Statistics
| Branch: | Revision:

root / target-i386 / ops_sse.h @ 371c6489

History | View | Annotate | Download (60 kB)

1
/*
2
 *  MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3
 *
4
 *  Copyright (c) 2005 Fabrice Bellard
5
 *  Copyright (c) 2008 Intel Corporation  <andrew.zaborowski@intel.com>
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19
 */
20
#if SHIFT == 0
21
#define Reg MMXReg
22
#define XMM_ONLY(...)
23
#define B(n) MMX_B(n)
24
#define W(n) MMX_W(n)
25
#define L(n) MMX_L(n)
26
#define Q(n) q
27
#define SUFFIX _mmx
28
#else
29
#define Reg XMMReg
30
#define XMM_ONLY(...) __VA_ARGS__
31
#define B(n) XMM_B(n)
32
#define W(n) XMM_W(n)
33
#define L(n) XMM_L(n)
34
#define Q(n) XMM_Q(n)
35
#define SUFFIX _xmm
36
#endif
37

    
38
void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
39
{
40
    int shift;
41

    
42
    if (s->Q(0) > 15) {
43
        d->Q(0) = 0;
44
#if SHIFT == 1
45
        d->Q(1) = 0;
46
#endif
47
    } else {
48
        shift = s->B(0);
49
        d->W(0) >>= shift;
50
        d->W(1) >>= shift;
51
        d->W(2) >>= shift;
52
        d->W(3) >>= shift;
53
#if SHIFT == 1
54
        d->W(4) >>= shift;
55
        d->W(5) >>= shift;
56
        d->W(6) >>= shift;
57
        d->W(7) >>= shift;
58
#endif
59
    }
60
}
61

    
62
void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
63
{
64
    int shift;
65

    
66
    if (s->Q(0) > 15) {
67
        shift = 15;
68
    } else {
69
        shift = s->B(0);
70
    }
71
    d->W(0) = (int16_t)d->W(0) >> shift;
72
    d->W(1) = (int16_t)d->W(1) >> shift;
73
    d->W(2) = (int16_t)d->W(2) >> shift;
74
    d->W(3) = (int16_t)d->W(3) >> shift;
75
#if SHIFT == 1
76
    d->W(4) = (int16_t)d->W(4) >> shift;
77
    d->W(5) = (int16_t)d->W(5) >> shift;
78
    d->W(6) = (int16_t)d->W(6) >> shift;
79
    d->W(7) = (int16_t)d->W(7) >> shift;
80
#endif
81
}
82

    
83
void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
84
{
85
    int shift;
86

    
87
    if (s->Q(0) > 15) {
88
        d->Q(0) = 0;
89
#if SHIFT == 1
90
        d->Q(1) = 0;
91
#endif
92
    } else {
93
        shift = s->B(0);
94
        d->W(0) <<= shift;
95
        d->W(1) <<= shift;
96
        d->W(2) <<= shift;
97
        d->W(3) <<= shift;
98
#if SHIFT == 1
99
        d->W(4) <<= shift;
100
        d->W(5) <<= shift;
101
        d->W(6) <<= shift;
102
        d->W(7) <<= shift;
103
#endif
104
    }
105
}
106

    
107
void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
108
{
109
    int shift;
110

    
111
    if (s->Q(0) > 31) {
112
        d->Q(0) = 0;
113
#if SHIFT == 1
114
        d->Q(1) = 0;
115
#endif
116
    } else {
117
        shift = s->B(0);
118
        d->L(0) >>= shift;
119
        d->L(1) >>= shift;
120
#if SHIFT == 1
121
        d->L(2) >>= shift;
122
        d->L(3) >>= shift;
123
#endif
124
    }
125
}
126

    
127
void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
128
{
129
    int shift;
130

    
131
    if (s->Q(0) > 31) {
132
        shift = 31;
133
    } else {
134
        shift = s->B(0);
135
    }
136
    d->L(0) = (int32_t)d->L(0) >> shift;
137
    d->L(1) = (int32_t)d->L(1) >> shift;
138
#if SHIFT == 1
139
    d->L(2) = (int32_t)d->L(2) >> shift;
140
    d->L(3) = (int32_t)d->L(3) >> shift;
141
#endif
142
}
143

    
144
void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
145
{
146
    int shift;
147

    
148
    if (s->Q(0) > 31) {
149
        d->Q(0) = 0;
150
#if SHIFT == 1
151
        d->Q(1) = 0;
152
#endif
153
    } else {
154
        shift = s->B(0);
155
        d->L(0) <<= shift;
156
        d->L(1) <<= shift;
157
#if SHIFT == 1
158
        d->L(2) <<= shift;
159
        d->L(3) <<= shift;
160
#endif
161
    }
162
}
163

    
164
void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
165
{
166
    int shift;
167

    
168
    if (s->Q(0) > 63) {
169
        d->Q(0) = 0;
170
#if SHIFT == 1
171
        d->Q(1) = 0;
172
#endif
173
    } else {
174
        shift = s->B(0);
175
        d->Q(0) >>= shift;
176
#if SHIFT == 1
177
        d->Q(1) >>= shift;
178
#endif
179
    }
180
}
181

    
182
void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
183
{
184
    int shift;
185

    
186
    if (s->Q(0) > 63) {
187
        d->Q(0) = 0;
188
#if SHIFT == 1
189
        d->Q(1) = 0;
190
#endif
191
    } else {
192
        shift = s->B(0);
193
        d->Q(0) <<= shift;
194
#if SHIFT == 1
195
        d->Q(1) <<= shift;
196
#endif
197
    }
198
}
199

    
200
#if SHIFT == 1
201
void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
202
{
203
    int shift, i;
204

    
205
    shift = s->L(0);
206
    if (shift > 16)
207
        shift = 16;
208
    for(i = 0; i < 16 - shift; i++)
209
        d->B(i) = d->B(i + shift);
210
    for(i = 16 - shift; i < 16; i++)
211
        d->B(i) = 0;
212
}
213

    
214
void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
215
{
216
    int shift, i;
217

    
218
    shift = s->L(0);
219
    if (shift > 16)
220
        shift = 16;
221
    for(i = 15; i >= shift; i--)
222
        d->B(i) = d->B(i - shift);
223
    for(i = 0; i < shift; i++)
224
        d->B(i) = 0;
225
}
226
#endif
227

    
228
#define SSE_HELPER_B(name, F)\
229
void glue(name, SUFFIX) (Reg *d, Reg *s)\
230
{\
231
    d->B(0) = F(d->B(0), s->B(0));\
232
    d->B(1) = F(d->B(1), s->B(1));\
233
    d->B(2) = F(d->B(2), s->B(2));\
234
    d->B(3) = F(d->B(3), s->B(3));\
235
    d->B(4) = F(d->B(4), s->B(4));\
236
    d->B(5) = F(d->B(5), s->B(5));\
237
    d->B(6) = F(d->B(6), s->B(6));\
238
    d->B(7) = F(d->B(7), s->B(7));\
239
    XMM_ONLY(\
240
    d->B(8) = F(d->B(8), s->B(8));\
241
    d->B(9) = F(d->B(9), s->B(9));\
242
    d->B(10) = F(d->B(10), s->B(10));\
243
    d->B(11) = F(d->B(11), s->B(11));\
244
    d->B(12) = F(d->B(12), s->B(12));\
245
    d->B(13) = F(d->B(13), s->B(13));\
246
    d->B(14) = F(d->B(14), s->B(14));\
247
    d->B(15) = F(d->B(15), s->B(15));\
248
    )\
249
}
250

    
251
#define SSE_HELPER_W(name, F)\
252
void glue(name, SUFFIX) (Reg *d, Reg *s)\
253
{\
254
    d->W(0) = F(d->W(0), s->W(0));\
255
    d->W(1) = F(d->W(1), s->W(1));\
256
    d->W(2) = F(d->W(2), s->W(2));\
257
    d->W(3) = F(d->W(3), s->W(3));\
258
    XMM_ONLY(\
259
    d->W(4) = F(d->W(4), s->W(4));\
260
    d->W(5) = F(d->W(5), s->W(5));\
261
    d->W(6) = F(d->W(6), s->W(6));\
262
    d->W(7) = F(d->W(7), s->W(7));\
263
    )\
264
}
265

