
1802
int kvm_arch_put_registers(CPUState *cpu, int level)
1803
{
1804
    X86CPU *x86_cpu = X86_CPU(cpu);
1805
    int ret;
1806

    
1807
    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1808

    
1809
    ret = kvm_getput_regs(x86_cpu, 1);
1810
    if (ret < 0) {
1811
        return ret;
1812
    }
1813
    ret = kvm_put_xsave(x86_cpu);
1814
    if (ret < 0) {
1815
        return ret;
1816
    }
1817
    ret = kvm_put_xcrs(x86_cpu);
1818
    if (ret < 0) {
1819
        return ret;
1820
    }
1821
    ret = kvm_put_sregs(x86_cpu);
1822
    if (ret < 0) {
1823
        return ret;
1824
    }
1825
    /* must be before kvm_put_msrs */
1826
    ret = kvm_inject_mce_oldstyle(x86_cpu);
1827
    if (ret < 0) {
1828
        return ret;
1829
    }
1830
    ret = kvm_put_msrs(x86_cpu, level);
1831
    if (ret < 0) {
1832
        return ret;
1833
    }
1834
    if (level >= KVM_PUT_RESET_STATE) {
1835
        ret = kvm_put_mp_state(x86_cpu);
1836
        if (ret < 0) {
1837
            return ret;
1838
        }
1839
        ret = kvm_put_apic(x86_cpu);
1840
        if (ret < 0) {
1841
            return ret;
1842
        }
1843
    }
1844

    
1845
    ret = kvm_put_tscdeadline_msr(x86_cpu);
1846
    if (ret < 0) {
1847
        return ret;
1848
    }
1849

    
1850
    ret = kvm_put_vcpu_events(x86_cpu, level);
1851
    if (ret < 0) {
1852
        return ret;
1853
    }
1854
    ret = kvm_put_debugregs(x86_cpu);
1855
    if (ret < 0) {
1856
        return ret;
1857
    }
1858
    /* must be last */
1859
    ret = kvm_guest_debug_workarounds(x86_cpu);
1860
    if (ret < 0) {
1861
        return ret;
1862
    }
1863
    return 0;
1864
}
1865

    
1866
int kvm_arch_get_registers(CPUState *cs)
1867
{
1868
    X86CPU *cpu = X86_CPU(cs);
1869
    int ret;
1870

    
1871
    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1872

    
1873
    ret = kvm_getput_regs(cpu, 0);
1874
    if (ret < 0) {
1875
        return ret;
1876
    }
1877
    ret = kvm_get_xsave(cpu);
1878
    if (ret < 0) {
1879
        return ret;
1880
    }
1881
    ret = kvm_get_xcrs(cpu);
1882
    if (ret < 0) {
1883
        return ret;
1884
    }
1885
    ret = kvm_get_sregs(cpu);
1886
    if (ret < 0) {
1887
        return ret;
1888
    }
1889
    ret = kvm_get_msrs(cpu);
1890
    if (ret < 0) {
1891
        return ret;
1892
    }
1893
    ret = kvm_get_mp_state(cpu);
1894
    if (ret < 0) {
1895
        return ret;
1896
    }
1897
    ret = kvm_get_apic(cpu);
1898
    if (ret < 0) {
1899
        return ret;
1900
    }
1901
    ret = kvm_get_vcpu_events(cpu);
1902
    if (ret < 0) {
1903
        return ret;
1904
    }
1905
    ret = kvm_get_debugregs(cpu);
1906
    if (ret < 0) {
1907
        return ret;
1908
    }
1909
    return 0;
1910
}
1911

    
1912
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1913
{
1914
    X86CPU *x86_cpu = X86_CPU(cpu);
1915
    CPUX86State *env = &x86_cpu->env;
1916
    int ret;
1917

    
1918
    /* Inject NMI */
1919
    if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1920
        cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1921
        DPRINTF("injected NMI\n");
1922
        ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1923
        if (ret < 0) {
1924
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1925
                    strerror(-ret));
1926
        }
1927
    }
1928

