Statistics
| Branch: | Revision:

root / memory.c @ 545e92e0

History | View | Annotate | Download (33.3 kB)

1
/*
2
 * Physical memory management
3
 *
4
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5
 *
6
 * Authors:
7
 *  Avi Kivity <avi@redhat.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2.  See
10
 * the COPYING file in the top-level directory.
11
 *
12
 */
13

    
14
#include "memory.h"
15
#include "exec-memory.h"
16
#include "ioport.h"
17
#include "bitops.h"
18
#include "kvm.h"
19
#include <assert.h>
20

    
21
unsigned memory_region_transaction_depth = 0;
22

    
23
typedef struct AddrRange AddrRange;
24

    
25
/*
26
 * Note using signed integers limits us to physical addresses at most
27
 * 63 bits wide.  They are needed for negative offsetting in aliases
28
 * (large MemoryRegion::alias_offset).
29
 */
30
struct AddrRange {
31
    int64_t start;
32
    int64_t size;
33
};
34

    
35
static AddrRange addrrange_make(int64_t start, int64_t size)
36
{
37
    return (AddrRange) { start, size };
38
}
39

    
40
static bool addrrange_equal(AddrRange r1, AddrRange r2)
41
{
42
    return r1.start == r2.start && r1.size == r2.size;
43
}
44

    
45
static int64_t addrrange_end(AddrRange r)
46
{
47
    return r.start + r.size;
48
}
49

    
50
static AddrRange addrrange_shift(AddrRange range, int64_t delta)
51
{
52
    range.start += delta;
53
    return range;
54
}
55

    
56
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
57
{
58
    return (r1.start >= r2.start && r1.start < r2.start + r2.size)
59
        || (r2.start >= r1.start && r2.start < r1.start + r1.size);
60
}
61

    
62
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
63
{
64
    int64_t start = MAX(r1.start, r2.start);
65
    /* off-by-one arithmetic to prevent overflow */
66
    int64_t end = MIN(addrrange_end(r1) - 1, addrrange_end(r2) - 1);
67
    return addrrange_make(start, end - start + 1);
68
}
69

    
70
struct CoalescedMemoryRange {
71
    AddrRange addr;
72
    QTAILQ_ENTRY(CoalescedMemoryRange) link;
73
};
74

    
75
struct MemoryRegionIoeventfd {
76
    AddrRange addr;
77
    bool match_data;
78
    uint64_t data;
79
    int fd;
80
};
81

    
82
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
83
                                           MemoryRegionIoeventfd b)
84
{
85
    if (a.addr.start < b.addr.start) {
86
        return true;
87
    } else if (a.addr.start > b.addr.start) {
88
        return false;
89
    } else if (a.addr.size < b.addr.size) {
90
        return true;
91
    } else if (a.addr.size > b.addr.size) {
92
        return false;
93
    } else if (a.match_data < b.match_data) {
94
        return true;
95
    } else  if (a.match_data > b.match_data) {
96
        return false;
97
    } else if (a.match_data) {
98
        if (a.data < b.data) {
99
            return true;
100
        } else if (a.data > b.data) {
101
            return false;
102
        }
103
    }
104
    if (a.fd < b.fd) {
105
        return true;
106
    } else if (a.fd > b.fd) {
107
        return false;
108
    }
109
    return false;
110
}
111

    
112
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
113
                                          MemoryRegionIoeventfd b)
114
{
115
    return !memory_region_ioeventfd_before(a, b)
116
        && !memory_region_ioeventfd_before(b, a);
117
}
118

    
119
typedef struct FlatRange FlatRange;
120
typedef struct FlatView FlatView;
121

    
122
/* Range of memory in the global map.  Addresses are absolute. */
123
struct FlatRange {
124
    MemoryRegion *mr;
125
    target_phys_addr_t offset_in_region;
126
    AddrRange addr;
127
    uint8_t dirty_log_mask;
128
};
129

    
130
/* Flattened global view of current active memory hierarchy.  Kept in sorted
131
 * order.
132
 */
133
struct FlatView {
134
    FlatRange *ranges;
135
    unsigned nr;
136
    unsigned nr_allocated;
137
};
138

    
139
typedef struct AddressSpace AddressSpace;
140
typedef struct AddressSpaceOps AddressSpaceOps;
141

    
142
/* A system address space - I/O, memory, etc. */
143
struct AddressSpace {
144
    const AddressSpaceOps *ops;
145
    MemoryRegion *root;
146
    FlatView current_map;
147
    int ioeventfd_nb;
148
    MemoryRegionIoeventfd *ioeventfds;
149
};
150

