Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 4c3b5a48

History | View | Annotate | Download (74.7 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 8f40c388 bellard
@settitle QEMU Emulator User Documentation
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 386405f7 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 0806e3f6 bellard
@iftex
20 386405f7 bellard
@titlepage
21 386405f7 bellard
@sp 7
22 8f40c388 bellard
@center @titlefont{QEMU Emulator}
23 debc7065 bellard
@sp 1
24 debc7065 bellard
@center @titlefont{User Documentation}
25 386405f7 bellard
@sp 3
26 386405f7 bellard
@end titlepage
27 0806e3f6 bellard
@end iftex
28 386405f7 bellard
29 debc7065 bellard
@ifnottex
30 debc7065 bellard
@node Top
31 debc7065 bellard
@top
32 debc7065 bellard
33 debc7065 bellard
@menu
34 debc7065 bellard
* Introduction::
35 debc7065 bellard
* Installation::
36 debc7065 bellard
* QEMU PC System emulator::
37 debc7065 bellard
* QEMU System emulator for non PC targets::
38 83195237 bellard
* QEMU User space emulator::
39 debc7065 bellard
* compilation:: Compilation from the sources
40 7544a042 Stefan Weil
* License::
41 debc7065 bellard
* Index::
42 debc7065 bellard
@end menu
43 debc7065 bellard
@end ifnottex
44 debc7065 bellard
45 debc7065 bellard
@contents
46 debc7065 bellard
47 debc7065 bellard
@node Introduction
48 386405f7 bellard
@chapter Introduction
49 386405f7 bellard
50 debc7065 bellard
@menu
51 debc7065 bellard
* intro_features:: Features
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 322d0c66 bellard
@section Features
56 386405f7 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
58 1f673135 bellard
achieve good emulation speed.
59 1eb20527 bellard
60 1eb20527 bellard
QEMU has two operating modes:
61 0806e3f6 bellard
62 d7e5edca Stefan Weil
@itemize
63 7544a042 Stefan Weil
@cindex operating modes
64 0806e3f6 bellard
65 5fafdf24 ths
@item
66 7544a042 Stefan Weil
@cindex system emulation
67 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
68 3f9f3aa1 bellard
example a PC), including one or several processors and various
69 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
70 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
71 1eb20527 bellard
72 5fafdf24 ths
@item
73 7544a042 Stefan Weil
@cindex user mode emulation
74 83195237 bellard
User mode emulation. In this mode, QEMU can launch
75 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
76 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 1f673135 bellard
to ease cross-compilation and cross-debugging.
78 1eb20527 bellard
79 1eb20527 bellard
@end itemize
80 1eb20527 bellard
81 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
82 5fafdf24 ths
performance.
83 322d0c66 bellard
84 52c00a5f bellard
For system emulation, the following hardware targets are supported:
85 52c00a5f bellard
@itemize
86 7544a042 Stefan Weil
@cindex emulated target systems
87 7544a042 Stefan Weil
@cindex supported target systems
88 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
89 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
90 52c00a5f bellard
@item PREP (PowerPC processor)
91 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
92 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
93 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
96 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
97 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
98 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
99 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
100 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
104 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
106 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
107 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
108 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
110 4af39611 Paul Brook
@item Syborg SVP base model (ARM Cortex-A8).
111 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113 52c00a5f bellard
@end itemize
114 386405f7 bellard
115 7544a042 Stefan Weil
@cindex supported user mode targets
116 7544a042 Stefan Weil
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 7544a042 Stefan Weil
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 7544a042 Stefan Weil
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119 0806e3f6 bellard
120 debc7065 bellard
@node Installation
121 5b9f457a bellard
@chapter Installation
122 5b9f457a bellard
123 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
124 15a34c63 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* install_linux::   Linux
127 debc7065 bellard
* install_windows:: Windows
128 debc7065 bellard
* install_mac::     Macintosh
129 debc7065 bellard
@end menu
130 debc7065 bellard
131 debc7065 bellard
@node install_linux
132 1f673135 bellard
@section Linux
133 7544a042 Stefan Weil
@cindex installation (Linux)
134 1f673135 bellard
135 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
136 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
137 5b9f457a bellard
138 debc7065 bellard
@node install_windows
139 1f673135 bellard
@section Windows
140 7544a042 Stefan Weil
@cindex installation (Windows)
141 8cd0ac2f bellard
142 15a34c63 bellard
Download the experimental binary installer at
143 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
144 7544a042 Stefan Weil
TODO (no longer available)
145 d691f669 bellard
146 debc7065 bellard
@node install_mac
147 1f673135 bellard
@section Mac OS X
148 d691f669 bellard
149 15a34c63 bellard
Download the experimental binary installer at
150 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
151 7544a042 Stefan Weil
TODO (no longer available)
152 df0f11a0 bellard
153 debc7065 bellard
@node QEMU PC System emulator
154 3f9f3aa1 bellard
@chapter QEMU PC System emulator
155 7544a042 Stefan Weil
@cindex system emulation (PC)
156 1eb20527 bellard
157 debc7065 bellard
@menu
158 debc7065 bellard
* pcsys_introduction:: Introduction
159 debc7065 bellard
* pcsys_quickstart::   Quick Start
160 debc7065 bellard
* sec_invocation::     Invocation
161 debc7065 bellard
* pcsys_keys::         Keys
162 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
163 debc7065 bellard
* disk_images::        Disk Images
164 debc7065 bellard
* pcsys_network::      Network emulation
165 576fd0a1 Stefan Weil
* pcsys_other_devs::   Other Devices
166 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
167 debc7065 bellard
* pcsys_usb::          USB emulation
168 f858dcae ths
* vnc_security::       VNC security
169 debc7065 bellard
* gdb_usage::          GDB usage
170 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
171 debc7065 bellard
@end menu
172 debc7065 bellard
173 debc7065 bellard
@node pcsys_introduction
174 0806e3f6 bellard
@section Introduction
175 0806e3f6 bellard
176 0806e3f6 bellard
@c man begin DESCRIPTION
177 0806e3f6 bellard
178 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
179 3f9f3aa1 bellard
following peripherals:
180 0806e3f6 bellard
181 0806e3f6 bellard
@itemize @minus
182 5fafdf24 ths
@item
183 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 0806e3f6 bellard
@item
185 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 15a34c63 bellard
extensions (hardware level, including all non standard modes).
187 0806e3f6 bellard
@item
188 0806e3f6 bellard
PS/2 mouse and keyboard
189 5fafdf24 ths
@item
190 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
191 1f673135 bellard
@item
192 1f673135 bellard
Floppy disk
193 5fafdf24 ths
@item
194 3a2eeac0 Stefan Weil
PCI and ISA network adapters
195 0806e3f6 bellard
@item
196 05d5818c bellard
Serial ports
197 05d5818c bellard
@item
198 c0fe3827 bellard
Creative SoundBlaster 16 sound card
199 c0fe3827 bellard
@item
200 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
201 c0fe3827 bellard
@item
202 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
203 e5c9a13e balrog
@item
204 7d72e762 Gerd Hoffmann
Intel HD Audio Controller and HDA codec
205 7d72e762 Gerd Hoffmann
@item
206 2d983446 Stefan Weil
Adlib (OPL2) - Yamaha YM3812 compatible chip
207 b389dbfb bellard
@item
208 26463dbc balrog
Gravis Ultrasound GF1 sound card
209 26463dbc balrog
@item
210 cc53d26d malc
CS4231A compatible sound card
211 cc53d26d malc
@item
212 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
213 0806e3f6 bellard
@end itemize
214 0806e3f6 bellard
215 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
216 3f9f3aa1 bellard
217 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
218 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
219 e5178e8d malc
required card(s).
220 c0fe3827 bellard
221 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 15a34c63 bellard
VGA BIOS.
223 15a34c63 bellard
224 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225 c0fe3827 bellard
226 2d983446 Stefan Weil
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 26463dbc balrog
by Tibor "TS" Schรผtz.
228 423d65f4 balrog
229 720036a5 malc
Not that, by default, GUS shares IRQ(7) with parallel ports and so
230 720036a5 malc
qemu must be told to not have parallel ports to have working GUS
231 720036a5 malc
232 720036a5 malc
@example
233 720036a5 malc
qemu dos.img -soundhw gus -parallel none
234 720036a5 malc
@end example
235 720036a5 malc
236 720036a5 malc
Alternatively:
237 720036a5 malc
@example
238 720036a5 malc
qemu dos.img -device gus,irq=5
239 720036a5 malc
@end example
240 720036a5 malc
241 720036a5 malc
Or some other unclaimed IRQ.
242 720036a5 malc
243 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
244 cc53d26d malc
245 0806e3f6 bellard
@c man end
246 0806e3f6 bellard
247 debc7065 bellard
@node pcsys_quickstart
248 1eb20527 bellard
@section Quick Start
249 7544a042 Stefan Weil
@cindex quick start
250 1eb20527 bellard
251 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
252 0806e3f6 bellard
253 0806e3f6 bellard
@example
254 285dc330 bellard
qemu linux.img
255 0806e3f6 bellard
@end example
256 0806e3f6 bellard
257 0806e3f6 bellard
Linux should boot and give you a prompt.
258 0806e3f6 bellard
259 6cc721cf bellard
@node sec_invocation
260 ec410fc9 bellard
@section Invocation
261 ec410fc9 bellard
262 ec410fc9 bellard
@example
263 0806e3f6 bellard
@c man begin SYNOPSIS
264 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
265 0806e3f6 bellard
@c man end
266 ec410fc9 bellard
@end example
267 ec410fc9 bellard
268 0806e3f6 bellard
@c man begin OPTIONS
269 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 d2c639d6 blueswir1
targets do not need a disk image.
271 ec410fc9 bellard
272 5824d651 blueswir1
@include qemu-options.texi
273 ec410fc9 bellard
274 3e11db9a bellard
@c man end
275 3e11db9a bellard
276 debc7065 bellard
@node pcsys_keys
277 3e11db9a bellard
@section Keys
278 3e11db9a bellard
279 3e11db9a bellard
@c man begin OPTIONS
280 3e11db9a bellard
281 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
282 a1b74fe8 bellard
@table @key
283 f9859310 bellard
@item Ctrl-Alt-f
284 7544a042 Stefan Weil
@kindex Ctrl-Alt-f
285 a1b74fe8 bellard
Toggle full screen
286 a0a821a4 bellard
287 c4a735f9 malc
@item Ctrl-Alt-u
288 7544a042 Stefan Weil
@kindex Ctrl-Alt-u
289 c4a735f9 malc
Restore the screen's un-scaled dimensions
290 c4a735f9 malc
291 f9859310 bellard
@item Ctrl-Alt-n
292 7544a042 Stefan Weil
@kindex Ctrl-Alt-n
293 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
294 a0a821a4 bellard
@table @emph
295 a0a821a4 bellard
@item 1
296 a0a821a4 bellard
Target system display
297 a0a821a4 bellard
@item 2
298 a0a821a4 bellard
Monitor
299 a0a821a4 bellard
@item 3
300 a0a821a4 bellard
Serial port
301 a1b74fe8 bellard
@end table
302 a1b74fe8 bellard
303 f9859310 bellard
@item Ctrl-Alt
304 7544a042 Stefan Weil
@kindex Ctrl-Alt
305 a0a821a4 bellard
Toggle mouse and keyboard grab.
306 a0a821a4 bellard
@end table
307 a0a821a4 bellard
308 7544a042 Stefan Weil
@kindex Ctrl-Up
309 7544a042 Stefan Weil
@kindex Ctrl-Down
310 7544a042 Stefan Weil
@kindex Ctrl-PageUp
311 7544a042 Stefan Weil
@kindex Ctrl-PageDown
312 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
313 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
314 3e11db9a bellard
315 7544a042 Stefan Weil
@kindex Ctrl-a h
316 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
317 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
318 ec410fc9 bellard
319 ec410fc9 bellard
@table @key
320 a1b74fe8 bellard
@item Ctrl-a h
321 7544a042 Stefan Weil
@kindex Ctrl-a h
322 d2c639d6 blueswir1
@item Ctrl-a ?
323 7544a042 Stefan Weil
@kindex Ctrl-a ?