    
1929
    if (!kvm_irqchip_in_kernel()) {
1930
        /* Force the VCPU out of its inner loop to process any INIT requests
1931
         * or pending TPR access reports. */
1932
        if (cpu->interrupt_request &
1933
            (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1934
            cpu->exit_request = 1;
1935
        }
1936

    
1937
        /* Try to inject an interrupt if the guest can accept it */
1938
        if (run->ready_for_interrupt_injection &&
1939
            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1940
            (env->eflags & IF_MASK)) {
1941
            int irq;
1942

    
1943
            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1944
            irq = cpu_get_pic_interrupt(env);
1945
            if (irq >= 0) {
1946
                struct kvm_interrupt intr;
1947

    
1948
                intr.irq = irq;
1949
                DPRINTF("injected interrupt %d\n", irq);
1950
                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1951
                if (ret < 0) {
1952
                    fprintf(stderr,
1953
                            "KVM: injection failed, interrupt lost (%s)\n",
1954
                            strerror(-ret));
1955
                }
1956
            }
1957
        }
1958

    
1959
        /* If we have an interrupt but the guest is not ready to receive an
1960
         * interrupt, request an interrupt window exit.  This will
1961
         * cause a return to userspace as soon as the guest is ready to
1962
         * receive interrupts. */
1963
        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1964
            run->request_interrupt_window = 1;
1965
        } else {
1966
            run->request_interrupt_window = 0;
1967
        }
1968

    
1969
        DPRINTF("setting tpr\n");
1970
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1971
    }
1972
}
1973

    
1974
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1975
{
1976
    X86CPU *x86_cpu = X86_CPU(cpu);
1977
    CPUX86State *env = &x86_cpu->env;
1978

    
1979
    if (run->if_flag) {
1980
        env->eflags |= IF_MASK;
1981
    } else {
1982
        env->eflags &= ~IF_MASK;
1983
    }
1984
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1985
    cpu_set_apic_base(env->apic_state, run->apic_base);
1986
}
1987

    
1988
int kvm_arch_process_async_events(CPUState *cs)
1989
{
1990
    X86CPU *cpu = X86_CPU(cs);
1991
    CPUX86State *env = &cpu->env;
1992

    
1993
    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1994
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1995
        assert(env->mcg_cap);
1996

    
1997
        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1998

    
1999
        kvm_cpu_synchronize_state(cs);
2000

    
2001
        if (env->exception_injected == EXCP08_DBLE) {
2002
            /* this means triple fault */
2003
            qemu_system_reset_request();
2004
            cs->exit_request = 1;
2005
            return 0;
2006
        }
2007
        env->exception_injected = EXCP12_MCHK;
2008
        env->has_error_code = 0;
2009

    
2010
        cs->halted = 0;
2011
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2012
            env->mp_state = KVM_MP_STATE_RUNNABLE;
2013
        }
2014
    }
2015

    
2016
    if (kvm_irqchip_in_kernel()) {
2017
        return 0;
2018
    }
2019

    
2020
    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2021
        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2022
        apic_poll_irq(env->apic_state);
2023
    }
2024
    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2025
         (env->eflags & IF_MASK)) ||
2026
        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2027
        cs->halted = 0;
2028
    }
2029
    if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
2030
        kvm_cpu_synchronize_state(cs);
2031
        do_cpu_init(cpu);
2032
    }
2033
    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2034
        kvm_cpu_synchronize_state(cs);
2035
        do_cpu_sipi(cpu);
2036
    }
2037
    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2038
        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2039
        kvm_cpu_synchronize_state(cs);
2040
        apic_handle_tpr_access_report(env->apic_state, env->eip,
2041
                                      env->tpr_access_type);
2042
    }
2043

    
2044
    return cs->halted;
2045
}
2046

    
2047
static int kvm_handle_halt(X86CPU *cpu)
2048
{
2049
    CPUState *cs = CPU(cpu);
2050
    CPUX86State *env = &cpu->env;
2051

    
2052
    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2053
          (env->eflags & IF_MASK)) &&
2054
        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2055
        cs->halted = 1;
2056
        return EXCP_HLT;
2057
    }
2058

