Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 4721c457

History | View | Annotate | Download (12.7 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_CMOS
27

    
28
#define RTC_SECONDS             0
29
#define RTC_SECONDS_ALARM       1
30
#define RTC_MINUTES             2
31
#define RTC_MINUTES_ALARM       3
32
#define RTC_HOURS               4
33
#define RTC_HOURS_ALARM         5
34
#define RTC_ALARM_DONT_CARE    0xC0
35

    
36
#define RTC_DAY_OF_WEEK         6
37
#define RTC_DAY_OF_MONTH        7
38
#define RTC_MONTH               8
39
#define RTC_YEAR                9
40

    
41
#define RTC_REG_A               10
42
#define RTC_REG_B               11
43
#define RTC_REG_C               12
44
#define RTC_REG_D               13
45

    
46
#define REG_A_UIP 0x80
47

    
48
#define REG_B_SET 0x80
49
#define REG_B_PIE 0x40
50
#define REG_B_AIE 0x20
51
#define REG_B_UIE 0x10
52

    
53
struct RTCState {
54
    uint8_t cmos_data[128];
55
    uint8_t cmos_index;
56
    int current_time; /* in seconds */
57
    int irq;
58
    uint8_t buf_data[10]; /* buffered data */
59
    /* periodic timer */
60
    QEMUTimer *periodic_timer;
61
    int64_t next_periodic_time;
62
    /* second update */
63
    int64_t next_second_time;
64
    QEMUTimer *second_timer;
65
    QEMUTimer *second_timer2;
66
};
67

    
68
static void rtc_set_time(RTCState *s);
69
static void rtc_set_date_buf(RTCState *s, const struct tm *tm);
70
static void rtc_copy_date(RTCState *s);
71

    
72
static void rtc_timer_update(RTCState *s, int64_t current_time)
73
{
74
    int period_code, period;
75
    int64_t cur_clock, next_irq_clock;
76

    
77
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
78
    if (period_code != 0 && 
79
        (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
80
        if (period_code <= 2)
81
            period_code += 7;
82
        /* period in 32 Khz cycles */
83
        period = 1 << (period_code - 1);
84
        /* compute 32 khz clock */
85
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
86
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
87
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
88
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
89
    } else {
90
        qemu_del_timer(s->periodic_timer);
91
    }
92
}
93

    
94
static void rtc_periodic_timer(void *opaque)
95
{
96
    RTCState *s = opaque;
97

    
98
    rtc_timer_update(s, s->next_periodic_time);
99
    s->cmos_data[RTC_REG_C] |= 0xc0;
100
    pic_set_irq(s->irq, 1);
101
}
102

    
103
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
104
{
105
    RTCState *s = opaque;
106

    
107
    if ((addr & 1) == 0) {
108
        s->cmos_index = data & 0x7f;
109
    } else {
110
#ifdef DEBUG_CMOS
111
        printf("cmos: write index=0x%02x val=0x%02x\n",
112
               s->cmos_index, data);
113
#endif        
114
        switch(s->cmos_index) {
115
        case RTC_SECONDS_ALARM:
116
        case RTC_MINUTES_ALARM:
117
        case RTC_HOURS_ALARM:
118
            /* XXX: not supported */
119
            s->cmos_data[s->cmos_index] = data;
120
            break;
121
        case RTC_SECONDS:
122
        case RTC_MINUTES:
123
        case RTC_HOURS:
124
        case RTC_DAY_OF_WEEK:
125
        case RTC_DAY_OF_MONTH:
126
        case RTC_MONTH:
127
        case RTC_YEAR:
128
            s->cmos_data[s->cmos_index] = data;
129
            /* if in set mode, do not update the time */
130
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
131
                rtc_set_time(s);
132
            }
133
            break;
134
        case RTC_REG_A:
135
            /* UIP bit is read only */
136
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
137
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
138
            rtc_timer_update(s, qemu_get_clock(vm_clock));
139
            break;
140
        case RTC_REG_B:
141
            if (data & REG_B_SET) {
142
                /* set mode: reset UIP mode */
143
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
144
                data &= ~REG_B_UIE;
145
            } else {
146
                /* if disabling set mode, update the time */
147
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
148
                    rtc_set_time(s);
149
                }
150
            }
151
            s->cmos_data[RTC_REG_B] = data;
152
            rtc_timer_update(s, qemu_get_clock(vm_clock));
153
            break;
154
        case RTC_REG_C:
155
        case RTC_REG_D:
156
            /* cannot write to them */
157
            break;
158
        default:
159
            s->cmos_data[s->cmos_index] = data;
160
            break;
161
        }
162
    }
163
}
164