    
151
struct AddressSpaceOps {
152
    void (*range_add)(AddressSpace *as, FlatRange *fr);
153
    void (*range_del)(AddressSpace *as, FlatRange *fr);
154
    void (*log_start)(AddressSpace *as, FlatRange *fr);
155
    void (*log_stop)(AddressSpace *as, FlatRange *fr);
156
    void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd);
157
    void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd);
158
};
159

    
160
#define FOR_EACH_FLAT_RANGE(var, view)          \
161
    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
162

    
163
static bool flatrange_equal(FlatRange *a, FlatRange *b)
164
{
165
    return a->mr == b->mr
166
        && addrrange_equal(a->addr, b->addr)
167
        && a->offset_in_region == b->offset_in_region;
168
}
169

    
170
static void flatview_init(FlatView *view)
171
{
172
    view->ranges = NULL;
173
    view->nr = 0;
174
    view->nr_allocated = 0;
175
}
176

    
177
/* Insert a range into a given position.  Caller is responsible for maintaining
178
 * sorting order.
179
 */
180
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
181
{
182
    if (view->nr == view->nr_allocated) {
183
        view->nr_allocated = MAX(2 * view->nr, 10);
184
        view->ranges = qemu_realloc(view->ranges,
185
                                    view->nr_allocated * sizeof(*view->ranges));
186
    }
187
    memmove(view->ranges + pos + 1, view->ranges + pos,
188
            (view->nr - pos) * sizeof(FlatRange));
189
    view->ranges[pos] = *range;
190
    ++view->nr;
191
}
192

    
193
static void flatview_destroy(FlatView *view)
194
{
195
    qemu_free(view->ranges);
196
}
197

    
198
static bool can_merge(FlatRange *r1, FlatRange *r2)
199
{
200
    return addrrange_end(r1->addr) == r2->addr.start
201
        && r1->mr == r2->mr
202
        && r1->offset_in_region + r1->addr.size == r2->offset_in_region
203
        && r1->dirty_log_mask == r2->dirty_log_mask;
204
}
205

    
206
/* Attempt to simplify a view by merging ajacent ranges */
207
static void flatview_simplify(FlatView *view)
208
{
209
    unsigned i, j;
210

    
211
    i = 0;
212
    while (i < view->nr) {
213
        j = i + 1;
214
        while (j < view->nr
215
               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
216
            view->ranges[i].addr.size += view->ranges[j].addr.size;
217
            ++j;
218
        }
219
        ++i;
220
        memmove(&view->ranges[i], &view->ranges[j],
221
                (view->nr - j) * sizeof(view->ranges[j]));
222
        view->nr -= j - i;
223
    }
224
}
225

    
226
static void memory_region_prepare_ram_addr(MemoryRegion *mr);
227

    
228
static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
229
{
230
    ram_addr_t phys_offset, region_offset;
231

    
232
    memory_region_prepare_ram_addr(fr->mr);
233

    
234
    phys_offset = fr->mr->ram_addr;
235
    region_offset = fr->offset_in_region;
236
    /* cpu_register_physical_memory_log() wants region_offset for
237
     * mmio, but prefers offseting phys_offset for RAM.  Humour it.
238
     */
239
    if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
240
        phys_offset += region_offset;
241
        region_offset = 0;
242
    }
243

    
244
    cpu_register_physical_memory_log(fr->addr.start,
245
                                     fr->addr.size,
246
                                     phys_offset,
247
                                     region_offset,
248
                                     fr->dirty_log_mask);
249
}
250

    
251
static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
252
{
253
    if (fr->dirty_log_mask) {
254
        cpu_physical_sync_dirty_bitmap(fr->addr.start,
255
                                       fr->addr.start + fr->addr.size);
256
    }
257
    cpu_register_physical_memory(fr->addr.start, fr->addr.size,
258
                                 IO_MEM_UNASSIGNED);
259
}
260

    
261
static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
262
{
263
    cpu_physical_log_start(fr->addr.start, fr->addr.size);
264
}
265

    
266
static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
267
{
268
    cpu_physical_log_stop(fr->addr.start, fr->addr.size);
269
}
270

    
271
static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
272
{
273
    int r;
274

    
275
    assert(fd->match_data && fd->addr.size == 4);
276

    
277
    r = kvm_set_ioeventfd_mmio_long(fd->fd, fd->addr.start, fd->data, true);
278
    if (r < 0) {
279
        abort();
280
    }
281
}
282

    
283
static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
284
{
285
    int r;
286

    
287
    r = kvm_set_ioeventfd_mmio_long(fd->fd, fd->addr.start, fd->data, false);
288
    if (r < 0) {
289
        abort();
290
    }
291
}
292