324 ec410fc9 bellard
Print this help
325 3b46e624 ths
@item Ctrl-a x
326 7544a042 Stefan Weil
@kindex Ctrl-a x
327 366dfc52 ths
Exit emulator
328 3b46e624 ths
@item Ctrl-a s
329 7544a042 Stefan Weil
@kindex Ctrl-a s
330 1f47a922 bellard
Save disk data back to file (if -snapshot)
331 20d8a3ed ths
@item Ctrl-a t
332 7544a042 Stefan Weil
@kindex Ctrl-a t
333 d2c639d6 blueswir1
Toggle console timestamps
334 a1b74fe8 bellard
@item Ctrl-a b
335 7544a042 Stefan Weil
@kindex Ctrl-a b
336 1f673135 bellard
Send break (magic sysrq in Linux)
337 a1b74fe8 bellard
@item Ctrl-a c
338 7544a042 Stefan Weil
@kindex Ctrl-a c
339 1f673135 bellard
Switch between console and monitor
340 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
341 7544a042 Stefan Weil
@kindex Ctrl-a a
342 a1b74fe8 bellard
Send Ctrl-a
343 ec410fc9 bellard
@end table
344 0806e3f6 bellard
@c man end
345 0806e3f6 bellard
346 0806e3f6 bellard
@ignore
347 0806e3f6 bellard
348 1f673135 bellard
@c man begin SEEALSO
349 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
350 1f673135 bellard
user mode emulator invocation.
351 1f673135 bellard
@c man end
352 1f673135 bellard
353 1f673135 bellard
@c man begin AUTHOR
354 1f673135 bellard
Fabrice Bellard
355 1f673135 bellard
@c man end
356 1f673135 bellard
357 1f673135 bellard
@end ignore
358 1f673135 bellard
359 debc7065 bellard
@node pcsys_monitor
360 1f673135 bellard
@section QEMU Monitor
361 7544a042 Stefan Weil
@cindex QEMU monitor
362 1f673135 bellard
363 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
364 1f673135 bellard
emulator. You can use it to:
365 1f673135 bellard
366 1f673135 bellard
@itemize @minus
367 1f673135 bellard
368 1f673135 bellard
@item
369 e598752a ths
Remove or insert removable media images
370 89dfe898 ths
(such as CD-ROM or floppies).
371 1f673135 bellard
372 5fafdf24 ths
@item
373 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
374 1f673135 bellard
from a disk file.
375 1f673135 bellard
376 1f673135 bellard
@item Inspect the VM state without an external debugger.
377 1f673135 bellard
378 1f673135 bellard
@end itemize
379 1f673135 bellard
380 1f673135 bellard
@subsection Commands
381 1f673135 bellard
382 1f673135 bellard
The following commands are available:
383 1f673135 bellard
384 2313086a Blue Swirl
@include qemu-monitor.texi
385 0806e3f6 bellard
386 1f673135 bellard
@subsection Integer expressions
387 1f673135 bellard
388 1f673135 bellard
The monitor understands integers expressions for every integer
389 1f673135 bellard
argument. You can use register names to get the value of specifics
390 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
391 ec410fc9 bellard
392 1f47a922 bellard
@node disk_images
393 1f47a922 bellard
@section Disk Images
394 1f47a922 bellard
395 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
396 acd935ef bellard
growable disk images (their size increase as non empty sectors are
397 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
398 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
399 13a2e80f bellard
snapshots.
400 1f47a922 bellard
401 debc7065 bellard
@menu
402 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
403 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
404 13a2e80f bellard
* vm_snapshots::              VM snapshots
405 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
406 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
407 19cb3738 bellard
* host_drives::               Using host drives
408 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
409 75818250 ths
* disk_images_nbd::           NBD access
410 debc7065 bellard
@end menu
411 debc7065 bellard
412 debc7065 bellard
@node disk_images_quickstart
413 acd935ef bellard
@subsection Quick start for disk image creation
414 acd935ef bellard
415 acd935ef bellard
You can create a disk image with the command:
416 1f47a922 bellard
@example
417 acd935ef bellard
qemu-img create myimage.img mysize
418 1f47a922 bellard
@end example
419 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
420 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
421 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
422 acd935ef bellard
423 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
424 1f47a922 bellard
425 debc7065 bellard
@node disk_images_snapshot_mode
426 1f47a922 bellard
@subsection Snapshot mode
427 1f47a922 bellard
428 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
429 1f47a922 bellard
considered as read only. When sectors in written, they are written in
430 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
431 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
432 acd935ef bellard
command (or @key{C-a s} in the serial console).
433 1f47a922 bellard
434 13a2e80f bellard
@node vm_snapshots
435 13a2e80f bellard
@subsection VM snapshots
436 13a2e80f bellard
437 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
438 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
439 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
440 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
441 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
442 13a2e80f bellard
443 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
444 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
445 19d36792 bellard
snapshot in addition to its numerical ID.
446 13a2e80f bellard
447 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
448 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
449 13a2e80f bellard
with their associated information:
450 13a2e80f bellard
451 13a2e80f bellard
@example
452 13a2e80f bellard
(qemu) info snapshots
453 13a2e80f bellard
Snapshot devices: hda
454 13a2e80f bellard
Snapshot list (from hda):
455 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
456 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
457 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
458 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
459 13a2e80f bellard
@end example
460 13a2e80f bellard
461 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
462 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
463 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
464 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
465 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
466 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
467 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
468 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
469 19d36792 bellard
disk images).
470 13a2e80f bellard
471 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
472 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
473 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
474 13a2e80f bellard
475 13a2e80f bellard
VM snapshots currently have the following known limitations:
476 13a2e80f bellard
@itemize
477 5fafdf24 ths
@item
478 13a2e80f bellard
They cannot cope with removable devices if they are removed or
479 13a2e80f bellard
inserted after a snapshot is done.
480 5fafdf24 ths
@item
481 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
482 13a2e80f bellard
state is not saved or restored properly (in particular USB).
483 13a2e80f bellard
@end itemize
484 13a2e80f bellard
485 acd935ef bellard
@node qemu_img_invocation
486 acd935ef bellard
@subsection @code{qemu-img} Invocation
487 1f47a922 bellard
488 acd935ef bellard
@include qemu-img.texi
489 05efe46e bellard
490 975b092b ths
@node qemu_nbd_invocation
491 975b092b ths
@subsection @code{qemu-nbd} Invocation
492 975b092b ths
493 975b092b ths
@include qemu-nbd.texi
494 975b092b ths
495 19cb3738 bellard
@node host_drives
496 19cb3738 bellard
@subsection Using host drives
497 19cb3738 bellard
498 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
499 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
500 19cb3738 bellard
501 19cb3738 bellard
@subsubsection Linux
502 19cb3738 bellard
503 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
504 4be456f1 ths
disk image filename provided you have enough privileges to access
505 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
506 19cb3738 bellard
@file{/dev/fd0} for the floppy.
507 19cb3738 bellard
508 f542086d bellard
@table @code
509 19cb3738 bellard
@item CD
510 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
511 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
512 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
513 19cb3738 bellard
@item Floppy
514 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
515 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
516 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
517 19cb3738 bellard
OS will think that the same floppy is loaded).
518 19cb3738 bellard
@item Hard disks
519 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
520 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
521 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
522 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
523 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
524 19cb3738 bellard
line option or modify the device permissions accordingly).
525 19cb3738 bellard
@end table
526 19cb3738 bellard
527 19cb3738 bellard
@subsubsection Windows
528 19cb3738 bellard
529 01781963 bellard
@table @code
530 01781963 bellard
@item CD
531 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
532 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
533 01781963 bellard
supported as an alias to the first CDROM drive.
534 19cb3738 bellard
535 e598752a ths
Currently there is no specific code to handle removable media, so it
536 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
537 19cb3738 bellard
change or eject media.
538 01781963 bellard
@item Hard disks
539 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
540 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
541 01781963 bellard
542 01781963 bellard
WARNING: unless you know what you do, it is better to only make
543 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
544 01781963 bellard
host data (use the @option{-snapshot} command line so that the
545 01781963 bellard
modifications are written in a temporary file).
546 01781963 bellard
@end table
547 01781963 bellard
548 19cb3738 bellard
549 19cb3738 bellard
@subsubsection Mac OS X
550 19cb3738 bellard
551 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
552 19cb3738 bellard
553 e598752a ths
Currently there is no specific code to handle removable media, so it
554 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
555 19cb3738 bellard
change or eject media.
556 19cb3738 bellard
557 debc7065 bellard
@node disk_images_fat_images
558 2c6cadd4 bellard
@subsection Virtual FAT disk images
559 2c6cadd4 bellard
560 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
561 2c6cadd4 bellard
directory tree. In order to use it, just type:
562 2c6cadd4 bellard
563 5fafdf24 ths
@example
564 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
565 2c6cadd4 bellard
@end example
566 2c6cadd4 bellard
567 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
568 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
569 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
570 2c6cadd4 bellard
571 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
572 2c6cadd4 bellard
573 5fafdf24 ths
@example
574 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
575 2c6cadd4 bellard
@end example
576 2c6cadd4 bellard
577 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
578 2c6cadd4 bellard
@code{:rw:} option:
579 2c6cadd4 bellard
580 5fafdf24 ths
@example
581 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
582 2c6cadd4 bellard
@end example
583 2c6cadd4 bellard
584 2c6cadd4 bellard
What you should @emph{never} do:
585 2c6cadd4 bellard
@itemize
586 2c6cadd4 bellard
@item use non-ASCII filenames ;
587 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
588 85b2c688 bellard
@item expect it to work when loadvm'ing ;
589 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
590 2c6cadd4 bellard
@end itemize
591 2c6cadd4 bellard
592 75818250 ths
@node disk_images_nbd
593 75818250 ths
@subsection NBD access
594 75818250 ths
595 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
596 75818250 ths
protocol.
597 75818250 ths
598 75818250 ths
@example
599 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
600 75818250 ths
@end example
601 75818250 ths
602 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
603 75818250 ths
of an inet socket:
604 75818250 ths
605 75818250 ths
@example
606 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
607 75818250 ths
@end example
608 75818250 ths
609 75818250 ths
In this case, the block device must be exported using qemu-nbd:
610 75818250 ths
611 75818250 ths
@example
612 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
613 75818250 ths
@end example
614 75818250 ths
615 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
616 75818250 ths
@example
617 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
618 75818250 ths
@end example
619 75818250 ths
620 75818250 ths
and then you can use it with two guests:
621 75818250 ths
@example
622 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
623 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
624 75818250 ths
@end example
625 75818250 ths
626 1d45f8b5 Laurent Vivier
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
627 1d45f8b5 Laurent Vivier
"exportname" option:
628 1d45f8b5 Laurent Vivier
@example
629 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
630 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
631 1d45f8b5 Laurent Vivier
@end example
632 1d45f8b5 Laurent Vivier
633 debc7065 bellard
@node pcsys_network
634 9d4fb82e bellard
@section Network emulation
635 9d4fb82e bellard
636 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
637 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
638 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
639 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
640 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
641 41d03949 bellard
network stack can replace the TAP device to have a basic network
642 41d03949 bellard
connection.
643 41d03949 bellard
644 41d03949 bellard
@subsection VLANs
645 9d4fb82e bellard
646 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
647 41d03949 bellard
connection between several network devices. These devices can be for
648 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
649 41d03949 bellard
(TAP devices).
650 9d4fb82e bellard
651 41d03949 bellard
@subsection Using TAP network interfaces
652 41d03949 bellard
653 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
654 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
655 41d03949 bellard
can then configure it as if it was a real ethernet card.
656 9d4fb82e bellard
657 8f40c388 bellard
@subsubsection Linux host
658 8f40c388 bellard
659 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
660 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
661 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
662 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
663 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
664 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
665 9d4fb82e bellard
666 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
667 ee0f4751 bellard
TAP network interfaces.
668 9d4fb82e bellard
669 8f40c388 bellard
@subsubsection Windows host
670 8f40c388 bellard
671 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
672 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
673 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
674 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
675 8f40c388 bellard
676 9d4fb82e bellard
@subsection Using the user mode network stack
677 9d4fb82e bellard
678 41d03949 bellard
By using the option @option{-net user} (default configuration if no
679 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
680 4be456f1 ths
network stack (you don't need root privilege to use the virtual
681 41d03949 bellard
network). The virtual network configuration is the following:
682 9d4fb82e bellard
683 9d4fb82e bellard
@example
684 9d4fb82e bellard
685 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
686 41d03949 bellard
                           |          (10.0.2.2)
687 9d4fb82e bellard
                           |
688 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
689 3b46e624 ths
                           |
690 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
691 9d4fb82e bellard
@end example
692 9d4fb82e bellard
693 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
694 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
695 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
696 41d03949 bellard
to the hosts starting from 10.0.2.15.