    
266
#define SSE_HELPER_L(name, F)\
267
void glue(name, SUFFIX) (Reg *d, Reg *s)\
268
{\
269
    d->L(0) = F(d->L(0), s->L(0));\
270
    d->L(1) = F(d->L(1), s->L(1));\
271
    XMM_ONLY(\
272
    d->L(2) = F(d->L(2), s->L(2));\
273
    d->L(3) = F(d->L(3), s->L(3));\
274
    )\
275
}
276

    
277
#define SSE_HELPER_Q(name, F)\
278
void glue(name, SUFFIX) (Reg *d, Reg *s)\
279
{\
280
    d->Q(0) = F(d->Q(0), s->Q(0));\
281
    XMM_ONLY(\
282
    d->Q(1) = F(d->Q(1), s->Q(1));\
283
    )\
284
}
285

    
286
#if SHIFT == 0
287
static inline int satub(int x)
288
{
289
    if (x < 0)
290
        return 0;
291
    else if (x > 255)
292
        return 255;
293
    else
294
        return x;
295
}
296

    
297
static inline int satuw(int x)
298
{
299
    if (x < 0)
300
        return 0;
301
    else if (x > 65535)
302
        return 65535;
303
    else
304
        return x;
305
}
306

    
307
static inline int satsb(int x)
308
{
309
    if (x < -128)
310
        return -128;
311
    else if (x > 127)
312
        return 127;
313
    else
314
        return x;
315
}
316

    
317
static inline int satsw(int x)
318
{
319
    if (x < -32768)
320
        return -32768;
321
    else if (x > 32767)
322
        return 32767;
323
    else
324
        return x;
325
}
326

    
327
#define FADD(a, b) ((a) + (b))
328
#define FADDUB(a, b) satub((a) + (b))
329
#define FADDUW(a, b) satuw((a) + (b))
330
#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
331
#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
332

    
333
#define FSUB(a, b) ((a) - (b))
334
#define FSUBUB(a, b) satub((a) - (b))
335
#define FSUBUW(a, b) satuw((a) - (b))
336
#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
337
#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
338
#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
339
#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
340
#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
341
#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
342

    
343
#define FAND(a, b) (a) & (b)
344
#define FANDN(a, b) ((~(a)) & (b))
345
#define FOR(a, b) (a) | (b)
346
#define FXOR(a, b) (a) ^ (b)
347

    
348
#define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
349
#define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
350
#define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
351
#define FCMPEQ(a, b) (a) == (b) ? -1 : 0
352

    
353
#define FMULLW(a, b) (a) * (b)
354
#define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
355
#define FMULHUW(a, b) (a) * (b) >> 16
356
#define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
357

    
358
#define FAVG(a, b) ((a) + (b) + 1) >> 1
359
#endif
360

    
361
SSE_HELPER_B(helper_paddb, FADD)
362
SSE_HELPER_W(helper_paddw, FADD)
363
SSE_HELPER_L(helper_paddl, FADD)
364
SSE_HELPER_Q(helper_paddq, FADD)
365

    
366
SSE_HELPER_B(helper_psubb, FSUB)
367
SSE_HELPER_W(helper_psubw, FSUB)
368
SSE_HELPER_L(helper_psubl, FSUB)
369
SSE_HELPER_Q(helper_psubq, FSUB)
370

    
371
SSE_HELPER_B(helper_paddusb, FADDUB)
372
SSE_HELPER_B(helper_paddsb, FADDSB)
373
SSE_HELPER_B(helper_psubusb, FSUBUB)
374
SSE_HELPER_B(helper_psubsb, FSUBSB)
375

    
376
SSE_HELPER_W(helper_paddusw, FADDUW)
377
SSE_HELPER_W(helper_paddsw, FADDSW)
378
SSE_HELPER_W(helper_psubusw, FSUBUW)
379
SSE_HELPER_W(helper_psubsw, FSUBSW)
380

    
381
SSE_HELPER_B(helper_pminub, FMINUB)
382
SSE_HELPER_B(helper_pmaxub, FMAXUB)
383

    
384
SSE_HELPER_W(helper_pminsw, FMINSW)
385
SSE_HELPER_W(helper_pmaxsw, FMAXSW)
386

    
387
SSE_HELPER_Q(helper_pand, FAND)
388
SSE_HELPER_Q(helper_pandn, FANDN)
389
SSE_HELPER_Q(helper_por, FOR)
390
SSE_HELPER_Q(helper_pxor, FXOR)
391

    
392
SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
393
SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
394
SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
395

    
396
SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
397
SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
398
SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
399

    
400
SSE_HELPER_W(helper_pmullw, FMULLW)
401
#if SHIFT == 0
402
SSE_HELPER_W(helper_pmulhrw, FMULHRW)
403
#endif
404
SSE_HELPER_W(helper_pmulhuw, FMULHUW)
405
SSE_HELPER_W(helper_pmulhw, FMULHW)
406

    
407
SSE_HELPER_B(helper_pavgb, FAVG)
408
SSE_HELPER_W(helper_pavgw, FAVG)
409

    
410
void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
411
{
412
    d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
413
#if SHIFT == 1
414
    d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
415
#endif
416
}
417

    
418
void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
419
{
420
    int i;
421

    
422
    for(i = 0; i < (2 << SHIFT); i++) {
423
        d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
424
            (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
425
    }
426
}
427

    
428
#if SHIFT == 0
429
static inline int abs1(int a)
430
{
431
    if (a < 0)
432
        return -a;
433
    else
434
        return a;
435
}
436
#endif
437
void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
438
{
439
    unsigned int val;
440

    
441
    val = 0;
442
    val += abs1(d->B(0) - s->B(0));
443
    val += abs1(d->B(1) - s->B(1));
444
    val += abs1(d->B(2) - s->B(2));
445
    val += abs1(d->B(3) - s->B(3));
446
    val += abs1(d->B(4) - s->B(4));
447
    val += abs1(d->B(5) - s->B(5));
448
    val += abs1(d->B(6) - s->B(6));
449
    val += abs1(d->B(7) - s->B(7));
450
    d->Q(0) = val;
451
#if SHIFT == 1
452
    val = 0;
453
    val += abs1(d->B(8) - s->B(8));
454
    val += abs1(d->B(9) - s->B(9));
455
    val += abs1(d->B(10) - s->B(10));
456
    val += abs1(d->B(11) - s->B(11));
457
    val += abs1(d->B(12) - s->B(12));
458
    val += abs1(d->B(13) - s->B(13));
459
    val += abs1(d->B(14) - s->B(14));
460
    val += abs1(d->B(15) - s->B(15));
461
    d->Q(1) = val;
462
#endif
463
}
464

    
465
void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
466
{
467
    int i;
468
    for(i = 0; i < (8 << SHIFT); i++) {
469
        if (s->B(i) & 0x80)
470
            stb(a0 + i, d->B(i));
471
    }
472
}
473

    
474
void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
475
{
476
    d->L(0) = val;
477
    d->L(1) = 0;
478
#if SHIFT == 1
479
    d->Q(1) = 0;
480
#endif
481
}
482

    
483
#ifdef TARGET_X86_64
484
void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
485
{
486
    d->Q(0) = val;
487
#if SHIFT == 1
488
    d->Q(1) = 0;
489
#endif
490
}
491
#endif
492

    
493
#if SHIFT == 0
494
void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
495
{
496
    Reg r;
497
    r.W(0) = s->W(order & 3);
498
    r.W(1) = s->W((order >> 2) & 3);
499
    r.W(2) = s->W((order >> 4) & 3);
500
    r.W(3) = s->W((order >> 6) & 3);
501
    *d = r;
502
}
503
#else
504
void helper_shufps(Reg *d, Reg *s, int order)
505
{
506
    Reg r;
507
    r.L(0) = d->L(order & 3);
508
    r.L(1) = d->L((order >> 2) & 3);
509
    r.L(2) = s->L((order >> 4) & 3);
510
    r.L(3) = s->L((order >> 6) & 3);
511
    *d = r;
512
}
513

    
514
void helper_shufpd(Reg *d, Reg *s, int order)
515
{
516
    Reg r;
517
    r.Q(0) = d->Q(order & 1);
518
    r.Q(1) = s->Q((order >> 1) & 1);
519
    *d = r;
520
}
521