    
293
static const AddressSpaceOps address_space_ops_memory = {
294
    .range_add = as_memory_range_add,
295
    .range_del = as_memory_range_del,
296
    .log_start = as_memory_log_start,
297
    .log_stop = as_memory_log_stop,
298
    .ioeventfd_add = as_memory_ioeventfd_add,
299
    .ioeventfd_del = as_memory_ioeventfd_del,
300
};
301

    
302
static AddressSpace address_space_memory = {
303
    .ops = &address_space_ops_memory,
304
};
305

    
306
static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
307
                                             unsigned width, bool write)
308
{
309
    const MemoryRegionPortio *mrp;
310

    
311
    for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
312
        if (offset >= mrp->offset && offset < mrp->offset + mrp->len
313
            && width == mrp->size
314
            && (write ? (bool)mrp->write : (bool)mrp->read)) {
315
            return mrp;
316
        }
317
    }
318
    return NULL;
319
}
320

    
321
static void memory_region_iorange_read(IORange *iorange,
322
                                       uint64_t offset,
323
                                       unsigned width,
324
                                       uint64_t *data)
325
{
326
    MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
327

    
328
    if (mr->ops->old_portio) {
329
        const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
330

    
331
        *data = ((uint64_t)1 << (width * 8)) - 1;
332
        if (mrp) {
333
            *data = mrp->read(mr->opaque, offset - mrp->offset);
334
        }
335
        return;
336
    }
337
    *data = mr->ops->read(mr->opaque, offset, width);
338
}
339

    
340
static void memory_region_iorange_write(IORange *iorange,
341
                                        uint64_t offset,
342
                                        unsigned width,
343
                                        uint64_t data)
344
{
345
    MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
346

    
347
    if (mr->ops->old_portio) {
348
        const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
349

    
350
        if (mrp) {
351
            mrp->write(mr->opaque, offset - mrp->offset, data);
352
        }
353
        return;
354
    }
355
    mr->ops->write(mr->opaque, offset, data, width);
356
}
357

    
358
static const IORangeOps memory_region_iorange_ops = {
359
    .read = memory_region_iorange_read,
360
    .write = memory_region_iorange_write,
361
};
362

    
363
static void as_io_range_add(AddressSpace *as, FlatRange *fr)
364
{
365
    iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
366
                 fr->addr.start,fr->addr.size);
367
    ioport_register(&fr->mr->iorange);
368
}
369

    
370
static void as_io_range_del(AddressSpace *as, FlatRange *fr)
371
{
372
    isa_unassign_ioport(fr->addr.start, fr->addr.size);
373
}
374

    
375
static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
376
{
377
    int r;
378

    
379
    assert(fd->match_data && fd->addr.size == 2);
380

    
381
    r = kvm_set_ioeventfd_pio_word(fd->fd, fd->addr.start, fd->data, true);
382
    if (r < 0) {
383
        abort();
384
    }
385
}
386

    
387
static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
388
{
389
    int r;
390

    
391
    r = kvm_set_ioeventfd_pio_word(fd->fd, fd->addr.start, fd->data, false);
392
    if (r < 0) {
393
        abort();
394
    }
395
}
396

    
397
static const AddressSpaceOps address_space_ops_io = {
398
    .range_add = as_io_range_add,
399
    .range_del = as_io_range_del,
400
    .ioeventfd_add = as_io_ioeventfd_add,
401
    .ioeventfd_del = as_io_ioeventfd_del,
402
};
403

    
404
static AddressSpace address_space_io = {
405
    .ops = &address_space_ops_io,
406
};
407

    
408
/* Render a memory region into the global view.  Ranges in @view obscure
409
 * ranges in @mr.
410
 */
411
static void render_memory_region(FlatView *view,
412
                                 MemoryRegion *mr,
413
                                 target_phys_addr_t base,
414
                                 AddrRange clip)
415
{
416
    MemoryRegion *subregion;
417
    unsigned i;
418
    target_phys_addr_t offset_in_region;
419
    int64_t remain;
420
    int64_t now;
421
    FlatRange fr;
422
    AddrRange tmp;
423

    
424
    base += mr->addr;
425

    
426
    tmp = addrrange_make(base, mr->size);
427

    
428
    if (!addrrange_intersects(tmp, clip)) {
429
        return;
430
    }
431

    
432
    clip = addrrange_intersection(tmp, clip);
433

    
434
    if (mr->alias) {
435
        base -= mr->alias->addr;
436
        base -= mr->alias_offset;
437
        render_memory_region(view, mr->alias, base, clip);
438
        return;
439
    }
440

    
441
    /* Render subregions in priority order. */
442
    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
443
        render_memory_region(view, subregion, base, clip);
444
    }
445