697 9d4fb82e bellard
698 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
699 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
700 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
701 9d4fb82e bellard
702 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
703 4be456f1 ths
would require root privileges. It means you can only ping the local
704 b415a407 bellard
router (10.0.2.2).
705 b415a407 bellard
706 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
707 9bf05444 bellard
server.
708 9bf05444 bellard
709 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
710 9bf05444 bellard
redirected from the host to the guest. It allows for example to
711 9bf05444 bellard
redirect X11, telnet or SSH connections.
712 443f1376 bellard
713 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
714 41d03949 bellard
715 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
716 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
717 41d03949 bellard
basic example.
718 41d03949 bellard
719 576fd0a1 Stefan Weil
@node pcsys_other_devs
720 6cbf4c8c Cam Macdonell
@section Other Devices
721 6cbf4c8c Cam Macdonell
722 6cbf4c8c Cam Macdonell
@subsection Inter-VM Shared Memory device
723 6cbf4c8c Cam Macdonell
724 6cbf4c8c Cam Macdonell
With KVM enabled on a Linux host, a shared memory device is available.  Guests
725 6cbf4c8c Cam Macdonell
map a POSIX shared memory region into the guest as a PCI device that enables
726 6cbf4c8c Cam Macdonell
zero-copy communication to the application level of the guests.  The basic
727 6cbf4c8c Cam Macdonell
syntax is:
728 6cbf4c8c Cam Macdonell
729 6cbf4c8c Cam Macdonell
@example
730 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
731 6cbf4c8c Cam Macdonell
@end example
732 6cbf4c8c Cam Macdonell
733 6cbf4c8c Cam Macdonell
If desired, interrupts can be sent between guest VMs accessing the same shared
734 6cbf4c8c Cam Macdonell
memory region.  Interrupt support requires using a shared memory server and
735 6cbf4c8c Cam Macdonell
using a chardev socket to connect to it.  The code for the shared memory server
736 6cbf4c8c Cam Macdonell
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
737 6cbf4c8c Cam Macdonell
memory server is:
738 6cbf4c8c Cam Macdonell
739 6cbf4c8c Cam Macdonell
@example
740 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
741 6cbf4c8c Cam Macdonell
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
742 6cbf4c8c Cam Macdonell
qemu -chardev socket,path=<path>,id=<id>
743 6cbf4c8c Cam Macdonell
@end example
744 6cbf4c8c Cam Macdonell
745 6cbf4c8c Cam Macdonell
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
746 6cbf4c8c Cam Macdonell
using the same server to communicate via interrupts.  Guests can read their
747 6cbf4c8c Cam Macdonell
VM ID from a device register (see example code).  Since receiving the shared
748 6cbf4c8c Cam Macdonell
memory region from the server is asynchronous, there is a (small) chance the
749 6cbf4c8c Cam Macdonell
guest may boot before the shared memory is attached.  To allow an application
750 6cbf4c8c Cam Macdonell
to ensure shared memory is attached, the VM ID register will return -1 (an
751 6cbf4c8c Cam Macdonell
invalid VM ID) until the memory is attached.  Once the shared memory is
752 6cbf4c8c Cam Macdonell
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
753 6cbf4c8c Cam Macdonell
the guest application can check to ensure the shared memory is attached to the
754 6cbf4c8c Cam Macdonell
guest before proceeding.
755 6cbf4c8c Cam Macdonell
756 6cbf4c8c Cam Macdonell
The @option{role} argument can be set to either master or peer and will affect
757 6cbf4c8c Cam Macdonell
how the shared memory is migrated.  With @option{role=master}, the guest will
758 6cbf4c8c Cam Macdonell
copy the shared memory on migration to the destination host.  With
759 6cbf4c8c Cam Macdonell
@option{role=peer}, the guest will not be able to migrate with the device attached.
760 6cbf4c8c Cam Macdonell
With the @option{peer} case, the device should be detached and then reattached
761 6cbf4c8c Cam Macdonell
after migration using the PCI hotplug support.
762 6cbf4c8c Cam Macdonell
763 9d4fb82e bellard
@node direct_linux_boot
764 9d4fb82e bellard
@section Direct Linux Boot
765 1f673135 bellard
766 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
767 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
768 ee0f4751 bellard
kernel testing.
769 1f673135 bellard
770 ee0f4751 bellard
The syntax is:
771 1f673135 bellard
@example
772 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
773 1f673135 bellard
@end example
774 1f673135 bellard
775 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
776 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
777 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
778 1f673135 bellard
779 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
780 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
781 ee0f4751 bellard
Linux kernel.
782 1f673135 bellard
783 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
784 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
785 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
786 1f673135 bellard
@example
787 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
788 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
789 1f673135 bellard
@end example
790 1f673135 bellard
791 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
792 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
793 1f673135 bellard
794 debc7065 bellard
@node pcsys_usb
795 b389dbfb bellard
@section USB emulation
796 b389dbfb bellard
797 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
798 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
799 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
800 f542086d bellard
as necessary to connect multiple USB devices.
801 b389dbfb bellard
802 0aff66b5 pbrook
@menu
803 0aff66b5 pbrook
* usb_devices::
804 0aff66b5 pbrook
* host_usb_devices::
805 0aff66b5 pbrook
@end menu
806 0aff66b5 pbrook
@node usb_devices
807 0aff66b5 pbrook
@subsection Connecting USB devices
808 b389dbfb bellard
809 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
810 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
811 b389dbfb bellard
812 db380c06 balrog
@table @code
813 db380c06 balrog
@item mouse
814 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
815 db380c06 balrog
@item tablet
816 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
817 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
818 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
819 db380c06 balrog
@item disk:@var{file}
820 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
821 db380c06 balrog
@item host:@var{bus.addr}
822 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
823 0aff66b5 pbrook
(Linux only)
824 db380c06 balrog
@item host:@var{vendor_id:product_id}
825 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
826 0aff66b5 pbrook
(Linux only)
827 db380c06 balrog
@item wacom-tablet
828 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
829 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
830 f6d2a316 balrog
coordinates it reports touch pressure.
831 db380c06 balrog
@item keyboard
832 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
833 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
834 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
835 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
836 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
837 0d6753e5 Stefan Weil
used to override the default 0403:6001. For instance,
838 db380c06 balrog
@example
839 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
840 db380c06 balrog
@end example
841 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
842 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
843 2e4d9fb1 aurel32
@item braille
844 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
845 2e4d9fb1 aurel32
or fake device.
846 9ad97e65 balrog
@item net:@var{options}
847 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
848 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
849 9ad97e65 balrog
For instance, user-mode networking can be used with
850 6c9f886c balrog
@example
851 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
852 6c9f886c balrog
@end example
853 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
854 2d564691 balrog
@item bt[:@var{hci-type}]
855 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
856 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
857 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
858 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
859 2d564691 balrog
usage:
860 2d564691 balrog
@example
861 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
862 2d564691 balrog
@end example
863 0aff66b5 pbrook
@end table
864 b389dbfb bellard
865 0aff66b5 pbrook
@node host_usb_devices
866 b389dbfb bellard
@subsection Using host USB devices on a Linux host
867 b389dbfb bellard
868 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
869 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
870 b389dbfb bellard
Cameras) are not supported yet.
871 b389dbfb bellard
872 b389dbfb bellard
@enumerate
873 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
874 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
875 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
876 b389dbfb bellard
to @file{mydriver.o.disabled}.
877 b389dbfb bellard
878 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
879 b389dbfb bellard
@example
880 b389dbfb bellard
ls /proc/bus/usb
881 b389dbfb bellard
001  devices  drivers
882 b389dbfb bellard
@end example
883 b389dbfb bellard
884 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
885 b389dbfb bellard
@example
886 b389dbfb bellard
chown -R myuid /proc/bus/usb
887 b389dbfb bellard
@end example
888 b389dbfb bellard
889 b389dbfb bellard
@item Launch QEMU and do in the monitor:
890 5fafdf24 ths
@example
891 b389dbfb bellard
info usbhost
892 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
893 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
894 b389dbfb bellard
@end example
895 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
896 b389dbfb bellard
hubs, it won't work).
897 b389dbfb bellard
898 b389dbfb bellard
@item Add the device in QEMU by using:
899 5fafdf24 ths
@example
900 b389dbfb bellard
usb_add host:1234:5678
901 b389dbfb bellard
@end example
902 b389dbfb bellard
903 b389dbfb bellard
Normally the guest OS should report that a new USB device is
904 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
905 b389dbfb bellard
906 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
907 b389dbfb bellard
908 b389dbfb bellard
@end enumerate
909 b389dbfb bellard
910 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
911 b389dbfb bellard
device to make it work again (this is a bug).
912 b389dbfb bellard
913 f858dcae ths
@node vnc_security
914 f858dcae ths
@section VNC security
915 f858dcae ths
916 f858dcae ths
The VNC server capability provides access to the graphical console
917 f858dcae ths
of the guest VM across the network. This has a number of security
918 f858dcae ths
considerations depending on the deployment scenarios.
919 f858dcae ths
920 f858dcae ths
@menu
921 f858dcae ths
* vnc_sec_none::
922 f858dcae ths
* vnc_sec_password::
923 f858dcae ths
* vnc_sec_certificate::
924 f858dcae ths
* vnc_sec_certificate_verify::
925 f858dcae ths
* vnc_sec_certificate_pw::
926 2f9606b3 aliguori
* vnc_sec_sasl::
927 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
928 f858dcae ths
* vnc_generate_cert::
929 2f9606b3 aliguori
* vnc_setup_sasl::
930 f858dcae ths
@end menu
931 f858dcae ths
@node vnc_sec_none
932 f858dcae ths
@subsection Without passwords
933 f858dcae ths
934 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
935 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
936 f858dcae ths
socket only. For example
937 f858dcae ths
938 f858dcae ths
@example
939 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
940 f858dcae ths
@end example
941 f858dcae ths
942 f858dcae ths
This ensures that only users on local box with read/write access to that
943 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
944 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
945 f858dcae ths
tunnel.
946 f858dcae ths
947 f858dcae ths
@node vnc_sec_password
948 f858dcae ths
@subsection With passwords
949 f858dcae ths
950 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
951 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
952 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
953 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
954 f858dcae ths
authentication should be restricted to only listen on the loopback interface
955 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
956 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
957 f858dcae ths
the monitor is used to set the password all clients will be rejected.
958 f858dcae ths
959 f858dcae ths
@example
960 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
961 f858dcae ths
(qemu) change vnc password
962 f858dcae ths
Password: ********
963 f858dcae ths
(qemu)
964 f858dcae ths
@end example
965 f858dcae ths
966 f858dcae ths
@node vnc_sec_certificate
967 f858dcae ths
@subsection With x509 certificates
968 f858dcae ths
969 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
970 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
971 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
972 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
973 f858dcae ths
support provides a secure session, but no authentication. This allows any
974 f858dcae ths
client to connect, and provides an encrypted session.
975 f858dcae ths
976 f858dcae ths
@example
977 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
978 f858dcae ths
@end example
979 f858dcae ths
980 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
981 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
982 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
983 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
984 f858dcae ths
only be readable by the user owning it.
985 f858dcae ths
986 f858dcae ths
@node vnc_sec_certificate_verify
987 f858dcae ths
@subsection With x509 certificates and client verification
988 f858dcae ths
989 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
990 f858dcae ths
The server will request that the client provide a certificate, which it will
991 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
992 f858dcae ths
in an environment with a private internal certificate authority.
993 f858dcae ths
994 f858dcae ths
@example
995 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
996 f858dcae ths
@end example
997 f858dcae ths
998 f858dcae ths
999 f858dcae ths
@node vnc_sec_certificate_pw
1000 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1001 f858dcae ths
1002 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1003 f858dcae ths
to provide two layers of authentication for clients.
1004 f858dcae ths
1005 f858dcae ths
@example
1006 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1007 f858dcae ths
(qemu) change vnc password
1008 f858dcae ths
Password: ********
1009 f858dcae ths
(qemu)
1010 f858dcae ths
@end example
1011 f858dcae ths
1012 2f9606b3 aliguori
1013 2f9606b3 aliguori
@node vnc_sec_sasl
1014 2f9606b3 aliguori
@subsection With SASL authentication
1015 2f9606b3 aliguori
1016 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
1017 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
1018 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
1019 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1020 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
1021 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
1022 2f9606b3 aliguori
it will encrypt the datastream as well.