    
522
void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
523
{
524
    Reg r;
525
    r.L(0) = s->L(order & 3);
526
    r.L(1) = s->L((order >> 2) & 3);
527
    r.L(2) = s->L((order >> 4) & 3);
528
    r.L(3) = s->L((order >> 6) & 3);
529
    *d = r;
530
}
531

    
532
void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
533
{
534
    Reg r;
535
    r.W(0) = s->W(order & 3);
536
    r.W(1) = s->W((order >> 2) & 3);
537
    r.W(2) = s->W((order >> 4) & 3);
538
    r.W(3) = s->W((order >> 6) & 3);
539
    r.Q(1) = s->Q(1);
540
    *d = r;
541
}
542

    
543
void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
544
{
545
    Reg r;
546
    r.Q(0) = s->Q(0);
547
    r.W(4) = s->W(4 + (order & 3));
548
    r.W(5) = s->W(4 + ((order >> 2) & 3));
549
    r.W(6) = s->W(4 + ((order >> 4) & 3));
550
    r.W(7) = s->W(4 + ((order >> 6) & 3));
551
    *d = r;
552
}
553
#endif
554

    
555
#if SHIFT == 1
556
/* FPU ops */
557
/* XXX: not accurate */
558

    
559
#define SSE_HELPER_S(name, F)\
560
void helper_ ## name ## ps (Reg *d, Reg *s)\
561
{\
562
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
563
    d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
564
    d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
565
    d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
566
}\
567
\
568
void helper_ ## name ## ss (Reg *d, Reg *s)\
569
{\
570
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
571
}\
572
void helper_ ## name ## pd (Reg *d, Reg *s)\
573
{\
574
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
575
    d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
576
}\
577
\
578
void helper_ ## name ## sd (Reg *d, Reg *s)\
579
{\
580
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
581
}
582

    
583
#define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
584
#define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
585
#define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
586
#define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
587
#define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
588

    
589
/* Note that the choice of comparison op here is important to get the
590
 * special cases right: for min and max Intel specifies that (-0,0),
591
 * (NaN, anything) and (anything, NaN) return the second argument.
592
 */
593
#define FPU_MIN(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)
594
#define FPU_MAX(size, a, b) float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)
595

    
596
SSE_HELPER_S(add, FPU_ADD)
597
SSE_HELPER_S(sub, FPU_SUB)
598
SSE_HELPER_S(mul, FPU_MUL)
599
SSE_HELPER_S(div, FPU_DIV)
600
SSE_HELPER_S(min, FPU_MIN)
601
SSE_HELPER_S(max, FPU_MAX)
602
SSE_HELPER_S(sqrt, FPU_SQRT)
603

    
604

    
605
/* float to float conversions */
606
void helper_cvtps2pd(Reg *d, Reg *s)
607
{
608
    float32 s0, s1;
609
    s0 = s->XMM_S(0);
610
    s1 = s->XMM_S(1);
611
    d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
612
    d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
613
}
614

    
615
void helper_cvtpd2ps(Reg *d, Reg *s)
616
{
617
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
618
    d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
619
    d->Q(1) = 0;
620
}
621

    
622
void helper_cvtss2sd(Reg *d, Reg *s)
623
{
624
    d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
625
}
626

    
627
void helper_cvtsd2ss(Reg *d, Reg *s)
628
{
629
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
630
}
631

    
632
/* integer to float */
633
void helper_cvtdq2ps(Reg *d, Reg *s)
634
{
635
    d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
636
    d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
637
    d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
638
    d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
639
}
640

    
641
void helper_cvtdq2pd(Reg *d, Reg *s)
642
{
643
    int32_t l0, l1;
644
    l0 = (int32_t)s->XMM_L(0);
645
    l1 = (int32_t)s->XMM_L(1);
646
    d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
647
    d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
648
}
649

    
650
void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
651
{
652
    d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
653
    d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
654
}
655

    
656
void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
657
{
658
    d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
659
    d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
660
}
661

    
662
void helper_cvtsi2ss(XMMReg *d, uint32_t val)
663
{
664
    d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
665
}
666

    
667
void helper_cvtsi2sd(XMMReg *d, uint32_t val)
668
{
669
    d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
670
}
671

    
672
#ifdef TARGET_X86_64
673
void helper_cvtsq2ss(XMMReg *d, uint64_t val)
674
{
675
    d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
676
}
677

    
678
void helper_cvtsq2sd(XMMReg *d, uint64_t val)
679
{
680
    d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
681
}
682
#endif
683

    
684
/* float to integer */
685
void helper_cvtps2dq(XMMReg *d, XMMReg *s)
686
{
687
    d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
688
    d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
689
    d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
690
    d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
691
}
692

    
693
void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
694
{
695
    d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
696
    d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
697
    d->XMM_Q(1) = 0;
698
}
699

    
700
void helper_cvtps2pi(MMXReg *d, XMMReg *s)
701
{
702
    d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
703
    d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
704
}
705

    
706
void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
707
{
708
    d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
709
    d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
710
}
711

    
712
int32_t helper_cvtss2si(XMMReg *s)
713
{
714
    return float32_to_int32(s->XMM_S(0), &env->sse_status);
715
}
716

    
717
int32_t helper_cvtsd2si(XMMReg *s)
718
{
719
    return float64_to_int32(s->XMM_D(0), &env->sse_status);
720
}
721

    
722
#ifdef TARGET_X86_64
723
int64_t helper_cvtss2sq(XMMReg *s)
724
{
725
    return float32_to_int64(s->XMM_S(0), &env->sse_status);
726
}
727

    
728
int64_t helper_cvtsd2sq(XMMReg *s)
729
{
730
    return float64_to_int64(s->XMM_D(0), &env->sse_status);
731
}
732
#endif
733

    
734
/* float to integer truncated */
735
void helper_cvttps2dq(XMMReg *d, XMMReg *s)
736
{
737
    d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
738
    d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
739
    d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
740
    d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
741
}
742

    
743
void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
744
{
745
    d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
746
    d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
747
    d->XMM_Q(1) = 0;
748
}
749

    
750
void helper_cvttps2pi(MMXReg *d, XMMReg *s)
751
{
752
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
753
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
754
}
755

    
756
void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
757
{
758
    d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
759
    d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
760
}
761

    
762
int32_t helper_cvttss2si(XMMReg *s)
763
{
764
    return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
765
}
766

    
767
int32_t helper_cvttsd2si(XMMReg *s)
768
{
769
    return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
770
}
771

    
772
#ifdef TARGET_X86_64
773
int64_t helper_cvttss2sq(XMMReg *s)
774
{
775
    return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
776
}
777

    
778
int64_t helper_cvttsd2sq(XMMReg *s)
779
{
780
    return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
781
}
782
#endif
783

    
784
void helper_rsqrtps(XMMReg *d, XMMReg *s)
785
{
786
    d->XMM_S(0) = float32_div(float32_one,
787
                              float32_sqrt(s->XMM_S(0), &env->sse_status),
788
                              &env->sse_status);
789
    d->XMM_S(1) = float32_div(float32_one,
790
                              float32_sqrt(s->XMM_S(1), &env->sse_status),
791
                              &env->sse_status);
792
    d->XMM_S(2) = float32_div(float32_one,
793
                              float32_sqrt(s->XMM_S(2), &env->sse_status),
794
                              &env->sse_status);
795
    d->XMM_S(3) = float32_div(float32_one,
796
                              float32_sqrt(s->XMM_S(3), &env->sse_status),
797
                              &env->sse_status);
798
}
799

    
800
void helper_rsqrtss(XMMReg *d, XMMReg *s)
801
{
802
    d->XMM_S(0) = float32_div(float32_one,
803
                              float32_sqrt(s->XMM_S(0), &env->sse_status),
804
                              &env->sse_status);
805
}
806

    
807
void helper_rcpps(XMMReg *d, XMMReg *s)
808
{
809
    d->XMM_S(0) = float32_div(float32_one, s->XMM_S(0), &env->sse_status);
810
    d->XMM_S(1) = float32_div(float32_one, s->XMM_S(1), &env->sse_status);
811
    d->XMM_S(2) = float32_div(float32_one, s->XMM_S(2), &env->sse_status);
812
    d->XMM_S(3) = float32_div(float32_one, s->XMM_S(3), &env->sse_status);
813
}
814