    
446
    if (!mr->terminates) {
447
        return;
448
    }
449

    
450
    offset_in_region = clip.start - base;
451
    base = clip.start;
452
    remain = clip.size;
453

    
454
    /* Render the region itself into any gaps left by the current view. */
455
    for (i = 0; i < view->nr && remain; ++i) {
456
        if (base >= addrrange_end(view->ranges[i].addr)) {
457
            continue;
458
        }
459
        if (base < view->ranges[i].addr.start) {
460
            now = MIN(remain, view->ranges[i].addr.start - base);
461
            fr.mr = mr;
462
            fr.offset_in_region = offset_in_region;
463
            fr.addr = addrrange_make(base, now);
464
            fr.dirty_log_mask = mr->dirty_log_mask;
465
            flatview_insert(view, i, &fr);
466
            ++i;
467
            base += now;
468
            offset_in_region += now;
469
            remain -= now;
470
        }
471
        if (base == view->ranges[i].addr.start) {
472
            now = MIN(remain, view->ranges[i].addr.size);
473
            base += now;
474
            offset_in_region += now;
475
            remain -= now;
476
        }
477
    }
478
    if (remain) {
479
        fr.mr = mr;
480
        fr.offset_in_region = offset_in_region;
481
        fr.addr = addrrange_make(base, remain);
482
        fr.dirty_log_mask = mr->dirty_log_mask;
483
        flatview_insert(view, i, &fr);
484
    }
485
}
486

    
487
/* Render a memory topology into a list of disjoint absolute ranges. */
488
static FlatView generate_memory_topology(MemoryRegion *mr)
489
{
490
    FlatView view;
491

    
492
    flatview_init(&view);
493

    
494
    render_memory_region(&view, mr, 0, addrrange_make(0, INT64_MAX));
495
    flatview_simplify(&view);
496

    
497
    return view;
498
}
499

    
500
static void address_space_add_del_ioeventfds(AddressSpace *as,
501
                                             MemoryRegionIoeventfd *fds_new,
502
                                             unsigned fds_new_nb,
503
                                             MemoryRegionIoeventfd *fds_old,
504
                                             unsigned fds_old_nb)
505
{
506
    unsigned iold, inew;
507

    
508
    /* Generate a symmetric difference of the old and new fd sets, adding
509
     * and deleting as necessary.
510
     */
511

    
512
    iold = inew = 0;
513
    while (iold < fds_old_nb || inew < fds_new_nb) {
514
        if (iold < fds_old_nb
515
            && (inew == fds_new_nb
516
                || memory_region_ioeventfd_before(fds_old[iold],
517
                                                  fds_new[inew]))) {
518
            as->ops->ioeventfd_del(as, &fds_old[iold]);
519
            ++iold;
520
        } else if (inew < fds_new_nb
521
                   && (iold == fds_old_nb
522
                       || memory_region_ioeventfd_before(fds_new[inew],
523
                                                         fds_old[iold]))) {
524
            as->ops->ioeventfd_add(as, &fds_new[inew]);
525
            ++inew;
526
        } else {
527
            ++iold;
528
            ++inew;
529
        }
530
    }
531
}
532

    
533
static void address_space_update_ioeventfds(AddressSpace *as)
534
{
535
    FlatRange *fr;
536
    unsigned ioeventfd_nb = 0;
537
    MemoryRegionIoeventfd *ioeventfds = NULL;
538
    AddrRange tmp;
539
    unsigned i;
540

    
541
    FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
542
        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
543
            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
544
                                  fr->addr.start - fr->offset_in_region);
545
            if (addrrange_intersects(fr->addr, tmp)) {
546
                ++ioeventfd_nb;
547
                ioeventfds = qemu_realloc(ioeventfds,
548
                                          ioeventfd_nb * sizeof(*ioeventfds));
549
                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
550
                ioeventfds[ioeventfd_nb-1].addr = tmp;
551
            }
552
        }
553
    }
554

    
555
    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
556
                                     as->ioeventfds, as->ioeventfd_nb);
557

    
558
    qemu_free(as->ioeventfds);
559
    as->ioeventfds = ioeventfds;
560
    as->ioeventfd_nb = ioeventfd_nb;
561
}
562

    
563
static void address_space_update_topology_pass(AddressSpace *as,
564
                                               FlatView old_view,
565
                                               FlatView new_view,
566
                                               bool adding)
567
{
568
    unsigned iold, inew;
569
    FlatRange *frold, *frnew;
570