1023 2f9606b3 aliguori
1024 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
1025 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
1026 2f9606b3 aliguori
then QEMU can be launched with:
1027 2f9606b3 aliguori
1028 2f9606b3 aliguori
@example
1029 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1030 2f9606b3 aliguori
@end example
1031 2f9606b3 aliguori
1032 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
1033 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
1034 2f9606b3 aliguori
1035 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
1036 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
1037 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
1038 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
1039 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
1040 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
1041 2f9606b3 aliguori
1042 2f9606b3 aliguori
@example
1043 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1044 2f9606b3 aliguori
@end example
1045 2f9606b3 aliguori
1046 2f9606b3 aliguori
1047 f858dcae ths
@node vnc_generate_cert
1048 f858dcae ths
@subsection Generating certificates for VNC
1049 f858dcae ths
1050 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1051 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1052 40c5c6cd Stefan Weil
is necessary to setup a certificate authority, and issue certificates to
1053 f858dcae ths
each server. If using certificates for authentication, then each client
1054 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1055 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1056 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1057 f858dcae ths
1058 f858dcae ths
@menu
1059 f858dcae ths
* vnc_generate_ca::
1060 f858dcae ths
* vnc_generate_server::
1061 f858dcae ths
* vnc_generate_client::
1062 f858dcae ths
@end menu
1063 f858dcae ths
@node vnc_generate_ca
1064 f858dcae ths
@subsubsection Setup the Certificate Authority
1065 f858dcae ths
1066 f858dcae ths
This step only needs to be performed once per organization / organizational
1067 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1068 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1069 f858dcae ths
issued with it is lost.
1070 f858dcae ths
1071 f858dcae ths
@example
1072 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1073 f858dcae ths
@end example
1074 f858dcae ths
1075 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1076 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1077 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1078 f858dcae ths
name of the organization.
1079 f858dcae ths
1080 f858dcae ths
@example
1081 f858dcae ths
# cat > ca.info <<EOF
1082 f858dcae ths
cn = Name of your organization
1083 f858dcae ths
ca
1084 f858dcae ths
cert_signing_key
1085 f858dcae ths
EOF
1086 f858dcae ths
# certtool --generate-self-signed \
1087 f858dcae ths
           --load-privkey ca-key.pem
1088 f858dcae ths
           --template ca.info \
1089 f858dcae ths
           --outfile ca-cert.pem
1090 f858dcae ths
@end example
1091 f858dcae ths
1092 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1093 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1094 f858dcae ths
1095 f858dcae ths
@node vnc_generate_server
1096 f858dcae ths
@subsubsection Issuing server certificates
1097 f858dcae ths
1098 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1099 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1100 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1101 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1102 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1103 f858dcae ths
secure CA private key:
1104 f858dcae ths
1105 f858dcae ths
@example
1106 f858dcae ths
# cat > server.info <<EOF
1107 f858dcae ths
organization = Name  of your organization
1108 f858dcae ths
cn = server.foo.example.com
1109 f858dcae ths
tls_www_server
1110 f858dcae ths
encryption_key
1111 f858dcae ths
signing_key
1112 f858dcae ths
EOF
1113 f858dcae ths
# certtool --generate-privkey > server-key.pem
1114 f858dcae ths
# certtool --generate-certificate \
1115 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1116 f858dcae ths
           --load-ca-privkey ca-key.pem \
1117 f858dcae ths
           --load-privkey server server-key.pem \
1118 f858dcae ths
           --template server.info \
1119 f858dcae ths
           --outfile server-cert.pem
1120 f858dcae ths
@end example
1121 f858dcae ths
1122 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1123 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1124 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1125 f858dcae ths
1126 f858dcae ths
@node vnc_generate_client
1127 f858dcae ths
@subsubsection Issuing client certificates
1128 f858dcae ths
1129 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1130 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1131 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1132 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1133 f858dcae ths
the secure CA private key:
1134 f858dcae ths
1135 f858dcae ths
@example
1136 f858dcae ths
# cat > client.info <<EOF
1137 f858dcae ths
country = GB
1138 f858dcae ths
state = London
1139 f858dcae ths
locality = London
1140 f858dcae ths
organiazation = Name of your organization
1141 f858dcae ths
cn = client.foo.example.com
1142 f858dcae ths
tls_www_client
1143 f858dcae ths
encryption_key
1144 f858dcae ths
signing_key
1145 f858dcae ths
EOF
1146 f858dcae ths
# certtool --generate-privkey > client-key.pem
1147 f858dcae ths
# certtool --generate-certificate \
1148 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1149 f858dcae ths
           --load-ca-privkey ca-key.pem \
1150 f858dcae ths
           --load-privkey client-key.pem \
1151 f858dcae ths
           --template client.info \
1152 f858dcae ths
           --outfile client-cert.pem
1153 f858dcae ths
@end example
1154 f858dcae ths
1155 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1156 f858dcae ths
copied to the client for which they were generated.
1157 f858dcae ths
1158 2f9606b3 aliguori
1159 2f9606b3 aliguori
@node vnc_setup_sasl
1160 2f9606b3 aliguori
1161 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1162 2f9606b3 aliguori
1163 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1164 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1165 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1166 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1167 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1168 2f9606b3 aliguori
to make it search alternate locations for the service config.
1169 2f9606b3 aliguori
1170 2f9606b3 aliguori
The default configuration might contain
1171 2f9606b3 aliguori
1172 2f9606b3 aliguori
@example
1173 2f9606b3 aliguori
mech_list: digest-md5
1174 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1175 2f9606b3 aliguori
@end example
1176 2f9606b3 aliguori
1177 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1178 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1179 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1180 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1181 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1182 2f9606b3 aliguori
ad-hoc testing.
1183 2f9606b3 aliguori
1184 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1185 2f9606b3 aliguori
mechanism
1186 2f9606b3 aliguori
1187 2f9606b3 aliguori
@example
1188 2f9606b3 aliguori
mech_list: gssapi
1189 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1190 2f9606b3 aliguori
@end example
1191 2f9606b3 aliguori
1192 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1193 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1194 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1195 40c5c6cd Stefan Weil
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1196 2f9606b3 aliguori
1197 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1198 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1199 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1200 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1201 2f9606b3 aliguori
1202 0806e3f6 bellard
@node gdb_usage
1203 da415d54 bellard
@section GDB usage
1204 da415d54 bellard
1205 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1206 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1207 da415d54 bellard
1208 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1209 da415d54 bellard
gdb connection:
1210 da415d54 bellard
@example
1211 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1212 debc7065 bellard
       -append "root=/dev/hda"
1213 da415d54 bellard
Connected to host network interface: tun0
1214 da415d54 bellard
Waiting gdb connection on port 1234
1215 da415d54 bellard
@end example
1216 da415d54 bellard
1217 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1218 da415d54 bellard
@example
1219 da415d54 bellard
> gdb vmlinux
1220 da415d54 bellard
@end example
1221 da415d54 bellard
1222 da415d54 bellard
In gdb, connect to QEMU:
1223 da415d54 bellard
@example
1224 6c9bf893 bellard
(gdb) target remote localhost:1234
1225 da415d54 bellard
@end example
1226 da415d54 bellard
1227 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1228 da415d54 bellard
@example
1229 da415d54 bellard
(gdb) c
1230 da415d54 bellard
@end example
1231 da415d54 bellard
1232 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1233 0806e3f6 bellard
1234 0806e3f6 bellard
@enumerate
1235 0806e3f6 bellard
@item
1236 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1237 0806e3f6 bellard
@item
1238 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1239 0806e3f6 bellard
@item
1240 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1241 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1242 0806e3f6 bellard
@end enumerate
1243 0806e3f6 bellard
1244 60897d36 edgar_igl
Advanced debugging options:
1245 60897d36 edgar_igl
1246 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1247 94d45e44 edgar_igl
@table @code
1248 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1249 60897d36 edgar_igl
1250 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1251 60897d36 edgar_igl
@example
1252 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1253 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1254 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1255 60897d36 edgar_igl
@end example
1256 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1257 60897d36 edgar_igl
1258 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1259 60897d36 edgar_igl
@example
1260 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1261 60897d36 edgar_igl
sending: "qqemu.sstep"
1262 60897d36 edgar_igl
received: "0x7"
1263 60897d36 edgar_igl
@end example
1264 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1265 60897d36 edgar_igl
1266 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1267 60897d36 edgar_igl
@example
1268 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1269 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1270 60897d36 edgar_igl
received: "OK"
1271 60897d36 edgar_igl
@end example
1272 94d45e44 edgar_igl
@end table
1273 60897d36 edgar_igl
1274 debc7065 bellard
@node pcsys_os_specific
1275 1a084f3d bellard
@section Target OS specific information
1276 1a084f3d bellard
1277 1a084f3d bellard
@subsection Linux
1278 1a084f3d bellard
1279 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1280 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1281 15a34c63 bellard
color depth in the guest and the host OS.
1282 1a084f3d bellard
1283 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1284 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1285 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1286 e3371e62 bellard
cannot simulate exactly.
1287 e3371e62 bellard
1288 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1289 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1290 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1291 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1292 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1293 7c3fc84d bellard
1294 1a084f3d bellard
@subsection Windows
1295 1a084f3d bellard
1296 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1297 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1298 1a084f3d bellard
1299 e3371e62 bellard
@subsubsection SVGA graphic modes support
1300 e3371e62 bellard
1301 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1302 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1303 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1304 15a34c63 bellard
depth in the guest and the host OS.
1305 1a084f3d bellard
1306 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1307 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1308 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1309 3cb0853a bellard
(option @option{-std-vga}).
1310 3cb0853a bellard
1311 e3371e62 bellard
@subsubsection CPU usage reduction
1312 e3371e62 bellard
1313 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1314 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1315 15a34c63 bellard
idle. You can install the utility from
1316 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1317 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1318 1a084f3d bellard
1319 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1320 e3371e62 bellard
1321 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1322 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1323 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1324 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1325 9d0a8e6f bellard
IDE transfers).
1326 e3371e62 bellard
1327 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1328 6cc721cf bellard
1329 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1330 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1331 6cc721cf bellard
use the APM driver provided by the BIOS.
1332 6cc721cf bellard
1333 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1334 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1335 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1336 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1337 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1338 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1339 6cc721cf bellard
1340 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1341 6cc721cf bellard
1342 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1343 6cc721cf bellard
1344 2192c332 bellard
@subsubsection Windows XP security problem
1345 e3371e62 bellard
1346 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1347 e3371e62 bellard
error when booting:
1348 e3371e62 bellard
@example
1349 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1350 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1351 e3371e62 bellard
@end example
1352 e3371e62 bellard
1353 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1354 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1355 2192c332 bellard
network while in safe mode, its recommended to download the full
1356 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1357 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1358 e3371e62 bellard
1359 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1360 a0a821a4 bellard
1361 a0a821a4 bellard
@subsubsection CPU usage reduction
1362 a0a821a4 bellard
1363 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1364 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1365 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1366 a0a821a4 bellard
problem.
1367 a0a821a4 bellard
1368 debc7065 bellard
@node QEMU System emulator for non PC targets
1369 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1370 3f9f3aa1 bellard
1371 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1372 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1373 4be456f1 ths
differences are mentioned in the following sections.
1374 3f9f3aa1 bellard
1375 debc7065 bellard
@menu
1376 7544a042 Stefan Weil
* PowerPC System emulator::
1377 24d4de45 ths
* Sparc32 System emulator::
1378 24d4de45 ths
* Sparc64 System emulator::
1379 24d4de45 ths
* MIPS System emulator::
1380 24d4de45 ths
* ARM System emulator::
1381 24d4de45 ths
* ColdFire System emulator::
1382 7544a042 Stefan Weil
* Cris System emulator::
1383 7544a042 Stefan Weil
* Microblaze System emulator::
1384 7544a042 Stefan Weil
* SH4 System emulator::
1385 debc7065 bellard
@end menu
1386 debc7065 bellard
1387 7544a042 Stefan Weil
@node PowerPC System emulator
1388 7544a042 Stefan Weil
@section PowerPC System emulator
1389 7544a042 Stefan Weil
@cindex system emulation (PowerPC)
1390 1a084f3d bellard
1391 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1392 15a34c63 bellard
or PowerMac PowerPC system.