    
165
static inline int to_bcd(RTCState *s, int a)
166
{
167
    if (s->cmos_data[RTC_REG_B] & 0x04) {
168
        return a;
169
    } else {
170
        return ((a / 10) << 4) | (a % 10);
171
    }
172
}
173

    
174
static inline int from_bcd(RTCState *s, int a)
175
{
176
    if (s->cmos_data[RTC_REG_B] & 0x04) {
177
        return a;
178
    } else {
179
        return ((a >> 4) * 10) + (a & 0x0f);
180
    }
181
}
182

    
183
static void rtc_set_time(RTCState *s)
184
{
185
    struct tm tm1, *tm = &tm1;
186

    
187
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
188
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
189
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS]);
190
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
191
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
192
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
193
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
194

    
195
    /* update internal state */
196
    s->buf_data[RTC_SECONDS] = s->cmos_data[RTC_SECONDS];
197
    s->buf_data[RTC_MINUTES] = s->cmos_data[RTC_MINUTES];
198
    s->buf_data[RTC_HOURS] = s->cmos_data[RTC_HOURS];
199
    s->buf_data[RTC_DAY_OF_WEEK] = s->cmos_data[RTC_DAY_OF_WEEK];
200
    s->buf_data[RTC_DAY_OF_MONTH] = s->cmos_data[RTC_DAY_OF_MONTH];
201
    s->buf_data[RTC_MONTH] = s->cmos_data[RTC_MONTH];
202
    s->buf_data[RTC_YEAR] = s->cmos_data[RTC_YEAR];
203
    s->current_time = mktime(tm);
204
}
205

    
206
static void rtc_update_second(void *opaque)
207
{
208
    RTCState *s = opaque;
209
    int64_t delay;
210

    
211
    /* if the oscillator is not in normal operation, we do not update */
212
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
213
        s->next_second_time += ticks_per_sec;
214
        qemu_mod_timer(s->second_timer, s->next_second_time);
215
    } else {
216
        s->current_time++;
217
        
218
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
219
            /* update in progress bit */
220
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
221
        }
222
        /* should be 244 us = 8 / 32768 seconds, but currently the
223
           timers do not have the necessary resolution. */
224
        delay = (ticks_per_sec * 1) / 100;
225
        if (delay < 1)
226
            delay = 1;
227
        qemu_mod_timer(s->second_timer2, 
228
                       s->next_second_time + delay);
229
    }
230
}
231

    
232
static void rtc_update_second2(void *opaque)
233
{
234
    RTCState *s = opaque;
235
    time_t ti;
236

    
237
    ti = s->current_time;
238
    rtc_set_date_buf(s, gmtime(&ti));
239

    
240
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
241
        rtc_copy_date(s);
242
    }
243

    
244
    /* check alarm */
245
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
246
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
247
             s->cmos_data[RTC_SECONDS_ALARM] == s->buf_data[RTC_SECONDS]) &&
248
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
249
             s->cmos_data[RTC_MINUTES_ALARM] == s->buf_data[RTC_MINUTES]) &&
250
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
251
             s->cmos_data[RTC_HOURS_ALARM] == s->buf_data[RTC_HOURS])) {
252

    
253
            s->cmos_data[RTC_REG_C] |= 0xa0; 
254
            pic_set_irq(s->irq, 1);
255
        }
256
    }
257

    
258
    /* update ended interrupt */
259
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
260
        s->cmos_data[RTC_REG_C] |= 0x90; 
261
        pic_set_irq(s->irq, 1);
262
    }
263

    
264
    /* clear update in progress bit */
265
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
266

    
267
    s->next_second_time += ticks_per_sec;
268
    qemu_mod_timer(s->second_timer, s->next_second_time);
269
}
270

    
271
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
272
{
273
    RTCState *s = opaque;
274
    int ret;
275
    if ((addr & 1) == 0) {
276
        return 0xff;
277
    } else {
278
        switch(s->cmos_index) {
279
        case RTC_SECONDS:
280
        case RTC_MINUTES:
281
        case RTC_HOURS:
282
        case RTC_DAY_OF_WEEK:
283
        case RTC_DAY_OF_MONTH:
284
        case RTC_MONTH:
285
        case RTC_YEAR:
286
            ret = s->cmos_data[s->cmos_index];
287
            break;
288
        case RTC_REG_A:
289
            ret = s->cmos_data[s->cmos_index];
290
            break;
291
        case RTC_REG_C:
292
            ret = s->cmos_data[s->cmos_index];
293
            pic_set_irq(s->irq, 0);
294
            s->cmos_data[RTC_REG_C] = 0x00; 
295
            break;
296
        default:
297
            ret = s->cmos_data[s->cmos_index];
298
            break;
299
        }
300
#ifdef DEBUG_CMOS
301
        printf("cmos: read index=0x%02x val=0x%02x\n",
302
               s->cmos_index, ret);
303
#endif
304
        return ret;
305
    }
306
}
307

