Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ 3b4aa426

History | View | Annotate | Download (11.7 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27

    
28
//#define DEBUG_TIMER
29

    
30
#ifdef DEBUG_TIMER
31
#define DPRINTF(fmt, args...) \
32
do { printf("TIMER: " fmt , ##args); } while (0)
33
#else
34
#define DPRINTF(fmt, args...)
35
#endif
36

    
37
/*
38
 * Registers of hardware timer in sun4m.
39
 *
40
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41
 * produced as NCR89C105. See
42
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43
 *
44
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45
 * are zero. Bit 31 is 1 when count has been reached.
46
 *
47
 * Per-CPU timers interrupt local CPU, system timer uses normal
48
 * interrupt routing.
49
 *
50
 */
51

    
52
#define MAX_CPUS 16
53

    
54
typedef struct SLAVIO_TIMERState {
55
    qemu_irq irq;
56
    ptimer_state *timer;
57
    uint32_t count, counthigh, reached;
58
    uint64_t limit;
59
    // processor only
60
    int running;
61
    struct SLAVIO_TIMERState *master;
62
    int slave_index;
63
    // system only
64
    unsigned int num_slaves;
65
    struct SLAVIO_TIMERState *slave[MAX_CPUS];
66
    uint32_t slave_mode;
67
} SLAVIO_TIMERState;
68

    
69
#define TIMER_MAXADDR 0x1f
70
#define SYS_TIMER_SIZE 0x14
71
#define CPU_TIMER_SIZE 0x10
72

    
73
#define SYS_TIMER_OFFSET      0x10000ULL
74
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
75

    
76
#define TIMER_LIMIT         0
77
#define TIMER_COUNTER       1
78
#define TIMER_COUNTER_NORST 2
79
#define TIMER_STATUS        3
80
#define TIMER_MODE          4
81

    
82
#define TIMER_COUNT_MASK32 0xfffffe00
83
#define TIMER_LIMIT_MASK32 0x7fffffff
84
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
85
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
86
#define TIMER_REACHED      0x80000000
87
#define TIMER_PERIOD       500ULL // 500ns
88
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
89
#define PERIODS_TO_LIMIT(l) ((l) << 9)
90

    
91
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
92
{
93
    return s->master && (s->master->slave_mode & (1 << s->slave_index));
94
}
95

    
96
// Update count, set irq, update expire_time
97
// Convert from ptimer countdown units
98
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
99
{
100
    uint64_t count, limit;
101

    
102
    if (s->limit == 0) /* free-run processor or system counter */
103
        limit = TIMER_MAX_COUNT32;
104
    else
105
        limit = s->limit;
106

    
107
    count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
108
    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
109
            s->counthigh, s->count);
110
    s->count = count & TIMER_COUNT_MASK32;
111
    s->counthigh = count >> 32;
112
}
113

    
114
// timer callback
115
static void slavio_timer_irq(void *opaque)
116
{
117
    SLAVIO_TIMERState *s = opaque;
118

    
119
    slavio_timer_get_out(s);
120
    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
121
    if (!slavio_timer_is_user(s)) {
122
        s->reached = TIMER_REACHED;
123
        qemu_irq_raise(s->irq);
124
    }
125
}
126

    
127
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
128
{
129
    SLAVIO_TIMERState *s = opaque;
130
    uint32_t saddr, ret;
131

    
132
    saddr = (addr & TIMER_MAXADDR) >> 2;
133
    switch (saddr) {
134
    case TIMER_LIMIT:
135
        // read limit (system counter mode) or read most signifying
136
        // part of counter (user mode)
137
        if (slavio_timer_is_user(s)) {
138
            // read user timer MSW
139
            slavio_timer_get_out(s);
140
            ret = s->counthigh;
141
        } else {
142
            // read limit
143
            // clear irq
144
            qemu_irq_lower(s->irq);
145
            s->reached = 0;
146
            ret = s->limit & TIMER_LIMIT_MASK32;
147
        }
148
        break;
149
    case TIMER_COUNTER:
150
        // read counter and reached bit (system mode) or read lsbits
151
        // of counter (user mode)
152
        slavio_timer_get_out(s);
153
        if (slavio_timer_is_user(s)) // read user timer LSW
154
            ret = s->count & TIMER_COUNT_MASK32;
155
        else // read limit
156
            ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
157
        break;
158
    case TIMER_STATUS:
159
        // only available in processor counter/timer
160
        // read start/stop status
161
        ret = s->running;
162
        break;
163
    case TIMER_MODE:
164
        // only available in system counter
165
        // read user/system mode
166
        ret = s->slave_mode;
167
        break;
168
    default:
169
        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
170
        ret = 0;
171
        break;
172
    }
173
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
174

    
175
    return ret;
176
}
177

    
178
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
179
                                    uint32_t val)
180
{
181
    SLAVIO_TIMERState *s = opaque;
182
    uint32_t saddr;
183