1393 1a084f3d bellard
1394 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1395 1a084f3d bellard
1396 15a34c63 bellard
@itemize @minus
1397 5fafdf24 ths
@item
1398 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1399 15a34c63 bellard
@item
1400 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1401 5fafdf24 ths
@item
1402 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1403 5fafdf24 ths
@item
1404 15a34c63 bellard
NE2000 PCI adapters
1405 15a34c63 bellard
@item
1406 15a34c63 bellard
Non Volatile RAM
1407 15a34c63 bellard
@item
1408 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1409 1a084f3d bellard
@end itemize
1410 1a084f3d bellard
1411 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1412 52c00a5f bellard
1413 52c00a5f bellard
@itemize @minus
1414 5fafdf24 ths
@item
1415 15a34c63 bellard
PCI Bridge
1416 15a34c63 bellard
@item
1417 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1418 5fafdf24 ths
@item
1419 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1420 52c00a5f bellard
@item
1421 52c00a5f bellard
Floppy disk
1422 5fafdf24 ths
@item
1423 15a34c63 bellard
NE2000 network adapters
1424 52c00a5f bellard
@item
1425 52c00a5f bellard
Serial port
1426 52c00a5f bellard
@item
1427 52c00a5f bellard
PREP Non Volatile RAM
1428 15a34c63 bellard
@item
1429 15a34c63 bellard
PC compatible keyboard and mouse.
1430 52c00a5f bellard
@end itemize
1431 52c00a5f bellard
1432 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1433 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1434 52c00a5f bellard
1435 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1436 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1437 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1438 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1439 992e5acd blueswir1
1440 15a34c63 bellard
@c man begin OPTIONS
1441 15a34c63 bellard
1442 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1443 15a34c63 bellard
1444 15a34c63 bellard
@table @option
1445 15a34c63 bellard
1446 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1447 15a34c63 bellard
1448 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1449 15a34c63 bellard
1450 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1451 95efd11c blueswir1
1452 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1453 95efd11c blueswir1
1454 95efd11c blueswir1
@example
1455 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1456 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1457 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1458 95efd11c blueswir1
@end example
1459 95efd11c blueswir1
1460 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1461 95efd11c blueswir1
1462 15a34c63 bellard
@end table
1463 15a34c63 bellard
1464 5fafdf24 ths
@c man end
1465 15a34c63 bellard
1466 15a34c63 bellard
1467 52c00a5f bellard
More information is available at
1468 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1469 52c00a5f bellard
1470 24d4de45 ths
@node Sparc32 System emulator
1471 24d4de45 ths
@section Sparc32 System emulator
1472 7544a042 Stefan Weil
@cindex system emulation (Sparc32)
1473 e80cfcfc bellard
1474 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1475 34a3d239 blueswir1
Sun4m architecture machines:
1476 34a3d239 blueswir1
@itemize @minus
1477 34a3d239 blueswir1
@item
1478 34a3d239 blueswir1
SPARCstation 4
1479 34a3d239 blueswir1
@item
1480 34a3d239 blueswir1
SPARCstation 5
1481 34a3d239 blueswir1
@item
1482 34a3d239 blueswir1
SPARCstation 10
1483 34a3d239 blueswir1
@item
1484 34a3d239 blueswir1
SPARCstation 20
1485 34a3d239 blueswir1
@item
1486 34a3d239 blueswir1
SPARCserver 600MP
1487 34a3d239 blueswir1
@item
1488 34a3d239 blueswir1
SPARCstation LX
1489 34a3d239 blueswir1
@item
1490 34a3d239 blueswir1
SPARCstation Voyager
1491 34a3d239 blueswir1
@item
1492 34a3d239 blueswir1
SPARCclassic
1493 34a3d239 blueswir1
@item
1494 34a3d239 blueswir1
SPARCbook
1495 34a3d239 blueswir1
@end itemize
1496 34a3d239 blueswir1
1497 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1498 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1499 e80cfcfc bellard
1500 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1501 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1502 34a3d239 blueswir1
emulators are not usable yet.
1503 34a3d239 blueswir1
1504 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1505 e80cfcfc bellard
1506 e80cfcfc bellard
@itemize @minus
1507 3475187d bellard
@item
1508 7d85892b blueswir1
IOMMU or IO-UNITs
1509 e80cfcfc bellard
@item
1510 e80cfcfc bellard
TCX Frame buffer
1511 5fafdf24 ths
@item
1512 e80cfcfc bellard
Lance (Am7990) Ethernet
1513 e80cfcfc bellard
@item
1514 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1515 e80cfcfc bellard
@item
1516 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1517 3475187d bellard
and power/reset logic
1518 3475187d bellard
@item
1519 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1520 3475187d bellard
@item
1521 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1522 a2502b58 blueswir1
@item
1523 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1524 e80cfcfc bellard
@end itemize
1525 e80cfcfc bellard
1526 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1527 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1528 7d85892b blueswir1
others 2047MB.
1529 3475187d bellard
1530 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1531 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1532 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1533 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1534 3475187d bellard
1535 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1536 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1537 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1538 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1539 34a3d239 blueswir1
Solaris.
1540 3475187d bellard
1541 3475187d bellard
@c man begin OPTIONS
1542 3475187d bellard
1543 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1544 3475187d bellard
1545 3475187d bellard
@table @option
1546 3475187d bellard
1547 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1548 3475187d bellard
1549 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1550 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1551 3475187d bellard
1552 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1553 66508601 blueswir1
1554 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1555 66508601 blueswir1
1556 66508601 blueswir1
@example
1557 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1558 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1559 66508601 blueswir1
@end example
1560 66508601 blueswir1
1561 609c1dac Blue Swirl
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1562 a2502b58 blueswir1
1563 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1564 a2502b58 blueswir1
1565 3475187d bellard
@end table
1566 3475187d bellard
1567 5fafdf24 ths
@c man end
1568 3475187d bellard
1569 24d4de45 ths
@node Sparc64 System emulator
1570 24d4de45 ths
@section Sparc64 System emulator
1571 7544a042 Stefan Weil
@cindex system emulation (Sparc64)
1572 e80cfcfc bellard
1573 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1574 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1575 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1576 34a3d239 blueswir1
it can launch some kernels.
1577 b756921a bellard
1578 c7ba218d blueswir1
QEMU emulates the following peripherals:
1579 83469015 bellard
1580 83469015 bellard
@itemize @minus
1581 83469015 bellard
@item
1582 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1583 83469015 bellard
@item
1584 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1585 83469015 bellard
@item
1586 34a3d239 blueswir1
PS/2 mouse and keyboard
1587 34a3d239 blueswir1
@item
1588 83469015 bellard
Non Volatile RAM M48T59
1589 83469015 bellard
@item
1590 83469015 bellard
PC-compatible serial ports
1591 c7ba218d blueswir1
@item
1592 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1593 34a3d239 blueswir1
@item
1594 34a3d239 blueswir1
Floppy disk
1595 83469015 bellard
@end itemize
1596 83469015 bellard
1597 c7ba218d blueswir1
@c man begin OPTIONS
1598 c7ba218d blueswir1
1599 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1600 c7ba218d blueswir1
1601 c7ba218d blueswir1
@table @option
1602 c7ba218d blueswir1
1603 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1604 34a3d239 blueswir1
1605 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1606 34a3d239 blueswir1
1607 34a3d239 blueswir1
@example
1608 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1609 34a3d239 blueswir1
@end example
1610 34a3d239 blueswir1
1611 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1612 c7ba218d blueswir1
1613 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1614 c7ba218d blueswir1
1615 c7ba218d blueswir1
@end table
1616 c7ba218d blueswir1
1617 c7ba218d blueswir1
@c man end
1618 c7ba218d blueswir1
1619 24d4de45 ths
@node MIPS System emulator
1620 24d4de45 ths
@section MIPS System emulator
1621 7544a042 Stefan Weil
@cindex system emulation (MIPS)
1622 9d0a8e6f bellard
1623 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1624 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1625 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1626 88cb0a02 aurel32
Five different machine types are emulated:
1627 24d4de45 ths
1628 24d4de45 ths
@itemize @minus
1629 24d4de45 ths
@item
1630 24d4de45 ths
A generic ISA PC-like machine "mips"
1631 24d4de45 ths
@item
1632 24d4de45 ths
The MIPS Malta prototype board "malta"
1633 24d4de45 ths
@item
1634 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1635 6bf5b4e8 ths
@item
1636 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1637 88cb0a02 aurel32
@item
1638 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1639 24d4de45 ths
@end itemize
1640 24d4de45 ths
1641 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1642 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1643 24d4de45 ths
emulated:
1644 3f9f3aa1 bellard
1645 3f9f3aa1 bellard
@itemize @minus
1646 5fafdf24 ths
@item
1647 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1648 3f9f3aa1 bellard
@item
1649 3f9f3aa1 bellard
PC style serial port
1650 3f9f3aa1 bellard
@item
1651 24d4de45 ths
PC style IDE disk
1652 24d4de45 ths
@item
1653 3f9f3aa1 bellard
NE2000 network card
1654 3f9f3aa1 bellard
@end itemize
1655 3f9f3aa1 bellard
1656 24d4de45 ths
The Malta emulation supports the following devices:
1657 24d4de45 ths
1658 24d4de45 ths
@itemize @minus
1659 24d4de45 ths
@item
1660 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1661 24d4de45 ths
@item
1662 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1663 24d4de45 ths
@item
1664 24d4de45 ths
The Multi-I/O chip's serial device
1665 24d4de45 ths
@item
1666 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1667 24d4de45 ths
@item
1668 24d4de45 ths
Malta FPGA serial device
1669 24d4de45 ths
@item
1670 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1671 24d4de45 ths
@end itemize
1672 24d4de45 ths
1673 24d4de45 ths
The ACER Pica emulation supports:
1674 24d4de45 ths
1675 24d4de45 ths
@itemize @minus
1676 24d4de45 ths
@item
1677 24d4de45 ths
MIPS R4000 CPU
1678 24d4de45 ths
@item
1679 24d4de45 ths
PC-style IRQ and DMA controllers
1680 24d4de45 ths
@item
1681 24d4de45 ths
PC Keyboard
1682 24d4de45 ths
@item
1683 24d4de45 ths
IDE controller
1684 24d4de45 ths
@end itemize
1685 3f9f3aa1 bellard
1686 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
1687 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1688 f0fc6f8f ths
It supports:
1689 6bf5b4e8 ths
1690 6bf5b4e8 ths
@itemize @minus
1691 6bf5b4e8 ths
@item
1692 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1693 6bf5b4e8 ths
@item
1694 6bf5b4e8 ths
PC style serial port
1695 6bf5b4e8 ths
@item
1696 6bf5b4e8 ths
MIPSnet network emulation
1697 6bf5b4e8 ths
@end itemize
1698 6bf5b4e8 ths
1699 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1700 88cb0a02 aurel32
1701 88cb0a02 aurel32
@itemize @minus
1702 88cb0a02 aurel32
@item
1703 88cb0a02 aurel32
MIPS R4000 CPU
1704 88cb0a02 aurel32
@item
1705 88cb0a02 aurel32
PC-style IRQ controller
1706 88cb0a02 aurel32
@item
1707 88cb0a02 aurel32
PC Keyboard
1708 88cb0a02 aurel32
@item
1709 88cb0a02 aurel32
SCSI controller
1710 88cb0a02 aurel32
@item
1711 88cb0a02 aurel32
G364 framebuffer
1712 88cb0a02 aurel32
@end itemize
1713 88cb0a02 aurel32
1714 88cb0a02 aurel32
1715 24d4de45 ths
@node ARM System emulator
1716 24d4de45 ths
@section ARM System emulator
1717 7544a042 Stefan Weil
@cindex system emulation (ARM)
1718 3f9f3aa1 bellard
1719 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1720 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1721 3f9f3aa1 bellard
devices:
1722 3f9f3aa1 bellard
1723 3f9f3aa1 bellard
@itemize @minus
1724 3f9f3aa1 bellard
@item
1725 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1726 3f9f3aa1 bellard
@item
1727 3f9f3aa1 bellard
Two PL011 UARTs
1728 5fafdf24 ths
@item
1729 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1730 00a9bf19 pbrook
@item
1731 00a9bf19 pbrook
PL110 LCD controller
1732 00a9bf19 pbrook
@item
1733 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1734 a1bb27b1 pbrook
@item
1735 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1736 00a9bf19 pbrook
@end itemize
1737 00a9bf19 pbrook
1738 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1739 00a9bf19 pbrook
1740 00a9bf19 pbrook
@itemize @minus
1741 00a9bf19 pbrook
@item
1742 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1743 00a9bf19 pbrook
@item
1744 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1745 00a9bf19 pbrook
@item
1746 00a9bf19 pbrook
Four PL011 UARTs
1747 5fafdf24 ths
@item
1748 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1749 00a9bf19 pbrook
@item
1750 00a9bf19 pbrook
PL110 LCD controller
1751 00a9bf19 pbrook
@item
1752 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1753 00a9bf19 pbrook
@item
1754 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1755 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1756 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1757 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1758 00a9bf19 pbrook
mapped control registers.