    
815
void helper_rcpss(XMMReg *d, XMMReg *s)
816
{
817
    d->XMM_S(0) = float32_div(float32_one, s->XMM_S(0), &env->sse_status);
818
}
819

    
820
static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
821
{
822
    uint64_t mask;
823

    
824
    if (len == 0) {
825
        mask = ~0LL;
826
    } else {
827
        mask = (1ULL << len) - 1;
828
    }
829
    return (src >> shift) & mask;
830
}
831

    
832
void helper_extrq_r(XMMReg *d, XMMReg *s)
833
{
834
    d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), s->XMM_B(1), s->XMM_B(0));
835
}
836

    
837
void helper_extrq_i(XMMReg *d, int index, int length)
838
{
839
    d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), index, length);
840
}
841

    
842
static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
843
{
844
    uint64_t mask;
845

    
846
    if (len == 0) {
847
        mask = ~0ULL;
848
    } else {
849
        mask = (1ULL << len) - 1;
850
    }
851
    return (src & ~(mask << shift)) | ((src & mask) << shift);
852
}
853

    
854
void helper_insertq_r(XMMReg *d, XMMReg *s)
855
{
856
    d->XMM_Q(0) = helper_insertq(s->XMM_Q(0), s->XMM_B(9), s->XMM_B(8));
857
}
858

    
859
void helper_insertq_i(XMMReg *d, int index, int length)
860
{
861
    d->XMM_Q(0) = helper_insertq(d->XMM_Q(0), index, length);
862
}
863

    
864
void helper_haddps(XMMReg *d, XMMReg *s)
865
{
866
    XMMReg r;
867
    r.XMM_S(0) = float32_add(d->XMM_S(0), d->XMM_S(1), &env->sse_status);
868
    r.XMM_S(1) = float32_add(d->XMM_S(2), d->XMM_S(3), &env->sse_status);
869
    r.XMM_S(2) = float32_add(s->XMM_S(0), s->XMM_S(1), &env->sse_status);
870
    r.XMM_S(3) = float32_add(s->XMM_S(2), s->XMM_S(3), &env->sse_status);
871
    *d = r;
872
}
873

    
874
void helper_haddpd(XMMReg *d, XMMReg *s)
875
{
876
    XMMReg r;
877
    r.XMM_D(0) = float64_add(d->XMM_D(0), d->XMM_D(1), &env->sse_status);
878
    r.XMM_D(1) = float64_add(s->XMM_D(0), s->XMM_D(1), &env->sse_status);
879
    *d = r;
880
}
881

    
882
void helper_hsubps(XMMReg *d, XMMReg *s)
883
{
884
    XMMReg r;
885
    r.XMM_S(0) = float32_sub(d->XMM_S(0), d->XMM_S(1), &env->sse_status);
886
    r.XMM_S(1) = float32_sub(d->XMM_S(2), d->XMM_S(3), &env->sse_status);
887
    r.XMM_S(2) = float32_sub(s->XMM_S(0), s->XMM_S(1), &env->sse_status);
888
    r.XMM_S(3) = float32_sub(s->XMM_S(2), s->XMM_S(3), &env->sse_status);
889
    *d = r;
890
}
891

    
892
void helper_hsubpd(XMMReg *d, XMMReg *s)
893
{
894
    XMMReg r;
895
    r.XMM_D(0) = float64_sub(d->XMM_D(0), d->XMM_D(1), &env->sse_status);
896
    r.XMM_D(1) = float64_sub(s->XMM_D(0), s->XMM_D(1), &env->sse_status);
897
    *d = r;
898
}
899

    
900
void helper_addsubps(XMMReg *d, XMMReg *s)
901
{
902
    d->XMM_S(0) = float32_sub(d->XMM_S(0), s->XMM_S(0), &env->sse_status);
903
    d->XMM_S(1) = float32_add(d->XMM_S(1), s->XMM_S(1), &env->sse_status);
904
    d->XMM_S(2) = float32_sub(d->XMM_S(2), s->XMM_S(2), &env->sse_status);
905
    d->XMM_S(3) = float32_add(d->XMM_S(3), s->XMM_S(3), &env->sse_status);
906
}
907

    
908
void helper_addsubpd(XMMReg *d, XMMReg *s)
909
{
910
    d->XMM_D(0) = float64_sub(d->XMM_D(0), s->XMM_D(0), &env->sse_status);
911
    d->XMM_D(1) = float64_add(d->XMM_D(1), s->XMM_D(1), &env->sse_status);
912
}
913

    
914
/* XXX: unordered */
915
#define SSE_HELPER_CMP(name, F)\
916
void helper_ ## name ## ps (Reg *d, Reg *s)\
917
{\
918
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
919
    d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
920
    d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
921
    d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
922
}\
923
\
924
void helper_ ## name ## ss (Reg *d, Reg *s)\
925
{\
926
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
927
}\
928
void helper_ ## name ## pd (Reg *d, Reg *s)\
929
{\
930
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
931
    d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
932
}\
933
\
934
void helper_ ## name ## sd (Reg *d, Reg *s)\
935
{\
936
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
937
}
938

    
939
#define FPU_CMPEQ(size, a, b) float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0
940
#define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
941
#define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
942
#define FPU_CMPUNORD(size, a, b) float ## size ## _unordered_quiet(a, b, &env->sse_status) ? - 1 : 0
943
#define FPU_CMPNEQ(size, a, b) float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1
944
#define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
945
#define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
946
#define FPU_CMPORD(size, a, b) float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1
947

    
948
SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
949
SSE_HELPER_CMP(cmplt, FPU_CMPLT)
950
SSE_HELPER_CMP(cmple, FPU_CMPLE)
951
SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
952
SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
953
SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
954
SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
955
SSE_HELPER_CMP(cmpord, FPU_CMPORD)
956

    
957
static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
958

    
959
void helper_ucomiss(Reg *d, Reg *s)
960
{
961
    int ret;
962
    float32 s0, s1;
963

    
964
    s0 = d->XMM_S(0);
965
    s1 = s->XMM_S(0);
966
    ret = float32_compare_quiet(s0, s1, &env->sse_status);
967
    CC_SRC = comis_eflags[ret + 1];
968
}
969

    
970
void helper_comiss(Reg *d, Reg *s)
971
{
972
    int ret;
973
    float32 s0, s1;
974

    
975
    s0 = d->XMM_S(0);
976
    s1 = s->XMM_S(0);
977
    ret = float32_compare(s0, s1, &env->sse_status);
978
    CC_SRC = comis_eflags[ret + 1];
979
}
980

    
981
void helper_ucomisd(Reg *d, Reg *s)
982
{
983
    int ret;
984
    float64 d0, d1;
985

    
986
    d0 = d->XMM_D(0);
987
    d1 = s->XMM_D(0);
988
    ret = float64_compare_quiet(d0, d1, &env->sse_status);
989
    CC_SRC = comis_eflags[ret + 1];
990
}
991

    
992
void helper_comisd(Reg *d, Reg *s)
993
{
994
    int ret;
995
    float64 d0, d1;
996

    
997
    d0 = d->XMM_D(0);
998
    d1 = s->XMM_D(0);
999
    ret = float64_compare(d0, d1, &env->sse_status);
1000
    CC_SRC = comis_eflags[ret + 1];
1001
}
1002

    
1003
uint32_t helper_movmskps(Reg *s)
1004
{
1005
    int b0, b1, b2, b3;
1006
    b0 = s->XMM_L(0) >> 31;
1007
    b1 = s->XMM_L(1) >> 31;
1008
    b2 = s->XMM_L(2) >> 31;
1009
    b3 = s->XMM_L(3) >> 31;
1010
    return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
1011
}
1012

    
1013
uint32_t helper_movmskpd(Reg *s)
1014
{
1015
    int b0, b1;
1016
    b0 = s->XMM_L(1) >> 31;
1017
    b1 = s->XMM_L(3) >> 31;
1018
    return b0 | (b1 << 1);
1019
}
1020