    
2059
    return 0;
2060
}
2061

    
2062
static int kvm_handle_tpr_access(X86CPU *cpu)
2063
{
2064
    CPUX86State *env = &cpu->env;
2065
    CPUState *cs = CPU(cpu);
2066
    struct kvm_run *run = cs->kvm_run;
2067

    
2068
    apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
2069
                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
2070
                                                           : TPR_ACCESS_READ);
2071
    return 1;
2072
}
2073

    
2074
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2075
{
2076
    static const uint8_t int3 = 0xcc;
2077

    
2078
    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2079
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2080
        return -EINVAL;
2081
    }
2082
    return 0;
2083
}
2084

    
2085
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2086
{
2087
    uint8_t int3;
2088

    
2089
    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2090
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2091
        return -EINVAL;
2092
    }
2093
    return 0;
2094
}
2095

    
2096
static struct {
2097
    target_ulong addr;
2098
    int len;
2099
    int type;
2100
} hw_breakpoint[4];
2101

    
2102
static int nb_hw_breakpoint;
2103

    
2104
static int find_hw_breakpoint(target_ulong addr, int len, int type)
2105
{
2106
    int n;
2107

    
2108
    for (n = 0; n < nb_hw_breakpoint; n++) {
2109
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2110
            (hw_breakpoint[n].len == len || len == -1)) {
2111
            return n;
2112
        }
2113
    }
2114
    return -1;
2115
}
2116

    
2117
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2118
                                  target_ulong len, int type)
2119
{
2120
    switch (type) {
2121
    case GDB_BREAKPOINT_HW:
2122
        len = 1;
2123
        break;
2124
    case GDB_WATCHPOINT_WRITE:
2125
    case GDB_WATCHPOINT_ACCESS:
2126
        switch (len) {
2127
        case 1:
2128
            break;
2129
        case 2:
2130
        case 4:
2131
        case 8:
2132
            if (addr & (len - 1)) {
2133
                return -EINVAL;
2134
            }
2135
            break;
2136
        default:
2137
            return -EINVAL;
2138
        }
2139
        break;
2140
    default:
2141
        return -ENOSYS;
2142
    }
2143

    
2144
    if (nb_hw_breakpoint == 4) {
2145
        return -ENOBUFS;
2146
    }
2147
    if (find_hw_breakpoint(addr, len, type) >= 0) {
2148
        return -EEXIST;
2149
    }
2150
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
2151
    hw_breakpoint[nb_hw_breakpoint].len = len;
2152
    hw_breakpoint[nb_hw_breakpoint].type = type;
2153
    nb_hw_breakpoint++;
2154

    
2155
    return 0;
2156
}
2157

    
2158
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2159
                                  target_ulong len, int type)
2160
{
2161
    int n;
2162

    
2163
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2164
    if (n < 0) {
2165
        return -ENOENT;
2166
    }
2167
    nb_hw_breakpoint--;
2168
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2169

    
2170
    return 0;
2171
}
2172

    
2173
void kvm_arch_remove_all_hw_breakpoints(void)
2174
{
2175
    nb_hw_breakpoint = 0;
2176
}
2177

    
2178
static CPUWatchpoint hw_watchpoint;
2179

    
2180
static int kvm_handle_debug(X86CPU *cpu,
2181
                            struct kvm_debug_exit_arch *arch_info)
2182
{
2183
    CPUState *cs = CPU(cpu);
2184
    CPUX86State *env = &cpu->env;
2185
    int ret = 0;
2186
    int n;
2187