    
571
    /* Generate a symmetric difference of the old and new memory maps.
572
     * Kill ranges in the old map, and instantiate ranges in the new map.
573
     */
574
    iold = inew = 0;
575
    while (iold < old_view.nr || inew < new_view.nr) {
576
        if (iold < old_view.nr) {
577
            frold = &old_view.ranges[iold];
578
        } else {
579
            frold = NULL;
580
        }
581
        if (inew < new_view.nr) {
582
            frnew = &new_view.ranges[inew];
583
        } else {
584
            frnew = NULL;
585
        }
586

    
587
        if (frold
588
            && (!frnew
589
                || frold->addr.start < frnew->addr.start
590
                || (frold->addr.start == frnew->addr.start
591
                    && !flatrange_equal(frold, frnew)))) {
592
            /* In old, but (not in new, or in new but attributes changed). */
593

    
594
            if (!adding) {
595
                as->ops->range_del(as, frold);
596
            }
597

    
598
            ++iold;
599
        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
600
            /* In both (logging may have changed) */
601

    
602
            if (adding) {
603
                if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
604
                    as->ops->log_stop(as, frnew);
605
                } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
606
                    as->ops->log_start(as, frnew);
607
                }
608
            }
609

    
610
            ++iold;
611
            ++inew;
612
        } else {
613
            /* In new */
614

    
615
            if (adding) {
616
                as->ops->range_add(as, frnew);
617
            }
618

    
619
            ++inew;
620
        }
621
    }
622
}
623

    
624

    
625
static void address_space_update_topology(AddressSpace *as)
626
{
627
    FlatView old_view = as->current_map;
628
    FlatView new_view = generate_memory_topology(as->root);
629

    
630
    address_space_update_topology_pass(as, old_view, new_view, false);
631
    address_space_update_topology_pass(as, old_view, new_view, true);
632

    
633
    as->current_map = new_view;
634
    flatview_destroy(&old_view);
635
    address_space_update_ioeventfds(as);
636
}
637

    
638
static void memory_region_update_topology(void)
639
{
640
    if (memory_region_transaction_depth) {
641
        return;
642
    }
643

    
644
    if (address_space_memory.root) {
645
        address_space_update_topology(&address_space_memory);
646
    }
647
    if (address_space_io.root) {
648
        address_space_update_topology(&address_space_io);
649
    }
650
}
651

    
652
void memory_region_transaction_begin(void)
653
{
654
    ++memory_region_transaction_depth;
655
}
656

    
657
void memory_region_transaction_commit(void)
658
{
659
    assert(memory_region_transaction_depth);
660
    --memory_region_transaction_depth;
661
    memory_region_update_topology();
662
}
663

    
664
static void memory_region_destructor_none(MemoryRegion *mr)
665
{
666
}
667

    
668
static void memory_region_destructor_ram(MemoryRegion *mr)
669
{
670
    qemu_ram_free(mr->ram_addr);
671
}
672

    
673
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
674
{
675
    qemu_ram_free_from_ptr(mr->ram_addr);
676
}
677

    
678
static void memory_region_destructor_iomem(MemoryRegion *mr)
679
{
680
    cpu_unregister_io_memory(mr->ram_addr);
681
}
682

    
683
void memory_region_init(MemoryRegion *mr,
684
                        const char *name,
685
                        uint64_t size)
686
{
687
    mr->ops = NULL;
688
    mr->parent = NULL;
689
    mr->size = size;
690
    mr->addr = 0;
691
    mr->offset = 0;
692
    mr->terminates = false;
693
    mr->destructor = memory_region_destructor_none;
694
    mr->priority = 0;
695
    mr->may_overlap = false;
696
    mr->alias = NULL;
697
    QTAILQ_INIT(&mr->subregions);
698
    memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
699
    QTAILQ_INIT(&mr->coalesced);
700
    mr->name = qemu_strdup(name);
701
    mr->dirty_log_mask = 0;
702
    mr->ioeventfd_nb = 0;
703
    mr->ioeventfds = NULL;
704
}
705

    
706
static bool memory_region_access_valid(MemoryRegion *mr,
707
                                       target_phys_addr_t addr,
708
                                       unsigned size)
709
{
710
    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
711
        return false;
712
    }
713

    
714
    /* Treat zero as compatibility all valid */
715
    if (!mr->ops->valid.max_access_size) {
716
        return true;
717
    }
718

    
719
    if (size > mr->ops->valid.max_access_size
720
        || size < mr->ops->valid.min_access_size) {
721
        return false;
722
    }
723
    return true;
724
}
725

    
726
static uint32_t memory_region_read_thunk_n(void *_mr,
727
                                           target_phys_addr_t addr,
728
                                           unsigned size)
729
{
730
    MemoryRegion *mr = _mr;
731
    unsigned access_size, access_size_min, access_size_max;
732
    uint64_t access_mask;
733
    uint32_t data = 0, tmp;
734
    unsigned i;
735