    
1021
#endif
1022

    
1023
uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
1024
{
1025
    uint32_t val;
1026
    val = 0;
1027
    val |= (s->B(0) >> 7);
1028
    val |= (s->B(1) >> 6) & 0x02;
1029
    val |= (s->B(2) >> 5) & 0x04;
1030
    val |= (s->B(3) >> 4) & 0x08;
1031
    val |= (s->B(4) >> 3) & 0x10;
1032
    val |= (s->B(5) >> 2) & 0x20;
1033
    val |= (s->B(6) >> 1) & 0x40;
1034
    val |= (s->B(7)) & 0x80;
1035
#if SHIFT == 1
1036
    val |= (s->B(8) << 1) & 0x0100;
1037
    val |= (s->B(9) << 2) & 0x0200;
1038
    val |= (s->B(10) << 3) & 0x0400;
1039
    val |= (s->B(11) << 4) & 0x0800;
1040
    val |= (s->B(12) << 5) & 0x1000;
1041
    val |= (s->B(13) << 6) & 0x2000;
1042
    val |= (s->B(14) << 7) & 0x4000;
1043
    val |= (s->B(15) << 8) & 0x8000;
1044
#endif
1045
    return val;
1046
}
1047

    
1048
void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
1049
{
1050
    Reg r;
1051

    
1052
    r.B(0) = satsb((int16_t)d->W(0));
1053
    r.B(1) = satsb((int16_t)d->W(1));
1054
    r.B(2) = satsb((int16_t)d->W(2));
1055
    r.B(3) = satsb((int16_t)d->W(3));
1056
#if SHIFT == 1
1057
    r.B(4) = satsb((int16_t)d->W(4));
1058
    r.B(5) = satsb((int16_t)d->W(5));
1059
    r.B(6) = satsb((int16_t)d->W(6));
1060
    r.B(7) = satsb((int16_t)d->W(7));
1061
#endif
1062
    r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1063
    r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1064
    r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1065
    r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1066
#if SHIFT == 1
1067
    r.B(12) = satsb((int16_t)s->W(4));
1068
    r.B(13) = satsb((int16_t)s->W(5));
1069
    r.B(14) = satsb((int16_t)s->W(6));
1070
    r.B(15) = satsb((int16_t)s->W(7));
1071
#endif
1072
    *d = r;
1073
}
1074

    
1075
void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1076
{
1077
    Reg r;
1078

    
1079
    r.B(0) = satub((int16_t)d->W(0));
1080
    r.B(1) = satub((int16_t)d->W(1));
1081
    r.B(2) = satub((int16_t)d->W(2));
1082
    r.B(3) = satub((int16_t)d->W(3));
1083
#if SHIFT == 1
1084
    r.B(4) = satub((int16_t)d->W(4));
1085
    r.B(5) = satub((int16_t)d->W(5));
1086
    r.B(6) = satub((int16_t)d->W(6));
1087
    r.B(7) = satub((int16_t)d->W(7));
1088
#endif
1089
    r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1090
    r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1091
    r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1092
    r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1093
#if SHIFT == 1
1094
    r.B(12) = satub((int16_t)s->W(4));
1095
    r.B(13) = satub((int16_t)s->W(5));
1096
    r.B(14) = satub((int16_t)s->W(6));
1097
    r.B(15) = satub((int16_t)s->W(7));
1098
#endif
1099
    *d = r;
1100
}
1101

    
1102
void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1103
{
1104
    Reg r;
1105

    
1106
    r.W(0) = satsw(d->L(0));
1107
    r.W(1) = satsw(d->L(1));
1108
#if SHIFT == 1
1109
    r.W(2) = satsw(d->L(2));
1110
    r.W(3) = satsw(d->L(3));
1111
#endif
1112
    r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1113
    r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1114
#if SHIFT == 1
1115
    r.W(6) = satsw(s->L(2));
1116
    r.W(7) = satsw(s->L(3));
1117
#endif
1118
    *d = r;
1119
}
1120

    
1121
#define UNPCK_OP(base_name, base)                               \
1122
                                                                \
1123
void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s)   \
1124
{                                                               \
1125
    Reg r;                                              \
1126
                                                                \
1127
    r.B(0) = d->B((base << (SHIFT + 2)) + 0);                   \
1128
    r.B(1) = s->B((base << (SHIFT + 2)) + 0);                   \
1129
    r.B(2) = d->B((base << (SHIFT + 2)) + 1);                   \
1130
    r.B(3) = s->B((base << (SHIFT + 2)) + 1);                   \
1131
    r.B(4) = d->B((base << (SHIFT + 2)) + 2);                   \
1132
    r.B(5) = s->B((base << (SHIFT + 2)) + 2);                   \
1133
    r.B(6) = d->B((base << (SHIFT + 2)) + 3);                   \
1134
    r.B(7) = s->B((base << (SHIFT + 2)) + 3);                   \
1135
XMM_ONLY(                                                       \
1136
    r.B(8) = d->B((base << (SHIFT + 2)) + 4);                   \
1137
    r.B(9) = s->B((base << (SHIFT + 2)) + 4);                   \
1138
    r.B(10) = d->B((base << (SHIFT + 2)) + 5);                  \
1139
    r.B(11) = s->B((base << (SHIFT + 2)) + 5);                  \
1140
    r.B(12) = d->B((base << (SHIFT + 2)) + 6);                  \
1141
    r.B(13) = s->B((base << (SHIFT + 2)) + 6);                  \
1142
    r.B(14) = d->B((base << (SHIFT + 2)) + 7);                  \
1143
    r.B(15) = s->B((base << (SHIFT + 2)) + 7);                  \
1144
)                                                               \
1145
    *d = r;                                                     \
1146
}                                                               \
1147
                                                                \
1148
void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s)   \
1149
{                                                               \
1150
    Reg r;                                              \
1151
                                                                \
1152
    r.W(0) = d->W((base << (SHIFT + 1)) + 0);                   \
1153
    r.W(1) = s->W((base << (SHIFT + 1)) + 0);                   \
1154
    r.W(2) = d->W((base << (SHIFT + 1)) + 1);                   \
1155
    r.W(3) = s->W((base << (SHIFT + 1)) + 1);                   \
1156
XMM_ONLY(                                                       \
1157
    r.W(4) = d->W((base << (SHIFT + 1)) + 2);                   \
1158
    r.W(5) = s->W((base << (SHIFT + 1)) + 2);                   \
1159
    r.W(6) = d->W((base << (SHIFT + 1)) + 3);                   \
1160
    r.W(7) = s->W((base << (SHIFT + 1)) + 3);                   \
1161
)                                                               \
1162
    *d = r;                                                     \
1163
}                                                               \
1164
                                                                \
1165
void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s)   \
1166
{                                                               \
1167
    Reg r;                                              \
1168
                                                                \
1169
    r.L(0) = d->L((base << SHIFT) + 0);                         \
1170
    r.L(1) = s->L((base << SHIFT) + 0);                         \
1171
XMM_ONLY(                                                       \
1172
    r.L(2) = d->L((base << SHIFT) + 1);                         \
1173
    r.L(3) = s->L((base << SHIFT) + 1);                         \
1174
)                                                               \
1175
    *d = r;                                                     \
1176
}                                                               \
1177
                                                                \
1178
XMM_ONLY(                                                       \
1179
void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s)  \
1180
{                                                               \
1181
    Reg r;                                              \
1182
                                                                \
1183
    r.Q(0) = d->Q(base);                                        \
1184
    r.Q(1) = s->Q(base);                                        \
1185
    *d = r;                                                     \
1186
}                                                               \
1187
)
1188

    
1189
UNPCK_OP(l, 0)
1190
UNPCK_OP(h, 1)
1191

    
1192
/* 3DNow! float ops */
1193
#if SHIFT == 0
1194
void helper_pi2fd(MMXReg *d, MMXReg *s)
1195
{
1196
    d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1197
    d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1198
}
1199

    
1200
void helper_pi2fw(MMXReg *d, MMXReg *s)
1201
{
1202
    d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1203
    d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1204
}
1205

    
1206
void helper_pf2id(MMXReg *d, MMXReg *s)
1207
{
1208
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1209
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1210
}
1211

    
1212
void helper_pf2iw(MMXReg *d, MMXReg *s)
1213
{
1214
    d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1215
    d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1216
}
1217

    
1218
void helper_pfacc(MMXReg *d, MMXReg *s)
1219
{
1220
    MMXReg r;
1221
    r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1222
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1223
    *d = r;
1224
}
1225