1759 e6de1bad pbrook
@item
1760 e6de1bad pbrook
PCI OHCI USB controller.
1761 e6de1bad pbrook
@item
1762 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1763 a1bb27b1 pbrook
@item
1764 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1765 3f9f3aa1 bellard
@end itemize
1766 3f9f3aa1 bellard
1767 21a88941 Paul Brook
Several variants of the ARM RealView baseboard are emulated,
1768 21a88941 Paul Brook
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1769 21a88941 Paul Brook
bootloader, only certain Linux kernel configurations work out
1770 21a88941 Paul Brook
of the box on these boards.
1771 21a88941 Paul Brook
1772 21a88941 Paul Brook
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1773 21a88941 Paul Brook
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1774 21a88941 Paul Brook
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1775 21a88941 Paul Brook
disabled and expect 1024M RAM.
1776 21a88941 Paul Brook
1777 40c5c6cd Stefan Weil
The following devices are emulated:
1778 d7739d75 pbrook
1779 d7739d75 pbrook
@itemize @minus
1780 d7739d75 pbrook
@item
1781 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1782 d7739d75 pbrook
@item
1783 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1784 d7739d75 pbrook
@item
1785 d7739d75 pbrook
Four PL011 UARTs
1786 5fafdf24 ths
@item
1787 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1788 d7739d75 pbrook
@item
1789 d7739d75 pbrook
PL110 LCD controller
1790 d7739d75 pbrook
@item
1791 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1792 d7739d75 pbrook
@item
1793 d7739d75 pbrook
PCI host bridge
1794 d7739d75 pbrook
@item
1795 d7739d75 pbrook
PCI OHCI USB controller
1796 d7739d75 pbrook
@item
1797 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1798 a1bb27b1 pbrook
@item
1799 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1800 d7739d75 pbrook
@end itemize
1801 d7739d75 pbrook
1802 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1803 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1804 b00052e4 balrog
1805 b00052e4 balrog
@itemize @minus
1806 b00052e4 balrog
@item
1807 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1808 b00052e4 balrog
@item
1809 b00052e4 balrog
NAND Flash memory
1810 b00052e4 balrog
@item
1811 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1812 b00052e4 balrog
@item
1813 b00052e4 balrog
On-chip OHCI USB controller
1814 b00052e4 balrog
@item
1815 b00052e4 balrog
On-chip LCD controller
1816 b00052e4 balrog
@item
1817 b00052e4 balrog
On-chip Real Time Clock
1818 b00052e4 balrog
@item
1819 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
1820 b00052e4 balrog
@item
1821 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1822 b00052e4 balrog
@item
1823 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
1824 b00052e4 balrog
@item
1825 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
1826 b00052e4 balrog
@item
1827 b00052e4 balrog
Three on-chip UARTs
1828 b00052e4 balrog
@item
1829 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1830 b00052e4 balrog
@end itemize
1831 b00052e4 balrog
1832 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1833 02645926 balrog
following elements:
1834 02645926 balrog
1835 02645926 balrog
@itemize @minus
1836 02645926 balrog
@item
1837 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1838 02645926 balrog
@item
1839 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1840 02645926 balrog
@item
1841 02645926 balrog
On-chip LCD controller
1842 02645926 balrog
@item
1843 02645926 balrog
On-chip Real Time Clock
1844 02645926 balrog
@item
1845 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1846 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
1847 02645926 balrog
@item
1848 02645926 balrog
GPIO-connected matrix keypad
1849 02645926 balrog
@item
1850 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
1851 02645926 balrog
@item
1852 02645926 balrog
Three on-chip UARTs
1853 02645926 balrog
@end itemize
1854 02645926 balrog
1855 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1856 c30bb264 balrog
emulation supports the following elements:
1857 c30bb264 balrog
1858 c30bb264 balrog
@itemize @minus
1859 c30bb264 balrog
@item
1860 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1861 c30bb264 balrog
@item
1862 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
1863 c30bb264 balrog
@item
1864 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1865 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
1866 c30bb264 balrog
@item
1867 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1868 c30bb264 balrog
driven through SPI bus
1869 c30bb264 balrog
@item
1870 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
1871 c30bb264 balrog
through I@math{^2}C bus
1872 c30bb264 balrog
@item
1873 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
1874 c30bb264 balrog
@item
1875 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
1876 c30bb264 balrog
@item
1877 40c5c6cd Stefan Weil
A Bluetooth(R) transceiver and HCI connected to an UART
1878 2d564691 balrog
@item
1879 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1880 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
1881 c30bb264 balrog
@item
1882 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
1883 c30bb264 balrog
@item
1884 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1885 c30bb264 balrog
@item
1886 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1887 c30bb264 balrog
through CBUS
1888 c30bb264 balrog
@end itemize
1889 c30bb264 balrog
1890 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1891 9ee6e8bb pbrook
devices:
1892 9ee6e8bb pbrook
1893 9ee6e8bb pbrook
@itemize @minus
1894 9ee6e8bb pbrook
@item
1895 9ee6e8bb pbrook
Cortex-M3 CPU core.
1896 9ee6e8bb pbrook
@item
1897 9ee6e8bb pbrook
64k Flash and 8k SRAM.
1898 9ee6e8bb pbrook
@item
1899 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
1900 9ee6e8bb pbrook
@item
1901 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1902 9ee6e8bb pbrook
@end itemize
1903 9ee6e8bb pbrook
1904 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1905 9ee6e8bb pbrook
devices:
1906 9ee6e8bb pbrook
1907 9ee6e8bb pbrook
@itemize @minus
1908 9ee6e8bb pbrook
@item
1909 9ee6e8bb pbrook
Cortex-M3 CPU core.
1910 9ee6e8bb pbrook
@item
1911 9ee6e8bb pbrook
256k Flash and 64k SRAM.
1912 9ee6e8bb pbrook
@item
1913 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1914 9ee6e8bb pbrook
@item
1915 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1916 9ee6e8bb pbrook
@end itemize
1917 9ee6e8bb pbrook
1918 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
1919 57cd6e97 balrog
elements:
1920 57cd6e97 balrog
1921 57cd6e97 balrog
@itemize @minus
1922 57cd6e97 balrog
@item
1923 57cd6e97 balrog
Marvell MV88W8618 ARM core.
1924 57cd6e97 balrog
@item
1925 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
1926 57cd6e97 balrog
@item
1927 57cd6e97 balrog
Up to 2 16550 UARTs
1928 57cd6e97 balrog
@item
1929 57cd6e97 balrog
MV88W8xx8 Ethernet controller
1930 57cd6e97 balrog
@item
1931 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
1932 57cd6e97 balrog
@item
1933 e080e785 Stefan Weil
128ร—64 display with brightness control
1934 57cd6e97 balrog
@item
1935 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
1936 57cd6e97 balrog
@end itemize
1937 57cd6e97 balrog
1938 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
1939 40c5c6cd Stefan Weil
The emulation includes the following elements:
1940 997641a8 balrog
1941 997641a8 balrog
@itemize @minus
1942 997641a8 balrog
@item
1943 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1944 997641a8 balrog
@item
1945 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1946 997641a8 balrog
V1
1947 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
1948 997641a8 balrog
V2
1949 997641a8 balrog
1 Flash of 32MB
1950 997641a8 balrog
@item
1951 997641a8 balrog
On-chip LCD controller
1952 997641a8 balrog
@item
1953 997641a8 balrog
On-chip Real Time Clock
1954 997641a8 balrog
@item
1955 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
1956 997641a8 balrog
@item
1957 997641a8 balrog
Three on-chip UARTs
1958 997641a8 balrog
@end itemize
1959 997641a8 balrog
1960 4af39611 Paul Brook
The "Syborg" Symbian Virtual Platform base model includes the following
1961 4af39611 Paul Brook
elements:
1962 4af39611 Paul Brook
1963 4af39611 Paul Brook
@itemize @minus
1964 4af39611 Paul Brook
@item
1965 4af39611 Paul Brook
ARM Cortex-A8 CPU
1966 4af39611 Paul Brook
@item
1967 4af39611 Paul Brook
Interrupt controller
1968 4af39611 Paul Brook
@item
1969 4af39611 Paul Brook
Timer
1970 4af39611 Paul Brook
@item
1971 4af39611 Paul Brook
Real Time Clock
1972 4af39611 Paul Brook
@item
1973 4af39611 Paul Brook
Keyboard
1974 4af39611 Paul Brook
@item
1975 4af39611 Paul Brook
Framebuffer
1976 4af39611 Paul Brook
@item
1977 4af39611 Paul Brook
Touchscreen
1978 4af39611 Paul Brook
@item
1979 4af39611 Paul Brook
UARTs
1980 4af39611 Paul Brook
@end itemize
1981 4af39611 Paul Brook
1982 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
1983 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
1984 9d0a8e6f bellard
1985 d2c639d6 blueswir1
@c man begin OPTIONS
1986 d2c639d6 blueswir1
1987 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
1988 d2c639d6 blueswir1
1989 d2c639d6 blueswir1
@table @option
1990 d2c639d6 blueswir1
1991 d2c639d6 blueswir1
@item -semihosting
1992 d2c639d6 blueswir1
Enable semihosting syscall emulation.
1993 d2c639d6 blueswir1
1994 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
1995 d2c639d6 blueswir1
1996 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
1997 d2c639d6 blueswir1
so should only be used with trusted guest OS.
1998 d2c639d6 blueswir1
1999 d2c639d6 blueswir1
@end table
2000 d2c639d6 blueswir1
2001 24d4de45 ths
@node ColdFire System emulator
2002 24d4de45 ths
@section ColdFire System emulator
2003 7544a042 Stefan Weil
@cindex system emulation (ColdFire)
2004 7544a042 Stefan Weil
@cindex system emulation (M68K)
2005 209a4e69 pbrook
2006 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2007 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2008 707e011b pbrook
2009 707e011b pbrook
The M5208EVB emulation includes the following devices:
2010 707e011b pbrook
2011 707e011b pbrook
@itemize @minus
2012 5fafdf24 ths
@item
2013 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2014 707e011b pbrook
@item
2015 707e011b pbrook
Three Two on-chip UARTs.
2016 707e011b pbrook
@item
2017 707e011b pbrook
Fast Ethernet Controller (FEC)
2018 707e011b pbrook
@end itemize
2019 707e011b pbrook
2020 707e011b pbrook
The AN5206 emulation includes the following devices:
2021 209a4e69 pbrook
2022 209a4e69 pbrook
@itemize @minus
2023 5fafdf24 ths
@item
2024 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2025 209a4e69 pbrook
@item
2026 209a4e69 pbrook
Two on-chip UARTs.