    
736
    if (!memory_region_access_valid(mr, addr, size)) {
737
        return -1U; /* FIXME: better signalling */
738
    }
739

    
740
    if (!mr->ops->read) {
741
        return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
742
    }
743

    
744
    /* FIXME: support unaligned access */
745

    
746
    access_size_min = mr->ops->impl.min_access_size;
747
    if (!access_size_min) {
748
        access_size_min = 1;
749
    }
750
    access_size_max = mr->ops->impl.max_access_size;
751
    if (!access_size_max) {
752
        access_size_max = 4;
753
    }
754
    access_size = MAX(MIN(size, access_size_max), access_size_min);
755
    access_mask = -1ULL >> (64 - access_size * 8);
756
    addr += mr->offset;
757
    for (i = 0; i < size; i += access_size) {
758
        /* FIXME: big-endian support */
759
        tmp = mr->ops->read(mr->opaque, addr + i, access_size);
760
        data |= (tmp & access_mask) << (i * 8);
761
    }
762

    
763
    return data;
764
}
765

    
766
static void memory_region_write_thunk_n(void *_mr,
767
                                        target_phys_addr_t addr,
768
                                        unsigned size,
769
                                        uint64_t data)
770
{
771
    MemoryRegion *mr = _mr;
772
    unsigned access_size, access_size_min, access_size_max;
773
    uint64_t access_mask;
774
    unsigned i;
775

    
776
    if (!memory_region_access_valid(mr, addr, size)) {
777
        return; /* FIXME: better signalling */
778
    }
779

    
780
    if (!mr->ops->write) {
781
        mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
782
        return;
783
    }
784

    
785
    /* FIXME: support unaligned access */
786

    
787
    access_size_min = mr->ops->impl.min_access_size;
788
    if (!access_size_min) {
789
        access_size_min = 1;
790
    }
791
    access_size_max = mr->ops->impl.max_access_size;
792
    if (!access_size_max) {
793
        access_size_max = 4;
794
    }
795
    access_size = MAX(MIN(size, access_size_max), access_size_min);
796
    access_mask = -1ULL >> (64 - access_size * 8);
797
    addr += mr->offset;
798
    for (i = 0; i < size; i += access_size) {
799
        /* FIXME: big-endian support */
800
        mr->ops->write(mr->opaque, addr + i, (data >> (i * 8)) & access_mask,
801
                       access_size);
802
    }
803
}
804

    
805
static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr)
806
{
807
    return memory_region_read_thunk_n(mr, addr, 1);
808
}
809

    
810
static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr)
811
{
812
    return memory_region_read_thunk_n(mr, addr, 2);
813
}
814

    
815
static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr)
816
{
817
    return memory_region_read_thunk_n(mr, addr, 4);
818
}
819

    
820
static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr,
821
                                        uint32_t data)
822
{
823
    memory_region_write_thunk_n(mr, addr, 1, data);
824
}
825

    
826
static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr,
827
                                        uint32_t data)
828
{
829
    memory_region_write_thunk_n(mr, addr, 2, data);
830
}
831

    
832
static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr,
833
                                        uint32_t data)
834
{
835
    memory_region_write_thunk_n(mr, addr, 4, data);
836
}
837

    
838
static CPUReadMemoryFunc * const memory_region_read_thunk[] = {
839
    memory_region_read_thunk_b,
840
    memory_region_read_thunk_w,
841
    memory_region_read_thunk_l,
842
};
843

    
844
static CPUWriteMemoryFunc * const memory_region_write_thunk[] = {
845
    memory_region_write_thunk_b,
846
    memory_region_write_thunk_w,
847
    memory_region_write_thunk_l,
848
};
849

    
850
static void memory_region_prepare_ram_addr(MemoryRegion *mr)
851
{
852
    if (mr->backend_registered) {
853
        return;
854
    }
855

    
856
    mr->destructor = memory_region_destructor_iomem;
857
    mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk,
858
                                          memory_region_write_thunk,
859
                                          mr,
860
                                          mr->ops->endianness);
861
    mr->backend_registered = true;
862
}
863

    
864
void memory_region_init_io(MemoryRegion *mr,
865
                           const MemoryRegionOps *ops,
866
                           void *opaque,
867
                           const char *name,
868
                           uint64_t size)
869
{
870
    memory_region_init(mr, name, size);
871
    mr->ops = ops;
872
    mr->opaque = opaque;
873
    mr->terminates = true;
874
    mr->backend_registered = false;
875
}
876