    
308
static void rtc_set_date_buf(RTCState *s, const struct tm *tm)
309
{
310
    s->buf_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
311
    s->buf_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
312
    if (s->cmos_data[RTC_REG_B] & 0x02) {
313
        /* 24 hour format */
314
        s->buf_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
315
    } else {
316
        /* 12 hour format */
317
        s->buf_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
318
        if (tm->tm_hour >= 12)
319
            s->buf_data[RTC_HOURS] |= 0x80;
320
    }
321
    s->buf_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
322
    s->buf_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
323
    s->buf_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
324
    s->buf_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
325
}
326

    
327
static void rtc_copy_date(RTCState *s)
328
{
329
    s->cmos_data[RTC_SECONDS] = s->buf_data[RTC_SECONDS];
330
    s->cmos_data[RTC_MINUTES] = s->buf_data[RTC_MINUTES];
331
    s->cmos_data[RTC_HOURS] = s->buf_data[RTC_HOURS];
332
    s->cmos_data[RTC_DAY_OF_WEEK] = s->buf_data[RTC_DAY_OF_WEEK];
333
    s->cmos_data[RTC_DAY_OF_MONTH] = s->buf_data[RTC_DAY_OF_MONTH];
334
    s->cmos_data[RTC_MONTH] = s->buf_data[RTC_MONTH];
335
    s->cmos_data[RTC_YEAR] = s->buf_data[RTC_YEAR];
336
}
337

    
338
void rtc_set_memory(RTCState *s, int addr, int val)
339
{
340
    if (addr >= 0 && addr <= 127)
341
        s->cmos_data[addr] = val;
342
}
343

    
344
void rtc_set_date(RTCState *s, const struct tm *tm)
345
{
346
    s->current_time = mktime((struct tm *)tm);
347
    rtc_set_date_buf(s, tm);
348
    rtc_copy_date(s);
349
}
350

    
351
static void rtc_save(QEMUFile *f, void *opaque)
352
{
353
    RTCState *s = opaque;
354

    
355
    qemu_put_buffer(f, s->cmos_data, 128);
356
    qemu_put_8s(f, &s->cmos_index);
357
    qemu_put_be32s(f, &s->current_time);
358
    qemu_put_buffer(f, s->buf_data, 10);
359

    
360
    qemu_put_timer(f, s->periodic_timer);
361
    qemu_put_be64s(f, &s->next_periodic_time);
362

    
363
    qemu_put_be64s(f, &s->next_second_time);
364
    qemu_put_timer(f, s->second_timer);
365
    qemu_put_timer(f, s->second_timer2);
366
}
367

    
368
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
369
{
370
    RTCState *s = opaque;
371

    
372
    if (version_id != 1)
373
        return -EINVAL;
374

    
375
    qemu_get_buffer(f, s->cmos_data, 128);
376
    qemu_get_8s(f, &s->cmos_index);
377
    qemu_get_be32s(f, &s->current_time);
378
    qemu_get_buffer(f, s->buf_data, 10);
379

    
380
    qemu_get_timer(f, s->periodic_timer);
381
    qemu_get_be64s(f, &s->next_periodic_time);
382

    
383
    qemu_get_be64s(f, &s->next_second_time);
384
    qemu_get_timer(f, s->second_timer);
385
    qemu_get_timer(f, s->second_timer2);
386
    return 0;
387
}
388

    
389
RTCState *rtc_init(int base, int irq)
390
{
391
    RTCState *s;
392

    
393
    s = qemu_mallocz(sizeof(RTCState));
394
    if (!s)
395
        return NULL;
396

    
397
    s->irq = irq;
398
    s->cmos_data[RTC_REG_A] = 0x26;
399
    s->cmos_data[RTC_REG_B] = 0x02;
400
    s->cmos_data[RTC_REG_C] = 0x00;
401
    s->cmos_data[RTC_REG_D] = 0x80;
402

    
403
    s->periodic_timer = qemu_new_timer(vm_clock, 
404
                                       rtc_periodic_timer, s);
405
    s->second_timer = qemu_new_timer(vm_clock, 
406
                                     rtc_update_second, s);
407
    s->second_timer2 = qemu_new_timer(vm_clock, 
408
                                      rtc_update_second2, s);
409

    
410
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
411
    qemu_mod_timer(s->second_timer2, s->next_second_time);
412

    
413
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
414
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
415

    
416
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
417
    return s;
418
}
419