    
2188
    if (arch_info->exception == 1) {
2189
        if (arch_info->dr6 & (1 << 14)) {
2190
            if (cs->singlestep_enabled) {
2191
                ret = EXCP_DEBUG;
2192
            }
2193
        } else {
2194
            for (n = 0; n < 4; n++) {
2195
                if (arch_info->dr6 & (1 << n)) {
2196
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2197
                    case 0x0:
2198
                        ret = EXCP_DEBUG;
2199
                        break;
2200
                    case 0x1:
2201
                        ret = EXCP_DEBUG;
2202
                        env->watchpoint_hit = &hw_watchpoint;
2203
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2204
                        hw_watchpoint.flags = BP_MEM_WRITE;
2205
                        break;
2206
                    case 0x3:
2207
                        ret = EXCP_DEBUG;
2208
                        env->watchpoint_hit = &hw_watchpoint;
2209
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2210
                        hw_watchpoint.flags = BP_MEM_ACCESS;
2211
                        break;
2212
                    }
2213
                }
2214
            }
2215
        }
2216
    } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2217
        ret = EXCP_DEBUG;
2218
    }
2219
    if (ret == 0) {
2220
        cpu_synchronize_state(CPU(cpu));
2221
        assert(env->exception_injected == -1);
2222

    
2223
        /* pass to guest */
2224
        env->exception_injected = arch_info->exception;
2225
        env->has_error_code = 0;
2226
    }
2227

    
2228
    return ret;
2229
}
2230

    
2231
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2232
{
2233
    const uint8_t type_code[] = {
2234
        [GDB_BREAKPOINT_HW] = 0x0,
2235
        [GDB_WATCHPOINT_WRITE] = 0x1,
2236
        [GDB_WATCHPOINT_ACCESS] = 0x3
2237
    };
2238
    const uint8_t len_code[] = {
2239
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2240
    };
2241
    int n;
2242

    
2243
    if (kvm_sw_breakpoints_active(cpu)) {
2244
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2245
    }
2246
    if (nb_hw_breakpoint > 0) {
2247
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2248
        dbg->arch.debugreg[7] = 0x0600;
2249
        for (n = 0; n < nb_hw_breakpoint; n++) {
2250
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2251
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2252
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2253
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2254
        }
2255
    }
2256
}
2257

    
2258
static bool host_supports_vmx(void)
2259
{
2260
    uint32_t ecx, unused;
2261

    
2262
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2263
    return ecx & CPUID_EXT_VMX;
2264
}
2265

    
2266
#define VMX_INVALID_GUEST_STATE 0x80000021
2267

    
2268
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2269
{
2270
    X86CPU *cpu = X86_CPU(cs);
2271
    uint64_t code;
2272
    int ret;
2273

    
2274
    switch (run->exit_reason) {
2275
    case KVM_EXIT_HLT:
2276
        DPRINTF("handle_hlt\n");
2277
        ret = kvm_handle_halt(cpu);
2278
        break;
2279
    case KVM_EXIT_SET_TPR:
2280
        ret = 0;
2281
        break;
2282
    case KVM_EXIT_TPR_ACCESS:
2283
        ret = kvm_handle_tpr_access(cpu);
2284
        break;
2285
    case KVM_EXIT_FAIL_ENTRY:
2286
        code = run->fail_entry.hardware_entry_failure_reason;
2287
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2288
                code);
2289
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2290
            fprintf(stderr,
2291
                    "\nIf you're running a guest on an Intel machine without "
2292
                        "unrestricted mode\n"
2293
                    "support, the failure can be most likely due to the guest "
2294
                        "entering an invalid\n"
2295
                    "state for Intel VT. For example, the guest maybe running "
2296
                        "in big real mode\n"
2297
                    "which is not supported on less recent Intel processors."
2298
                        "\n\n");
2299
        }
2300
        ret = -1;
2301
        break;
2302
    case KVM_EXIT_EXCEPTION:
2303
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2304
                run->ex.exception, run->ex.error_code);
2305
        ret = -1;
2306
        break;
2307
    case KVM_EXIT_DEBUG:
2308
        DPRINTF("kvm_exit_debug\n");
2309
        ret = kvm_handle_debug(cpu, &run->debug.arch);
2310
        break;
2311
    default:
2312
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2313
        ret = -1;
2314
        break;
2315
    }
2316

    
2317
    return ret;
2318
}
2319

    
2320
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2321
{
2322
    X86CPU *cpu = X86_CPU(cs);
2323
    CPUX86State *env = &cpu->env;
2324