    
877
void memory_region_init_ram(MemoryRegion *mr,
878
                            DeviceState *dev,
879
                            const char *name,
880
                            uint64_t size)
881
{
882
    memory_region_init(mr, name, size);
883
    mr->terminates = true;
884
    mr->destructor = memory_region_destructor_ram;
885
    mr->ram_addr = qemu_ram_alloc(dev, name, size);
886
    mr->backend_registered = true;
887
}
888

    
889
void memory_region_init_ram_ptr(MemoryRegion *mr,
890
                                DeviceState *dev,
891
                                const char *name,
892
                                uint64_t size,
893
                                void *ptr)
894
{
895
    memory_region_init(mr, name, size);
896
    mr->terminates = true;
897
    mr->destructor = memory_region_destructor_ram_from_ptr;
898
    mr->ram_addr = qemu_ram_alloc_from_ptr(dev, name, size, ptr);
899
    mr->backend_registered = true;
900
}
901

    
902
void memory_region_init_alias(MemoryRegion *mr,
903
                              const char *name,
904
                              MemoryRegion *orig,
905
                              target_phys_addr_t offset,
906
                              uint64_t size)
907
{
908
    memory_region_init(mr, name, size);
909
    mr->alias = orig;
910
    mr->alias_offset = offset;
911
}
912

    
913
void memory_region_destroy(MemoryRegion *mr)
914
{
915
    assert(QTAILQ_EMPTY(&mr->subregions));
916
    mr->destructor(mr);
917
    memory_region_clear_coalescing(mr);
918
    qemu_free((char *)mr->name);
919
    qemu_free(mr->ioeventfds);
920
}
921

    
922
uint64_t memory_region_size(MemoryRegion *mr)
923
{
924
    return mr->size;
925
}
926

    
927
void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset)
928
{
929
    mr->offset = offset;
930
}
931

    
932
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
933
{
934
    uint8_t mask = 1 << client;
935

    
936
    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
937
    memory_region_update_topology();
938
}
939

    
940
bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
941
                             unsigned client)
942
{
943
    assert(mr->terminates);
944
    return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client);
945
}
946

    
947
void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr)
948
{
949
    assert(mr->terminates);
950
    return cpu_physical_memory_set_dirty(mr->ram_addr + addr);
951
}
952

    
953
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
954
{
955
    FlatRange *fr;
956

    
957
    FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
958
        if (fr->mr == mr) {
959
            cpu_physical_sync_dirty_bitmap(fr->addr.start,
960
                                           fr->addr.start + fr->addr.size);
961
        }
962
    }
963
}
964

    
965
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
966
{
967
    /* FIXME */
968
}
969

    
970
void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
971
                               target_phys_addr_t size, unsigned client)
972
{
973
    assert(mr->terminates);
974
    cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
975
                                    mr->ram_addr + addr + size,
976
                                    1 << client);
977
}
978

    
979
void *memory_region_get_ram_ptr(MemoryRegion *mr)
980
{
981
    if (mr->alias) {
982
        return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
983
    }
984

    
985
    assert(mr->terminates);
986

    
987
    return qemu_get_ram_ptr(mr->ram_addr);
988
}
989

    
990
static void memory_region_update_coalesced_range(MemoryRegion *mr)
991
{
992
    FlatRange *fr;
993
    CoalescedMemoryRange *cmr;
994
    AddrRange tmp;
995

    
996
    FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
997
        if (fr->mr == mr) {
998
            qemu_unregister_coalesced_mmio(fr->addr.start, fr->addr.size);
999
            QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1000
                tmp = addrrange_shift(cmr->addr,
1001
                                      fr->addr.start - fr->offset_in_region);
1002
                if (!addrrange_intersects(tmp, fr->addr)) {
1003
                    continue;
1004
                }
1005
                tmp = addrrange_intersection(tmp, fr->addr);
1006
                qemu_register_coalesced_mmio(tmp.start, tmp.size);
1007
            }
1008
        }
1009
    }
1010
}
1011

    
1012
void memory_region_set_coalescing(MemoryRegion *mr)
1013
{
1014
    memory_region_clear_coalescing(mr);
1015
    memory_region_add_coalescing(mr, 0, mr->size);
1016
}
1017

    
1018
void memory_region_add_coalescing(MemoryRegion *mr,
1019
                                  target_phys_addr_t offset,
1020
                                  uint64_t size)
1021
{
1022
    CoalescedMemoryRange *cmr = qemu_malloc(sizeof(*cmr));
1023

    
1024
    cmr->addr = addrrange_make(offset, size);
1025
    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1026
    memory_region_update_coalesced_range(mr);
1027
}
1028