    
1226
void helper_pfadd(MMXReg *d, MMXReg *s)
1227
{
1228
    d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1229
    d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1230
}
1231

    
1232
void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1233
{
1234
    d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1235
    d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1236
}
1237

    
1238
void helper_pfcmpge(MMXReg *d, MMXReg *s)
1239
{
1240
    d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1241
    d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1242
}
1243

    
1244
void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1245
{
1246
    d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1247
    d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1248
}
1249

    
1250
void helper_pfmax(MMXReg *d, MMXReg *s)
1251
{
1252
    if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1253
        d->MMX_S(0) = s->MMX_S(0);
1254
    if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1255
        d->MMX_S(1) = s->MMX_S(1);
1256
}
1257

    
1258
void helper_pfmin(MMXReg *d, MMXReg *s)
1259
{
1260
    if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1261
        d->MMX_S(0) = s->MMX_S(0);
1262
    if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1263
        d->MMX_S(1) = s->MMX_S(1);
1264
}
1265

    
1266
void helper_pfmul(MMXReg *d, MMXReg *s)
1267
{
1268
    d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1269
    d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1270
}
1271

    
1272
void helper_pfnacc(MMXReg *d, MMXReg *s)
1273
{
1274
    MMXReg r;
1275
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1276
    r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1277
    *d = r;
1278
}
1279

    
1280
void helper_pfpnacc(MMXReg *d, MMXReg *s)
1281
{
1282
    MMXReg r;
1283
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1284
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1285
    *d = r;
1286
}
1287

    
1288
void helper_pfrcp(MMXReg *d, MMXReg *s)
1289
{
1290
    d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1291
    d->MMX_S(1) = d->MMX_S(0);
1292
}
1293

    
1294
void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1295
{
1296
    d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1297
    d->MMX_S(1) = float32_div(float32_one,
1298
                              float32_sqrt(d->MMX_S(1), &env->mmx_status),
1299
                              &env->mmx_status);
1300
    d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1301
    d->MMX_L(0) = d->MMX_L(1);
1302
}
1303

    
1304
void helper_pfsub(MMXReg *d, MMXReg *s)
1305
{
1306
    d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1307
    d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1308
}
1309

    
1310
void helper_pfsubr(MMXReg *d, MMXReg *s)
1311
{
1312
    d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1313
    d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1314
}
1315

    
1316
void helper_pswapd(MMXReg *d, MMXReg *s)
1317
{
1318
    MMXReg r;
1319
    r.MMX_L(0) = s->MMX_L(1);
1320
    r.MMX_L(1) = s->MMX_L(0);
1321
    *d = r;
1322
}
1323
#endif
1324

    
1325
/* SSSE3 op helpers */
1326
void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1327
{
1328
    int i;
1329
    Reg r;
1330

    
1331
    for (i = 0; i < (8 << SHIFT); i++)
1332
        r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1333

    
1334
    *d = r;
1335
}
1336

    
1337
void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1338
{
1339
    d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1340
    d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1341
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1342
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1343
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1344
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1345
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1346
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1347
}
1348

    
1349
void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1350
{
1351
    d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1352
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1353
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1354
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1355
}
1356

    
1357
void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1358
{
1359
    d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1360
    d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1361
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1362
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1363
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1364
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1365
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1366
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1367
}
1368

    
1369
void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1370
{
1371
    d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1372
                    (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1373
    d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1374
                    (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1375
    d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1376
                    (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1377
    d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1378
                    (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1379
#if SHIFT == 1
1380
    d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1381
                    (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1382
    d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1383
                    (int8_t)s->B(11) * (uint8_t)d->B(11));
1384
    d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1385
                    (int8_t)s->B(13) * (uint8_t)d->B(13));
1386
    d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1387
                    (int8_t)s->B(15) * (uint8_t)d->B(15));
1388
#endif
1389
}
1390

    
1391
void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1392
{
1393
    d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1394
    d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1395
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1396
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1397
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1398
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1399
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1400
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1401
}
1402

    
1403
void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1404
{
1405
    d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1406
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1407
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1408
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1409
}
1410

    
1411
void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1412
{
1413
    d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1414
    d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1415
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1416
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1417
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1418
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1419
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1420
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1421
}
1422

    
1423
#define FABSB(_, x) x > INT8_MAX  ? -(int8_t ) x : x
1424
#define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1425
#define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1426
SSE_HELPER_B(helper_pabsb, FABSB)
1427
SSE_HELPER_W(helper_pabsw, FABSW)
1428
SSE_HELPER_L(helper_pabsd, FABSL)
1429

    
1430
#define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1431
SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1432

    
1433
#define FSIGNB(d, s) s <= INT8_MAX  ? s ? d : 0 : -(int8_t ) d
1434
#define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1435
#define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1436
SSE_HELPER_B(helper_psignb, FSIGNB)
1437
SSE_HELPER_W(helper_psignw, FSIGNW)
1438
SSE_HELPER_L(helper_psignd, FSIGNL)
1439

    
1440
void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1441
{
1442
    Reg r;
1443

    
1444
    /* XXX could be checked during translation */
1445
    if (shift >= (16 << SHIFT)) {
1446
        r.Q(0) = 0;
1447
        XMM_ONLY(r.Q(1) = 0);
1448
    } else {
1449
        shift <<= 3;
1450
#define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1451
#if SHIFT == 0
1452
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1453
                 SHR(d->Q(0), shift -  64);
1454
#else
1455
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1456
                 SHR(s->Q(1), shift -  64) |
1457
                 SHR(d->Q(0), shift - 128) |
1458
                 SHR(d->Q(1), shift - 192);
1459
        r.Q(1) = SHR(s->Q(0), shift +  64) |
1460
                 SHR(s->Q(1), shift -   0) |
1461
                 SHR(d->Q(0), shift -  64) |
1462
                 SHR(d->Q(1), shift - 128);
1463
#endif
1464
#undef SHR
1465
    }
1466

    
1467
    *d = r;
1468
}
1469

    
1470
#define XMM0 env->xmm_regs[0]
1471

    
1472
#if SHIFT == 1
1473
#define SSE_HELPER_V(name, elem, num, F)\
1474
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1475
{\
1476
    d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1477
    d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1478
    if (num > 2) {\
1479
        d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1480
        d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1481
        if (num > 4) {\
1482
            d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1483
            d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1484
            d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1485
            d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1486
            if (num > 8) {\
1487
                d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1488
                d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1489
                d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1490
                d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1491
                d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1492
                d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1493
                d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1494
                d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1495
            }\
1496
        }\
1497
    }\
1498
}
1499

    
1500
#define SSE_HELPER_I(name, elem, num, F)\
1501
void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1502
{\
1503
    d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1504
    d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1505
    if (num > 2) {\
1506
        d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1507
        d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1508
        if (num > 4) {\
1509
            d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1510
            d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1511
            d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1512
            d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1513
            if (num > 8) {\
1514
                d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1515
                d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1516
                d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1517
                d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1518
                d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1519
                d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1520
                d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1521
                d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1522
            }\
1523
        }\
1524
    }\
1525
}
1526

    
1527
/* SSE4.1 op helpers */
1528
#define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1529
#define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1530
#define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d
1531
SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1532
SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1533
SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1534

    
1535
void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1536
{
1537
    uint64_t zf = (s->Q(0) &  d->Q(0)) | (s->Q(1) &  d->Q(1));
1538
    uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1539

    
1540
    CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1541
}
1542

    
1543
#define SSE_HELPER_F(name, elem, num, F)\
1544
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1545
{\
1546
    d->elem(0) = F(0);\
1547
    d->elem(1) = F(1);\
1548
    if (num > 2) {\
1549
        d->elem(2) = F(2);\
1550
        d->elem(3) = F(3);\
1551
        if (num > 4) {\
1552
            d->elem(4) = F(4);\
1553
            d->elem(5) = F(5);\
1554
            d->elem(6) = F(6);\
1555
            d->elem(7) = F(7);\
1556
        }\
1557
    }\
1558
}
1559

    
1560
SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1561
SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1562
SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1563
SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1564
SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1565
SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1566
SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1567
SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1568
SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1569
SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1570
SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1571
SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1572

    
1573
void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1574
{
1575
    d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1576
    d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1577
}
1578

    
1579
#define FCMPEQQ(d, s) d == s ? -1 : 0
1580
SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1581