    
184
    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
185
    saddr = (addr & TIMER_MAXADDR) >> 2;
186
    switch (saddr) {
187
    case TIMER_LIMIT:
188
        if (slavio_timer_is_user(s)) {
189
            // set user counter MSW, reset counter
190
            qemu_irq_lower(s->irq);
191
            s->limit = TIMER_MAX_COUNT64;
192
            DPRINTF("processor %d user timer reset\n", s->slave_index);
193
            ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
194
        } else {
195
            // set limit, reset counter
196
            qemu_irq_lower(s->irq);
197
            s->limit = val & TIMER_MAX_COUNT32;
198
            if (s->limit == 0) /* free-run */
199
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
200
            else
201
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
202
        }
203
        break;
204
    case TIMER_COUNTER:
205
        if (slavio_timer_is_user(s)) {
206
            // set user counter LSW, reset counter
207
            qemu_irq_lower(s->irq);
208
            s->limit = TIMER_MAX_COUNT64;
209
            DPRINTF("processor %d user timer reset\n", s->slave_index);
210
            ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
211
        } else
212
            DPRINTF("not user timer\n");
213
        break;
214
    case TIMER_COUNTER_NORST:
215
        // set limit without resetting counter
216
        s->limit = val & TIMER_MAX_COUNT32;
217
        if (s->limit == 0)        /* free-run */
218
            ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
219
        else
220
            ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
221
        break;
222
    case TIMER_STATUS:
223
        if (slavio_timer_is_user(s)) {
224
            // start/stop user counter
225
            if ((val & 1) && !s->running) {
226
                DPRINTF("processor %d user timer started\n", s->slave_index);
227
                ptimer_run(s->timer, 0);
228
                s->running = 1;
229
            } else if (!(val & 1) && s->running) {
230
                DPRINTF("processor %d user timer stopped\n", s->slave_index);
231
                ptimer_stop(s->timer);
232
                s->running = 0;
233
            }
234
        }
235
        break;
236
    case TIMER_MODE:
237
        if (s->master == NULL) {
238
            unsigned int i;
239

    
240
            for (i = 0; i < s->num_slaves; i++) {
241
                if (val & (1 << i)) {
242
                    qemu_irq_lower(s->slave[i]->irq);
243
                    s->slave[i]->limit = -1ULL;
244
                }
245
                if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
246
                    ptimer_stop(s->slave[i]->timer);
247
                    ptimer_set_limit(s->slave[i]->timer,
248
                                     LIMIT_TO_PERIODS(s->slave[i]->limit), 1);
249
                    DPRINTF("processor %d timer changed\n",
250
                            s->slave[i]->slave_index);
251
                    ptimer_run(s->slave[i]->timer, 0);
252
                }
253
            }
254
            s->slave_mode = val & ((1 << s->num_slaves) - 1);
255
        } else
256
            DPRINTF("not system timer\n");
257
        break;
258
    default:
259
        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
260
        break;
261
    }
262
}
263

    
264
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
265
    slavio_timer_mem_readl,
266
    slavio_timer_mem_readl,
267
    slavio_timer_mem_readl,
268
};
269

    
270
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
271
    slavio_timer_mem_writel,
272
    slavio_timer_mem_writel,
273
    slavio_timer_mem_writel,
274
};
275

    
276
static void slavio_timer_save(QEMUFile *f, void *opaque)
277
{
278
    SLAVIO_TIMERState *s = opaque;
279

    
280
    qemu_put_be64s(f, &s->limit);
281
    qemu_put_be32s(f, &s->count);
282
    qemu_put_be32s(f, &s->counthigh);
283
    qemu_put_be32(f, 0); // Was irq
284
    qemu_put_be32s(f, &s->reached);
285
    qemu_put_be32s(f, &s->running);
286
    qemu_put_be32s(f, 0); // Was mode
287
    qemu_put_ptimer(f, s->timer);
288
}
289

    
290
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
291
{
292
    SLAVIO_TIMERState *s = opaque;
293
    uint32_t tmp;
294

    
295
    if (version_id != 2)
296
        return -EINVAL;
297

    
298
    qemu_get_be64s(f, &s->limit);
299
    qemu_get_be32s(f, &s->count);
300
    qemu_get_be32s(f, &s->counthigh);
301
    qemu_get_be32s(f, &tmp); // Was irq
302
    qemu_get_be32s(f, &s->reached);
303
    qemu_get_be32s(f, &s->running);
304
    qemu_get_be32s(f, &tmp); // Was mode
305
    qemu_get_ptimer(f, s->timer);
306

    
307
    return 0;
308
}
309

    
310
static void slavio_timer_reset(void *opaque)
311
{
312
    SLAVIO_TIMERState *s = opaque;
313

    
314
    s->limit = 0;
315
    s->count = 0;
316
    s->reached = 0;
317
    s->slave_mode = 0;
318
    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
319
    ptimer_run(s->timer, 0);
320
    s->running = 1;
321
    qemu_irq_lower(s->irq);
322
}
323

    
324
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
325
                                            qemu_irq irq,
326
                                            SLAVIO_TIMERState *master,
327
                                            int slave_index)
328
{
329
    int slavio_timer_io_memory;
330
    SLAVIO_TIMERState *s;
331
    QEMUBH *bh;
332

    
333
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
334
    if (!s)
335
        return s;
336
    s->irq = irq;
337
    s->master = master;
338
    s->slave_index = slave_index;
339
    bh = qemu_bh_new(slavio_timer_irq, s);
340
    s->timer = ptimer_init(bh);
341
    ptimer_set_period(s->timer, TIMER_PERIOD);
342

    
343
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
344
                                                    slavio_timer_mem_write, s);
345
    if (master)
346
        cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
347
                                     slavio_timer_io_memory);
348
    else
349
        cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
350
                                     slavio_timer_io_memory);
351
    register_savevm("slavio_timer", addr, 2, slavio_timer_save,
352
                    slavio_timer_load, s);
353
    qemu_register_reset(slavio_timer_reset, s);
354
    slavio_timer_reset(s);
355

    
356
    return s;
357
}
358

    
359
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
360
                           qemu_irq *cpu_irqs, unsigned int num_cpus)
361
{
362
    SLAVIO_TIMERState *master;
363
    unsigned int i;
364

    
365
    master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
366

    
367
    master->num_slaves = num_cpus;
368

    
369
    for (i = 0; i < MAX_CPUS; i++) {
370
        master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
371
                                             CPU_TIMER_OFFSET(i),
372
                                             cpu_irqs[i], master, i);
373
    }
374
}