    
1029
void memory_region_clear_coalescing(MemoryRegion *mr)
1030
{
1031
    CoalescedMemoryRange *cmr;
1032

    
1033
    while (!QTAILQ_EMPTY(&mr->coalesced)) {
1034
        cmr = QTAILQ_FIRST(&mr->coalesced);
1035
        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1036
        qemu_free(cmr);
1037
    }
1038
    memory_region_update_coalesced_range(mr);
1039
}
1040

    
1041
void memory_region_add_eventfd(MemoryRegion *mr,
1042
                               target_phys_addr_t addr,
1043
                               unsigned size,
1044
                               bool match_data,
1045
                               uint64_t data,
1046
                               int fd)
1047
{
1048
    MemoryRegionIoeventfd mrfd = {
1049
        .addr.start = addr,
1050
        .addr.size = size,
1051
        .match_data = match_data,
1052
        .data = data,
1053
        .fd = fd,
1054
    };
1055
    unsigned i;
1056

    
1057
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1058
        if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1059
            break;
1060
        }
1061
    }
1062
    ++mr->ioeventfd_nb;
1063
    mr->ioeventfds = qemu_realloc(mr->ioeventfds,
1064
                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1065
    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1066
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1067
    mr->ioeventfds[i] = mrfd;
1068
    memory_region_update_topology();
1069
}
1070

    
1071
void memory_region_del_eventfd(MemoryRegion *mr,
1072
                               target_phys_addr_t addr,
1073
                               unsigned size,
1074
                               bool match_data,
1075
                               uint64_t data,
1076
                               int fd)
1077
{
1078
    MemoryRegionIoeventfd mrfd = {
1079
        .addr.start = addr,
1080
        .addr.size = size,
1081
        .match_data = match_data,
1082
        .data = data,
1083
        .fd = fd,
1084
    };
1085
    unsigned i;
1086

    
1087
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1088
        if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1089
            break;
1090
        }
1091
    }
1092
    assert(i != mr->ioeventfd_nb);
1093
    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1094
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1095
    --mr->ioeventfd_nb;
1096
    mr->ioeventfds = qemu_realloc(mr->ioeventfds,
1097
                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1098
    memory_region_update_topology();
1099
}
1100

    
1101
static void memory_region_add_subregion_common(MemoryRegion *mr,
1102
                                               target_phys_addr_t offset,
1103
                                               MemoryRegion *subregion)
1104
{
1105
    MemoryRegion *other;
1106

    
1107
    assert(!subregion->parent);
1108
    subregion->parent = mr;
1109
    subregion->addr = offset;
1110
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1111
        if (subregion->may_overlap || other->may_overlap) {
1112
            continue;
1113
        }
1114
        if (offset >= other->offset + other->size
1115
            || offset + subregion->size <= other->offset) {
1116
            continue;
1117
        }
1118
        printf("warning: subregion collision %llx/%llx vs %llx/%llx\n",
1119
               (unsigned long long)offset,
1120
               (unsigned long long)subregion->size,
1121
               (unsigned long long)other->offset,
1122
               (unsigned long long)other->size);
1123
    }
1124
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1125
        if (subregion->priority >= other->priority) {
1126
            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1127
            goto done;
1128
        }
1129
    }
1130
    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1131
done:
1132
    memory_region_update_topology();
1133
}
1134

    
1135

    
1136
void memory_region_add_subregion(MemoryRegion *mr,
1137
                                 target_phys_addr_t offset,
1138
                                 MemoryRegion *subregion)
1139
{
1140
    subregion->may_overlap = false;
1141
    subregion->priority = 0;
1142
    memory_region_add_subregion_common(mr, offset, subregion);
1143
}
1144

    
1145
void memory_region_add_subregion_overlap(MemoryRegion *mr,
1146
                                         target_phys_addr_t offset,
1147
                                         MemoryRegion *subregion,
1148
                                         unsigned priority)
1149
{
1150
    subregion->may_overlap = true;
1151
    subregion->priority = priority;
1152
    memory_region_add_subregion_common(mr, offset, subregion);
1153
}
1154

    
1155
void memory_region_del_subregion(MemoryRegion *mr,
1156
                                 MemoryRegion *subregion)
1157
{
1158
    assert(subregion->parent == mr);
1159
    subregion->parent = NULL;
1160
    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1161
    memory_region_update_topology();
1162
}
1163

    
1164
void set_system_memory_map(MemoryRegion *mr)
1165
{
1166
    address_space_memory.root = mr;
1167
    memory_region_update_topology();
1168
}
1169

    
1170
void set_system_io_map(MemoryRegion *mr)
1171
{
1172
    address_space_io.root = mr;
1173
    memory_region_update_topology();
1174
}