    
1582
void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1583
{
1584
    d->W(0) = satuw((int32_t) d->L(0));
1585
    d->W(1) = satuw((int32_t) d->L(1));
1586
    d->W(2) = satuw((int32_t) d->L(2));
1587
    d->W(3) = satuw((int32_t) d->L(3));
1588
    d->W(4) = satuw((int32_t) s->L(0));
1589
    d->W(5) = satuw((int32_t) s->L(1));
1590
    d->W(6) = satuw((int32_t) s->L(2));
1591
    d->W(7) = satuw((int32_t) s->L(3));
1592
}
1593

    
1594
#define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1595
#define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1596
#define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1597
#define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1598
SSE_HELPER_B(helper_pminsb, FMINSB)
1599
SSE_HELPER_L(helper_pminsd, FMINSD)
1600
SSE_HELPER_W(helper_pminuw, MIN)
1601
SSE_HELPER_L(helper_pminud, MIN)
1602
SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1603
SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1604
SSE_HELPER_W(helper_pmaxuw, MAX)
1605
SSE_HELPER_L(helper_pmaxud, MAX)
1606

    
1607
#define FMULLD(d, s) (int32_t) d * (int32_t) s
1608
SSE_HELPER_L(helper_pmulld, FMULLD)
1609

    
1610
void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1611
{
1612
    int idx = 0;
1613

    
1614
    if (s->W(1) < s->W(idx))
1615
        idx = 1;
1616
    if (s->W(2) < s->W(idx))
1617
        idx = 2;
1618
    if (s->W(3) < s->W(idx))
1619
        idx = 3;
1620
    if (s->W(4) < s->W(idx))
1621
        idx = 4;
1622
    if (s->W(5) < s->W(idx))
1623
        idx = 5;
1624
    if (s->W(6) < s->W(idx))
1625
        idx = 6;
1626
    if (s->W(7) < s->W(idx))
1627
        idx = 7;
1628

    
1629
    d->Q(1) = 0;
1630
    d->L(1) = 0;
1631
    d->W(1) = idx;
1632
    d->W(0) = s->W(idx);
1633
}
1634

    
1635
void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1636
{
1637
    signed char prev_rounding_mode;
1638

    
1639
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1640
    if (!(mode & (1 << 2)))
1641
        switch (mode & 3) {
1642
        case 0:
1643
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1644
            break;
1645
        case 1:
1646
            set_float_rounding_mode(float_round_down, &env->sse_status);
1647
            break;
1648
        case 2:
1649
            set_float_rounding_mode(float_round_up, &env->sse_status);
1650
            break;
1651
        case 3:
1652
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1653
            break;
1654
        }
1655

    
1656
    d->XMM_S(0) = float32_round_to_int(s->XMM_S(0), &env->sse_status);
1657
    d->XMM_S(1) = float32_round_to_int(s->XMM_S(1), &env->sse_status);
1658
    d->XMM_S(2) = float32_round_to_int(s->XMM_S(2), &env->sse_status);
1659
    d->XMM_S(3) = float32_round_to_int(s->XMM_S(3), &env->sse_status);
1660

    
1661
#if 0 /* TODO */
1662
    if (mode & (1 << 3))
1663
        set_float_exception_flags(
1664
                        get_float_exception_flags(&env->sse_status) &
1665
                        ~float_flag_inexact,
1666
                        &env->sse_status);
1667
#endif
1668
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1669
}
1670

    
1671
void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1672
{
1673
    signed char prev_rounding_mode;
1674

    
1675
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1676
    if (!(mode & (1 << 2)))
1677
        switch (mode & 3) {
1678
        case 0:
1679
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1680
            break;
1681
        case 1:
1682
            set_float_rounding_mode(float_round_down, &env->sse_status);
1683
            break;
1684
        case 2:
1685
            set_float_rounding_mode(float_round_up, &env->sse_status);
1686
            break;
1687
        case 3:
1688
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1689
            break;
1690
        }
1691

    
1692
    d->XMM_D(0) = float64_round_to_int(s->XMM_D(0), &env->sse_status);
1693
    d->XMM_D(1) = float64_round_to_int(s->XMM_D(1), &env->sse_status);
1694

    
1695
#if 0 /* TODO */
1696
    if (mode & (1 << 3))
1697
        set_float_exception_flags(
1698
                        get_float_exception_flags(&env->sse_status) &
1699
                        ~float_flag_inexact,
1700
                        &env->sse_status);
1701
#endif
1702
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1703
}
1704

    
1705
void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1706
{
1707
    signed char prev_rounding_mode;
1708

    
1709
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1710
    if (!(mode & (1 << 2)))
1711
        switch (mode & 3) {
1712
        case 0:
1713
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1714
            break;
1715
        case 1:
1716
            set_float_rounding_mode(float_round_down, &env->sse_status);
1717
            break;
1718
        case 2:
1719
            set_float_rounding_mode(float_round_up, &env->sse_status);
1720
            break;
1721
        case 3:
1722
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1723
            break;
1724
        }
1725

    
1726
    d->XMM_S(0) = float32_round_to_int(s->XMM_S(0), &env->sse_status);
1727

    
1728
#if 0 /* TODO */
1729
    if (mode & (1 << 3))
1730
        set_float_exception_flags(
1731
                        get_float_exception_flags(&env->sse_status) &
1732
                        ~float_flag_inexact,
1733
                        &env->sse_status);
1734
#endif
1735
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1736
}
1737

    
1738
void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1739
{
1740
    signed char prev_rounding_mode;
1741

    
1742
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1743
    if (!(mode & (1 << 2)))
1744
        switch (mode & 3) {
1745
        case 0:
1746
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1747
            break;
1748
        case 1:
1749
            set_float_rounding_mode(float_round_down, &env->sse_status);
1750
            break;
1751
        case 2:
1752
            set_float_rounding_mode(float_round_up, &env->sse_status);
1753
            break;
1754
        case 3:
1755
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1756
            break;
1757
        }
1758

    
1759
    d->XMM_D(0) = float64_round_to_int(s->XMM_D(0), &env->sse_status);
1760

    
1761
#if 0 /* TODO */
1762
    if (mode & (1 << 3))
1763
        set_float_exception_flags(
1764
                        get_float_exception_flags(&env->sse_status) &
1765
                        ~float_flag_inexact,
1766
                        &env->sse_status);
1767
#endif
1768
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1769
}
1770

    
1771
#define FBLENDP(d, s, m) m ? s : d
1772
SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1773
SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1774
SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1775

    
1776
void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1777
{
1778
    float32 iresult = float32_zero;
1779

    
1780
    if (mask & (1 << 4))
1781
        iresult = float32_add(iresult,
1782
                        float32_mul(d->XMM_S(0), s->XMM_S(0), &env->sse_status),
1783
                        &env->sse_status);
1784
    if (mask & (1 << 5))
1785
        iresult = float32_add(iresult,
1786
                        float32_mul(d->XMM_S(1), s->XMM_S(1), &env->sse_status),
1787
                        &env->sse_status);
1788
    if (mask & (1 << 6))
1789
        iresult = float32_add(iresult,
1790
                        float32_mul(d->XMM_S(2), s->XMM_S(2), &env->sse_status),
1791
                        &env->sse_status);
1792
    if (mask & (1 << 7))
1793
        iresult = float32_add(iresult,
1794
                        float32_mul(d->XMM_S(3), s->XMM_S(3), &env->sse_status),
1795
                        &env->sse_status);
1796
    d->XMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero;
1797
    d->XMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero;
1798
    d->XMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero;
1799
    d->XMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero;
1800
}
1801

    
1802
void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1803
{
1804
    float64 iresult = float64_zero;
1805

    
1806
    if (mask & (1 << 4))
1807
        iresult = float64_add(iresult,
1808
                        float64_mul(d->XMM_D(0), s->XMM_D(0), &env->sse_status),
1809
                        &env->sse_status);
1810
    if (mask & (1 << 5))
1811
        iresult = float64_add(iresult,
1812
                        float64_mul(d->XMM_D(1), s->XMM_D(1), &env->sse_status),
1813
                        &env->sse_status);
1814
    d->XMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero;
1815
    d->XMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero;
1816
}
1817