2027 209a4e69 pbrook
@end itemize
2028 209a4e69 pbrook
2029 d2c639d6 blueswir1
@c man begin OPTIONS
2030 d2c639d6 blueswir1
2031 7544a042 Stefan Weil
The following options are specific to the ColdFire emulation:
2032 d2c639d6 blueswir1
2033 d2c639d6 blueswir1
@table @option
2034 d2c639d6 blueswir1
2035 d2c639d6 blueswir1
@item -semihosting
2036 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2037 d2c639d6 blueswir1
2038 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2039 d2c639d6 blueswir1
2040 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2041 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2042 d2c639d6 blueswir1
2043 d2c639d6 blueswir1
@end table
2044 d2c639d6 blueswir1
2045 7544a042 Stefan Weil
@node Cris System emulator
2046 7544a042 Stefan Weil
@section Cris System emulator
2047 7544a042 Stefan Weil
@cindex system emulation (Cris)
2048 7544a042 Stefan Weil
2049 7544a042 Stefan Weil
TODO
2050 7544a042 Stefan Weil
2051 7544a042 Stefan Weil
@node Microblaze System emulator
2052 7544a042 Stefan Weil
@section Microblaze System emulator
2053 7544a042 Stefan Weil
@cindex system emulation (Microblaze)
2054 7544a042 Stefan Weil
2055 7544a042 Stefan Weil
TODO
2056 7544a042 Stefan Weil
2057 7544a042 Stefan Weil
@node SH4 System emulator
2058 7544a042 Stefan Weil
@section SH4 System emulator
2059 7544a042 Stefan Weil
@cindex system emulation (SH4)
2060 7544a042 Stefan Weil
2061 7544a042 Stefan Weil
TODO
2062 7544a042 Stefan Weil
2063 5fafdf24 ths
@node QEMU User space emulator
2064 5fafdf24 ths
@chapter QEMU User space emulator
2065 83195237 bellard
2066 83195237 bellard
@menu
2067 83195237 bellard
* Supported Operating Systems ::
2068 83195237 bellard
* Linux User space emulator::
2069 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2070 84778508 blueswir1
* BSD User space emulator ::
2071 83195237 bellard
@end menu
2072 83195237 bellard
2073 83195237 bellard
@node Supported Operating Systems
2074 83195237 bellard
@section Supported Operating Systems
2075 83195237 bellard
2076 83195237 bellard
The following OS are supported in user space emulation:
2077 83195237 bellard
2078 83195237 bellard
@itemize @minus
2079 83195237 bellard
@item
2080 4be456f1 ths
Linux (referred as qemu-linux-user)
2081 83195237 bellard
@item
2082 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2083 84778508 blueswir1
@item
2084 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2085 83195237 bellard
@end itemize
2086 83195237 bellard
2087 83195237 bellard
@node Linux User space emulator
2088 83195237 bellard
@section Linux User space emulator
2089 386405f7 bellard
2090 debc7065 bellard
@menu
2091 debc7065 bellard
* Quick Start::
2092 debc7065 bellard
* Wine launch::
2093 debc7065 bellard
* Command line options::
2094 79737e4a pbrook
* Other binaries::
2095 debc7065 bellard
@end menu
2096 debc7065 bellard
2097 debc7065 bellard
@node Quick Start
2098 83195237 bellard
@subsection Quick Start
2099 df0f11a0 bellard
2100 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2101 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2102 386405f7 bellard
2103 1f673135 bellard
@itemize
2104 386405f7 bellard
2105 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2106 1f673135 bellard
libraries:
2107 386405f7 bellard
2108 5fafdf24 ths
@example
2109 1f673135 bellard
qemu-i386 -L / /bin/ls
2110 1f673135 bellard
@end example
2111 386405f7 bellard
2112 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2113 1f673135 bellard
@file{/} prefix.
2114 386405f7 bellard
2115 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2116 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2117 386405f7 bellard
2118 5fafdf24 ths
@example
2119 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2120 1f673135 bellard
@end example
2121 386405f7 bellard
2122 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2123 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2124 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2125 df0f11a0 bellard
2126 1f673135 bellard
@example
2127 5fafdf24 ths
unset LD_LIBRARY_PATH
2128 1f673135 bellard
@end example
2129 1eb87257 bellard
2130 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2131 1eb87257 bellard
2132 1f673135 bellard
@example
2133 1f673135 bellard
qemu-i386 tests/i386/ls
2134 1f673135 bellard
@end example
2135 4c3b5a48 Blue Swirl
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2136 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2137 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2138 1f673135 bellard
Linux kernel.
2139 1eb87257 bellard
2140 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2141 1f673135 bellard
@example
2142 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2143 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2144 1f673135 bellard
@end example
2145 1eb20527 bellard
2146 1f673135 bellard
@end itemize
2147 1eb20527 bellard
2148 debc7065 bellard
@node Wine launch
2149 83195237 bellard
@subsection Wine launch
2150 1eb20527 bellard
2151 1f673135 bellard
@itemize
2152 386405f7 bellard
2153 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2154 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2155 1f673135 bellard
able to do:
2156 386405f7 bellard
2157 1f673135 bellard
@example
2158 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2159 1f673135 bellard
@end example
2160 386405f7 bellard
2161 1f673135 bellard
@item Download the binary x86 Wine install
2162 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2163 386405f7 bellard
2164 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2165 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2166 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2167 386405f7 bellard
2168 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2169 386405f7 bellard
2170 1f673135 bellard
@example
2171 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2172 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2173 1f673135 bellard
@end example
2174 386405f7 bellard
2175 1f673135 bellard
@end itemize
2176 fd429f2f bellard
2177 debc7065 bellard
@node Command line options
2178 83195237 bellard
@subsection Command line options
2179 1eb20527 bellard
2180 1f673135 bellard
@example
2181 68a1c816 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2182 1f673135 bellard
@end example
2183 1eb20527 bellard
2184 1f673135 bellard
@table @option
2185 1f673135 bellard
@item -h
2186 1f673135 bellard
Print the help
2187 3b46e624 ths
@item -L path
2188 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2189 1f673135 bellard
@item -s size
2190 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2191 34a3d239 blueswir1
@item -cpu model
2192 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2193 f66724c9 Stefan Weil
@item -ignore-environment
2194 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2195 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2196 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2197 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2198 f66724c9 Stefan Weil
@item -U @var{var}
2199 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2200 379f6698 Paul Brook
@item -B offset
2201 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2202 1f5c3f8c Stefan Weil
the address region required by guest applications is reserved on the host.
2203 1f5c3f8c Stefan Weil
This option is currently only supported on some hosts.
2204 68a1c816 Paul Brook
@item -R size
2205 68a1c816 Paul Brook
Pre-allocate a guest virtual address space of the given size (in bytes).
2206 0d6753e5 Stefan Weil
"G", "M", and "k" suffixes may be used when specifying the size.
2207 386405f7 bellard
@end table
2208 386405f7 bellard
2209 1f673135 bellard
Debug options:
2210 386405f7 bellard
2211 1f673135 bellard
@table @option
2212 1f673135 bellard
@item -d
2213 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2214 1f673135 bellard
@item -p pagesize
2215 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2216 34a3d239 blueswir1
@item -g port
2217 34a3d239 blueswir1
Wait gdb connection to port
2218 1b530a6d aurel32
@item -singlestep
2219 1b530a6d aurel32
Run the emulation in single step mode.
2220 1f673135 bellard
@end table
2221 386405f7 bellard
2222 b01bcae6 balrog
Environment variables:
2223 b01bcae6 balrog
2224 b01bcae6 balrog
@table @env
2225 b01bcae6 balrog
@item QEMU_STRACE
2226 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2227 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2228 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2229 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2230 b01bcae6 balrog
format are printed with information for six arguments.  Many
2231 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2232 5cfdf930 ths
@end table
2233 b01bcae6 balrog
2234 79737e4a pbrook
@node Other binaries
2235 83195237 bellard
@subsection Other binaries
2236 79737e4a pbrook
2237 7544a042 Stefan Weil
@cindex user mode (Alpha)
2238 7544a042 Stefan Weil
@command{qemu-alpha} TODO.
2239 7544a042 Stefan Weil
2240 7544a042 Stefan Weil
@cindex user mode (ARM)
2241 7544a042 Stefan Weil
@command{qemu-armeb} TODO.
2242 7544a042 Stefan Weil
2243 7544a042 Stefan Weil
@cindex user mode (ARM)
2244 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2245 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2246 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2247 79737e4a pbrook
2248 7544a042 Stefan Weil
@cindex user mode (ColdFire)
2249 7544a042 Stefan Weil
@cindex user mode (M68K)
2250 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2251 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2252 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2253 e6e5906b pbrook
2254 79737e4a pbrook
The binary format is detected automatically.
2255 79737e4a pbrook
2256 7544a042 Stefan Weil
@cindex user mode (Cris)
2257 7544a042 Stefan Weil
@command{qemu-cris} TODO.
2258 7544a042 Stefan Weil
2259 7544a042 Stefan Weil
@cindex user mode (i386)
2260 7544a042 Stefan Weil
@command{qemu-i386} TODO.
2261 7544a042 Stefan Weil
@command{qemu-x86_64} TODO.
2262 7544a042 Stefan Weil
2263 7544a042 Stefan Weil
@cindex user mode (Microblaze)
2264 7544a042 Stefan Weil
@command{qemu-microblaze} TODO.
2265 7544a042 Stefan Weil
2266 7544a042 Stefan Weil
@cindex user mode (MIPS)
2267 7544a042 Stefan Weil
@command{qemu-mips} TODO.
2268 7544a042 Stefan Weil
@command{qemu-mipsel} TODO.
2269 7544a042 Stefan Weil
2270 7544a042 Stefan Weil
@cindex user mode (PowerPC)
2271 7544a042 Stefan Weil
@command{qemu-ppc64abi32} TODO.
2272 7544a042 Stefan Weil
@command{qemu-ppc64} TODO.
2273 7544a042 Stefan Weil
@command{qemu-ppc} TODO.
2274 7544a042 Stefan Weil
2275 7544a042 Stefan Weil
@cindex user mode (SH4)
2276 7544a042 Stefan Weil
@command{qemu-sh4eb} TODO.
2277 7544a042 Stefan Weil
@command{qemu-sh4} TODO.
2278 7544a042 Stefan Weil
2279 7544a042 Stefan Weil
@cindex user mode (SPARC)
2280 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2281 34a3d239 blueswir1
2282 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2283 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2284 a785e42e blueswir1
2285 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2286 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2287 a785e42e blueswir1
2288 83195237 bellard
@node Mac OS X/Darwin User space emulator
2289 83195237 bellard
@section Mac OS X/Darwin User space emulator
2290 83195237 bellard
2291 83195237 bellard
@menu
2292 83195237 bellard
* Mac OS X/Darwin Status::
2293 83195237 bellard
* Mac OS X/Darwin Quick Start::
2294 83195237 bellard
* Mac OS X/Darwin Command line options::
2295 83195237 bellard
@end menu
2296 83195237 bellard
2297 83195237 bellard
@node Mac OS X/Darwin Status
2298 83195237 bellard
@subsection Mac OS X/Darwin Status
2299 83195237 bellard
2300 83195237 bellard
@itemize @minus
2301 83195237 bellard
@item
2302 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2303 83195237 bellard
@item
2304 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2305 83195237 bellard
@item
2306 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2307 83195237 bellard
@item
2308 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2309 83195237 bellard
@end itemize
2310 83195237 bellard
2311 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2312 83195237 bellard
2313 83195237 bellard
@node Mac OS X/Darwin Quick Start
2314 83195237 bellard
@subsection Quick Start
2315 83195237 bellard
2316 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2317 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2318 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2319 83195237 bellard
CD or compile them by hand.
2320 83195237 bellard
2321 83195237 bellard
@itemize
2322 83195237 bellard
2323 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2324 83195237 bellard
libraries:
2325 83195237 bellard
2326 5fafdf24 ths
@example
2327 dbcf5e82 ths
qemu-i386 /bin/ls
2328 83195237 bellard
@end example
2329 83195237 bellard
2330 83195237 bellard
or to run the ppc version of the executable:
2331 83195237 bellard
2332 5fafdf24 ths
@example
2333 dbcf5e82 ths
qemu-ppc /bin/ls
2334 83195237 bellard
@end example
2335 83195237 bellard
2336 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2337 83195237 bellard
are installed:
2338 83195237 bellard
2339 5fafdf24 ths
@example
2340 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2341 83195237 bellard
@end example
2342 83195237 bellard
2343 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2344 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2345 83195237 bellard
2346 83195237 bellard
@end itemize
2347 83195237 bellard
2348 83195237 bellard
@node Mac OS X/Darwin Command line options
2349 83195237 bellard
@subsection Command line options
2350 83195237 bellard
2351 83195237 bellard
@example
2352 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2353 83195237 bellard
@end example
2354 83195237 bellard
2355 83195237 bellard
@table @option
2356 83195237 bellard
@item -h
2357 83195237 bellard
Print the help
2358 3b46e624 ths
@item -L path
2359 83195237 bellard
Set the library root path (default=/)
2360 83195237 bellard
@item -s size
2361 83195237 bellard
Set the stack size in bytes (default=524288)
2362 83195237 bellard
@end table
2363 83195237 bellard
2364 83195237 bellard
Debug options:
2365 83195237 bellard
2366 83195237 bellard
@table @option
2367 83195237 bellard
@item -d
2368 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2369 83195237 bellard
@item -p pagesize
2370 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2371 1b530a6d aurel32
@item -singlestep
2372 1b530a6d aurel32
Run the emulation in single step mode.