    
2325
    kvm_cpu_synchronize_state(cs);
2326
    return !(env->cr[0] & CR0_PE_MASK) ||
2327
           ((env->segs[R_CS].selector  & 3) != 3);
2328
}
2329

    
2330
void kvm_arch_init_irq_routing(KVMState *s)
2331
{
2332
    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2333
        /* If kernel can't do irq routing, interrupt source
2334
         * override 0->2 cannot be set up as required by HPET.
2335
         * So we have to disable it.
2336
         */
2337
        no_hpet = 1;
2338
    }
2339
    /* We know at this point that we're using the in-kernel
2340
     * irqchip, so we can use irqfds, and on x86 we know
2341
     * we can use msi via irqfd and GSI routing.
2342
     */
2343
    kvm_irqfds_allowed = true;
2344
    kvm_msi_via_irqfd_allowed = true;
2345
    kvm_gsi_routing_allowed = true;
2346
}
2347

    
2348
/* Classic KVM device assignment interface. Will remain x86 only. */
2349
int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2350
                          uint32_t flags, uint32_t *dev_id)
2351
{
2352
    struct kvm_assigned_pci_dev dev_data = {
2353
        .segnr = dev_addr->domain,
2354
        .busnr = dev_addr->bus,
2355
        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2356
        .flags = flags,
2357
    };
2358
    int ret;
2359

    
2360
    dev_data.assigned_dev_id =
2361
        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2362

    
2363
    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2364
    if (ret < 0) {
2365
        return ret;
2366
    }
2367

    
2368
    *dev_id = dev_data.assigned_dev_id;
2369

    
2370
    return 0;
2371
}
2372

    
2373
int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2374
{
2375
    struct kvm_assigned_pci_dev dev_data = {
2376
        .assigned_dev_id = dev_id,
2377
    };
2378

    
2379
    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2380
}
2381

    
2382
static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2383
                                   uint32_t irq_type, uint32_t guest_irq)
2384
{
2385
    struct kvm_assigned_irq assigned_irq = {
2386
        .assigned_dev_id = dev_id,
2387
        .guest_irq = guest_irq,
2388
        .flags = irq_type,
2389
    };
2390

    
2391
    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2392
        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2393
    } else {
2394
        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2395
    }
2396
}
2397

    
2398
int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2399
                           uint32_t guest_irq)
2400
{
2401
    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2402
        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2403

    
2404
    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2405
}
2406

    
2407
int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2408
{
2409
    struct kvm_assigned_pci_dev dev_data = {
2410
        .assigned_dev_id = dev_id,
2411
        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2412
    };
2413

    
2414
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2415
}
2416

    
2417
static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2418
                                     uint32_t type)
2419
{
2420
    struct kvm_assigned_irq assigned_irq = {
2421
        .assigned_dev_id = dev_id,
2422
        .flags = type,
2423
    };
2424

    
2425
    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2426
}
2427

    
2428
int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2429
{
2430
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2431
        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2432
}
2433

    
2434
int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2435
{
2436
    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2437
                                              KVM_DEV_IRQ_GUEST_MSI, virq);
2438
}
2439

    
2440
int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2441
{
2442
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2443
                                                KVM_DEV_IRQ_HOST_MSI);
2444
}
2445

    
2446
bool kvm_device_msix_supported(KVMState *s)
2447
{
2448
    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2449
     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2450
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2451
}
2452

    
2453
int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2454
                                 uint32_t nr_vectors)
2455
{
2456
    struct kvm_assigned_msix_nr msix_nr = {
2457
        .assigned_dev_id = dev_id,
2458
        .entry_nr = nr_vectors,
2459
    };
2460

    
2461
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2462
}
2463

    
2464
int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2465
                               int virq)
2466
{
2467
    struct kvm_assigned_msix_entry msix_entry = {
2468
        .assigned_dev_id = dev_id,
2469
        .gsi = virq,
2470
        .entry = vector,
2471
    };
2472

    
2473
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2474
}
2475

    
2476
int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2477
{
2478
    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2479
                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
2480
}
2481

    
2482
int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2483
{
2484
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2485
                                                KVM_DEV_IRQ_HOST_MSIX);
2486
}