    
1818
void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1819
{
1820
    int s0 = (offset & 3) << 2;
1821
    int d0 = (offset & 4) << 0;
1822
    int i;
1823
    Reg r;
1824

    
1825
    for (i = 0; i < 8; i++, d0++) {
1826
        r.W(i) = 0;
1827
        r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1828
        r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1829
        r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1830
        r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1831
    }
1832

    
1833
    *d = r;
1834
}
1835

    
1836
/* SSE4.2 op helpers */
1837
/* it's unclear whether signed or unsigned */
1838
#define FCMPGTQ(d, s) d > s ? -1 : 0
1839
SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1840

    
1841
static inline int pcmp_elen(int reg, uint32_t ctrl)
1842
{
1843
    int val;
1844

    
1845
    /* Presence of REX.W is indicated by a bit higher than 7 set */
1846
    if (ctrl >> 8)
1847
        val = abs1((int64_t) env->regs[reg]);
1848
    else
1849
        val = abs1((int32_t) env->regs[reg]);
1850

    
1851
    if (ctrl & 1) {
1852
        if (val > 8)
1853
            return 8;
1854
    } else
1855
        if (val > 16)
1856
            return 16;
1857

    
1858
    return val;
1859
}
1860

    
1861
static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1862
{
1863
    int val = 0;
1864

    
1865
    if (ctrl & 1) {
1866
        while (val < 8 && r->W(val))
1867
            val++;
1868
    } else
1869
        while (val < 16 && r->B(val))
1870
            val++;
1871

    
1872
    return val;
1873
}
1874

    
1875
static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1876
{
1877
    switch ((ctrl >> 0) & 3) {
1878
    case 0:
1879
        return r->B(i);
1880
    case 1:
1881
        return r->W(i);
1882
    case 2:
1883
        return (int8_t) r->B(i);
1884
    case 3:
1885
    default:
1886
        return (int16_t) r->W(i);
1887
    }
1888
}
1889

    
1890
static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1891
                int8_t ctrl, int valids, int validd)
1892
{
1893
    unsigned int res = 0;
1894
    int v;
1895
    int j, i;
1896
    int upper = (ctrl & 1) ? 7 : 15;
1897

    
1898
    valids--;
1899
    validd--;
1900

    
1901
    CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1902

    
1903
    switch ((ctrl >> 2) & 3) {
1904
    case 0:
1905
        for (j = valids; j >= 0; j--) {
1906
            res <<= 1;
1907
            v = pcmp_val(s, ctrl, j);
1908
            for (i = validd; i >= 0; i--)
1909
                res |= (v == pcmp_val(d, ctrl, i));
1910
        }
1911
        break;
1912
    case 1:
1913
        for (j = valids; j >= 0; j--) {
1914
            res <<= 1;
1915
            v = pcmp_val(s, ctrl, j);
1916
            for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1917
                res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1918
                        pcmp_val(d, ctrl, i - 1) >= v);
1919
        }
1920
        break;
1921
    case 2:
1922
        res = (2 << (upper - MAX(valids, validd))) - 1;
1923
        res <<= MAX(valids, validd) - MIN(valids, validd);
1924
        for (i = MIN(valids, validd); i >= 0; i--) {
1925
            res <<= 1;
1926
            v = pcmp_val(s, ctrl, i);
1927
            res |= (v == pcmp_val(d, ctrl, i));
1928
        }
1929
        break;
1930
    case 3:
1931
        for (j = valids - validd; j >= 0; j--) {
1932
            res <<= 1;
1933
            res |= 1;
1934
            for (i = MIN(upper - j, validd); i >= 0; i--)
1935
                res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1936
        }
1937
        break;
1938
    }
1939

    
1940
    switch ((ctrl >> 4) & 3) {
1941
    case 1:
1942
        res ^= (2 << upper) - 1;
1943
        break;
1944
    case 3:
1945
        res ^= (2 << valids) - 1;
1946
        break;
1947
    }
1948

    
1949
    if (res)
1950
       CC_SRC |= CC_C;
1951
    if (res & 1)
1952
       CC_SRC |= CC_O;
1953

    
1954
    return res;
1955
}
1956

    
1957
static inline int rffs1(unsigned int val)
1958
{
1959
    int ret = 1, hi;
1960

    
1961
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1962
        if (val >> hi) {
1963
            val >>= hi;
1964
            ret += hi;
1965
        }
1966

    
1967
    return ret;
1968
}
1969

    
1970
static inline int ffs1(unsigned int val)
1971
{
1972
    int ret = 1, hi;
1973

    
1974
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1975
        if (val << hi) {
1976
            val <<= hi;
1977
            ret += hi;
1978
        }
1979

    
1980
    return ret;
1981
}
1982

    
1983
void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1984
{
1985
    unsigned int res = pcmpxstrx(d, s, ctrl,
1986
                    pcmp_elen(R_EDX, ctrl),
1987
                    pcmp_elen(R_EAX, ctrl));
1988

    
1989
    if (res)
1990
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1991
    else
1992
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1993
}
1994

    
1995
void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1996
{
1997
    int i;
1998
    unsigned int res = pcmpxstrx(d, s, ctrl,
1999
                    pcmp_elen(R_EDX, ctrl),
2000
                    pcmp_elen(R_EAX, ctrl));
2001

    
2002
    if ((ctrl >> 6) & 1) {
2003
        if (ctrl & 1)
2004
            for (i = 0; i < 8; i++, res >>= 1) {
2005
                d->W(i) = (res & 1) ? ~0 : 0;
2006
            }
2007
        else
2008
            for (i = 0; i < 16; i++, res >>= 1) {
2009
                d->B(i) = (res & 1) ? ~0 : 0;
2010
            }
2011
    } else {
2012
        d->Q(1) = 0;
2013
        d->Q(0) = res;
2014
    }
2015
}
2016

    
2017
void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2018
{
2019
    unsigned int res = pcmpxstrx(d, s, ctrl,
2020
                    pcmp_ilen(s, ctrl),
2021
                    pcmp_ilen(d, ctrl));
2022

    
2023
    if (res)
2024
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
2025
    else
2026
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2027
}
2028

    
2029
void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2030
{
2031
    int i;
2032
    unsigned int res = pcmpxstrx(d, s, ctrl,
2033
                    pcmp_ilen(s, ctrl),
2034
                    pcmp_ilen(d, ctrl));
2035

    
2036
    if ((ctrl >> 6) & 1) {
2037
        if (ctrl & 1)
2038
            for (i = 0; i < 8; i++, res >>= 1) {
2039
                d->W(i) = (res & 1) ? ~0 : 0;
2040
            }
2041
        else
2042
            for (i = 0; i < 16; i++, res >>= 1) {
2043
                d->B(i) = (res & 1) ? ~0 : 0;
2044
            }
2045
    } else {
2046
        d->Q(1) = 0;
2047
        d->Q(0) = res;
2048
    }
2049
}
2050

    
2051
#define CRCPOLY        0x1edc6f41
2052
#define CRCPOLY_BITREV 0x82f63b78
2053
target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2054
{
2055
    target_ulong crc = (msg & ((target_ulong) -1 >>
2056
                            (TARGET_LONG_BITS - len))) ^ crc1;
2057

    
2058
    while (len--)
2059
        crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2060

    
2061
    return crc;
2062
}
2063

    
2064
#define POPMASK(i)     ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2065
#define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2066
target_ulong helper_popcnt(target_ulong n, uint32_t type)
2067
{
2068
    CC_SRC = n ? 0 : CC_Z;
2069

    
2070
    n = POPCOUNT(n, 0);
2071
    n = POPCOUNT(n, 1);
2072
    n = POPCOUNT(n, 2);
2073
    n = POPCOUNT(n, 3);
2074
    if (type == 1)
2075
        return n & 0xff;
2076

    
2077
    n = POPCOUNT(n, 4);
2078
#ifndef TARGET_X86_64
2079
    return n;
2080
#else
2081
    if (type == 2)
2082
        return n & 0xff;
2083

    
2084
    return POPCOUNT(n, 5);
2085
#endif
2086
}
2087
#endif
2088

    
2089
#undef SHIFT
2090
#undef XMM_ONLY
2091
#undef Reg
2092
#undef B
2093
#undef W
2094
#undef L
2095
#undef Q
2096
#undef SUFFIX