2373 83195237 bellard
@end table
2374 83195237 bellard
2375 84778508 blueswir1
@node BSD User space emulator
2376 84778508 blueswir1
@section BSD User space emulator
2377 84778508 blueswir1
2378 84778508 blueswir1
@menu
2379 84778508 blueswir1
* BSD Status::
2380 84778508 blueswir1
* BSD Quick Start::
2381 84778508 blueswir1
* BSD Command line options::
2382 84778508 blueswir1
@end menu
2383 84778508 blueswir1
2384 84778508 blueswir1
@node BSD Status
2385 84778508 blueswir1
@subsection BSD Status
2386 84778508 blueswir1
2387 84778508 blueswir1
@itemize @minus
2388 84778508 blueswir1
@item
2389 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2390 84778508 blueswir1
@end itemize
2391 84778508 blueswir1
2392 84778508 blueswir1
@node BSD Quick Start
2393 84778508 blueswir1
@subsection Quick Start
2394 84778508 blueswir1
2395 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2396 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2397 84778508 blueswir1
2398 84778508 blueswir1
@itemize
2399 84778508 blueswir1
2400 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2401 84778508 blueswir1
libraries:
2402 84778508 blueswir1
2403 84778508 blueswir1
@example
2404 84778508 blueswir1
qemu-sparc64 /bin/ls
2405 84778508 blueswir1
@end example
2406 84778508 blueswir1
2407 84778508 blueswir1
@end itemize
2408 84778508 blueswir1
2409 84778508 blueswir1
@node BSD Command line options
2410 84778508 blueswir1
@subsection Command line options
2411 84778508 blueswir1
2412 84778508 blueswir1
@example
2413 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2414 84778508 blueswir1
@end example
2415 84778508 blueswir1
2416 84778508 blueswir1
@table @option
2417 84778508 blueswir1
@item -h
2418 84778508 blueswir1
Print the help
2419 84778508 blueswir1
@item -L path
2420 84778508 blueswir1
Set the library root path (default=/)
2421 84778508 blueswir1
@item -s size
2422 84778508 blueswir1
Set the stack size in bytes (default=524288)
2423 f66724c9 Stefan Weil
@item -ignore-environment
2424 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2425 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2426 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2427 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2428 f66724c9 Stefan Weil
@item -U @var{var}
2429 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2430 84778508 blueswir1
@item -bsd type
2431 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2432 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2433 84778508 blueswir1
@end table
2434 84778508 blueswir1
2435 84778508 blueswir1
Debug options:
2436 84778508 blueswir1
2437 84778508 blueswir1
@table @option
2438 84778508 blueswir1
@item -d
2439 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2440 84778508 blueswir1
@item -p pagesize
2441 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2442 1b530a6d aurel32
@item -singlestep
2443 1b530a6d aurel32
Run the emulation in single step mode.
2444 84778508 blueswir1
@end table
2445 84778508 blueswir1
2446 15a34c63 bellard
@node compilation
2447 15a34c63 bellard
@chapter Compilation from the sources
2448 15a34c63 bellard
2449 debc7065 bellard
@menu
2450 debc7065 bellard
* Linux/Unix::
2451 debc7065 bellard
* Windows::
2452 debc7065 bellard
* Cross compilation for Windows with Linux::
2453 debc7065 bellard
* Mac OS X::
2454 47eacb4f Stefan Weil
* Make targets::
2455 debc7065 bellard
@end menu
2456 debc7065 bellard
2457 debc7065 bellard
@node Linux/Unix
2458 7c3fc84d bellard
@section Linux/Unix
2459 7c3fc84d bellard
2460 7c3fc84d bellard
@subsection Compilation
2461 7c3fc84d bellard
2462 7c3fc84d bellard
First you must decompress the sources:
2463 7c3fc84d bellard
@example
2464 7c3fc84d bellard
cd /tmp
2465 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2466 7c3fc84d bellard
cd qemu-x.y.z
2467 7c3fc84d bellard
@end example
2468 7c3fc84d bellard
2469 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2470 7c3fc84d bellard
@example
2471 7c3fc84d bellard
./configure
2472 7c3fc84d bellard
make
2473 7c3fc84d bellard
@end example
2474 7c3fc84d bellard
2475 7c3fc84d bellard
Then type as root user:
2476 7c3fc84d bellard
@example
2477 7c3fc84d bellard
make install
2478 7c3fc84d bellard
@end example
2479 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2480 7c3fc84d bellard
2481 debc7065 bellard
@node Windows
2482 15a34c63 bellard
@section Windows
2483 15a34c63 bellard
2484 15a34c63 bellard
@itemize
2485 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2486 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2487 15a34c63 bellard
instructions in the download section and the FAQ.
2488 15a34c63 bellard
2489 5fafdf24 ths
@item Download
2490 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2491 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2492 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2493 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2494 15a34c63 bellard
correct SDL directory when invoked.
2495 15a34c63 bellard
2496 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2497 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2498 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2499 d0a96f3d Scott Tsai
2500 15a34c63 bellard
@item Extract the current version of QEMU.
2501 5fafdf24 ths
2502 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2503 15a34c63 bellard
2504 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2505 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2506 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2507 15a34c63 bellard
2508 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2509 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2510 15a34c63 bellard
@file{Program Files/Qemu}.
2511 15a34c63 bellard
2512 15a34c63 bellard
@end itemize
2513 15a34c63 bellard
2514 debc7065 bellard
@node Cross compilation for Windows with Linux
2515 15a34c63 bellard
@section Cross compilation for Windows with Linux
2516 15a34c63 bellard
2517 15a34c63 bellard
@itemize
2518 15a34c63 bellard
@item
2519 15a34c63 bellard
Install the MinGW cross compilation tools available at
2520 15a34c63 bellard
@url{http://www.mingw.org/}.
2521 15a34c63 bellard
2522 d0a96f3d Scott Tsai
@item Download
2523 d0a96f3d Scott Tsai
the MinGW development library of SDL 1.2.x
2524 d0a96f3d Scott Tsai
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2525 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2526 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2527 d0a96f3d Scott Tsai
correct SDL directory when invoked.  Set up the @code{PATH} environment
2528 d0a96f3d Scott Tsai
variable so that @file{sdl-config} can be launched by
2529 15a34c63 bellard
the QEMU configuration script.
2530 15a34c63 bellard
2531 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2532 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2533 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2534 d0a96f3d Scott Tsai
2535 5fafdf24 ths
@item
2536 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2537 15a34c63 bellard
@example
2538 d0a96f3d Scott Tsai
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2539 d0a96f3d Scott Tsai
@end example
2540 d0a96f3d Scott Tsai
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2541 d0a96f3d Scott Tsai
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2542 40c5c6cd Stefan Weil
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2543 d0a96f3d Scott Tsai
use --cross-prefix to specify the name of the cross compiler.
2544 d0a96f3d Scott Tsai
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2545 d0a96f3d Scott Tsai
2546 d0a96f3d Scott Tsai
Under Fedora Linux, you can run:
2547 d0a96f3d Scott Tsai
@example
2548 d0a96f3d Scott Tsai
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2549 15a34c63 bellard
@end example
2550 d0a96f3d Scott Tsai
to get a suitable cross compilation environment.
2551 15a34c63 bellard
2552 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2553 d0a96f3d Scott Tsai
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2554 5fafdf24 ths
installation directory.
2555 15a34c63 bellard
2556 15a34c63 bellard
@end itemize
2557 15a34c63 bellard
2558 d0a96f3d Scott Tsai
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2559 15a34c63 bellard
2560 debc7065 bellard
@node Mac OS X
2561 15a34c63 bellard
@section Mac OS X
2562 15a34c63 bellard
2563 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2564 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2565 15a34c63 bellard
information.
2566 15a34c63 bellard
2567 47eacb4f Stefan Weil
@node Make targets
2568 47eacb4f Stefan Weil
@section Make targets
2569 47eacb4f Stefan Weil
2570 47eacb4f Stefan Weil
@table @code
2571 47eacb4f Stefan Weil
2572 47eacb4f Stefan Weil
@item make
2573 47eacb4f Stefan Weil
@item make all
2574 47eacb4f Stefan Weil
Make everything which is typically needed.
2575 47eacb4f Stefan Weil
2576 47eacb4f Stefan Weil
@item install
2577 47eacb4f Stefan Weil
TODO
2578 47eacb4f Stefan Weil
2579 47eacb4f Stefan Weil
@item install-doc
2580 47eacb4f Stefan Weil
TODO
2581 47eacb4f Stefan Weil
2582 47eacb4f Stefan Weil
@item make clean
2583 47eacb4f Stefan Weil
Remove most files which were built during make.
2584 47eacb4f Stefan Weil
2585 47eacb4f Stefan Weil
@item make distclean
2586 47eacb4f Stefan Weil
Remove everything which was built during make.
2587 47eacb4f Stefan Weil
2588 47eacb4f Stefan Weil
@item make dvi
2589 47eacb4f Stefan Weil
@item make html
2590 47eacb4f Stefan Weil
@item make info
2591 47eacb4f Stefan Weil
@item make pdf
2592 47eacb4f Stefan Weil
Create documentation in dvi, html, info or pdf format.
2593 47eacb4f Stefan Weil
2594 47eacb4f Stefan Weil
@item make cscope
2595 47eacb4f Stefan Weil
TODO
2596 47eacb4f Stefan Weil
2597 47eacb4f Stefan Weil
@item make defconfig
2598 47eacb4f Stefan Weil
(Re-)create some build configuration files.
2599 47eacb4f Stefan Weil
User made changes will be overwritten.
2600 47eacb4f Stefan Weil
2601 47eacb4f Stefan Weil
@item tar
2602 47eacb4f Stefan Weil
@item tarbin
2603 47eacb4f Stefan Weil
TODO
2604 47eacb4f Stefan Weil
2605 47eacb4f Stefan Weil
@end table
2606 47eacb4f Stefan Weil
2607 7544a042 Stefan Weil
@node License
2608 7544a042 Stefan Weil
@appendix License
2609 7544a042 Stefan Weil
2610 7544a042 Stefan Weil
QEMU is a trademark of Fabrice Bellard.
2611 7544a042 Stefan Weil
2612 7544a042 Stefan Weil
QEMU is released under the GNU General Public License (TODO: add link).
2613 7544a042 Stefan Weil
Parts of QEMU have specific licenses, see file LICENSE.
2614 7544a042 Stefan Weil
2615 7544a042 Stefan Weil
TODO (refer to file LICENSE, include it, include the GPL?)
2616 7544a042 Stefan Weil
2617 debc7065 bellard
@node Index
2618 7544a042 Stefan Weil
@appendix Index
2619 7544a042 Stefan Weil
@menu
2620 7544a042 Stefan Weil
* Concept Index::
2621 7544a042 Stefan Weil
* Function Index::
2622 7544a042 Stefan Weil
* Keystroke Index::
2623 7544a042 Stefan Weil
* Program Index::
2624 7544a042 Stefan Weil
* Data Type Index::
2625 7544a042 Stefan Weil
* Variable Index::
2626 7544a042 Stefan Weil
@end menu
2627 7544a042 Stefan Weil
2628 7544a042 Stefan Weil
@node Concept Index
2629 7544a042 Stefan Weil
@section Concept Index
2630 7544a042 Stefan Weil
This is the main index. Should we combine all keywords in one index? TODO
2631 debc7065 bellard
@printindex cp
2632 debc7065 bellard
2633 7544a042 Stefan Weil
@node Function Index
2634 7544a042 Stefan Weil
@section Function Index
2635 7544a042 Stefan Weil
This index could be used for command line options and monitor functions.
2636 7544a042 Stefan Weil
@printindex fn
2637 7544a042 Stefan Weil
2638 7544a042 Stefan Weil
@node Keystroke Index
2639 7544a042 Stefan Weil
@section Keystroke Index
2640 7544a042 Stefan Weil
2641 7544a042 Stefan Weil
This is a list of all keystrokes which have a special function
2642 7544a042 Stefan Weil
in system emulation.
2643 7544a042 Stefan Weil
2644 7544a042 Stefan Weil
@printindex ky
2645 7544a042 Stefan Weil
2646 7544a042 Stefan Weil
@node Program Index
2647 7544a042 Stefan Weil
@section Program Index
2648 7544a042 Stefan Weil
@printindex pg
2649 7544a042 Stefan Weil
2650 7544a042 Stefan Weil
@node Data Type Index
2651 7544a042 Stefan Weil
@section Data Type Index
2652 7544a042 Stefan Weil
2653 7544a042 Stefan Weil
This index could be used for qdev device names and options.
2654 7544a042 Stefan Weil
2655 7544a042 Stefan Weil
@printindex tp
2656 7544a042 Stefan Weil
2657 7544a042 Stefan Weil
@node Variable Index
2658 7544a042 Stefan Weil
@section Variable Index
2659 7544a042 Stefan Weil
@printindex vr
2660 7544a042 Stefan Weil
2661 debc7065 bellard
@bye