Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 7a5e4488

History | View | Annotate | Download (72.8 kB)

1
#include "cpu.h"
2
#include "dyngen-exec.h"
3
#include "helper.h"
4

    
5
#if !defined(CONFIG_USER_ONLY)
6
#include "softmmu_exec.h"
7
#endif
8

    
9
//#define DEBUG_MMU
10
//#define DEBUG_MXCC
11
//#define DEBUG_UNALIGNED
12
//#define DEBUG_UNASSIGNED
13
//#define DEBUG_ASI
14
//#define DEBUG_CACHE_CONTROL
15

    
16
#ifdef DEBUG_MMU
17
#define DPRINTF_MMU(fmt, ...)                                   \
18
    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
19
#else
20
#define DPRINTF_MMU(fmt, ...) do {} while (0)
21
#endif
22

    
23
#ifdef DEBUG_MXCC
24
#define DPRINTF_MXCC(fmt, ...)                                  \
25
    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
26
#else
27
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
28
#endif
29

    
30
#ifdef DEBUG_ASI
31
#define DPRINTF_ASI(fmt, ...)                                   \
32
    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
33
#endif
34

    
35
#ifdef DEBUG_CACHE_CONTROL
36
#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
37
    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
38
#else
39
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
40
#endif
41

    
42
#ifdef TARGET_SPARC64
43
#ifndef TARGET_ABI32
44
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
45
#else
46
#define AM_CHECK(env1) (1)
47
#endif
48
#endif
49

    
50
#define DT0 (env->dt0)
51
#define DT1 (env->dt1)
52
#define QT0 (env->qt0)
53
#define QT1 (env->qt1)
54

    
55
#if !defined(CONFIG_USER_ONLY)
56
static void do_unassigned_access(target_phys_addr_t addr, int is_write,
57
                                 int is_exec, int is_asi, int size);
58
#else
59
#ifdef TARGET_SPARC64
60
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
61
                                 int is_asi, int size);
62
#endif
63
#endif
64

    
65
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
66
/* Calculates TSB pointer value for fault page size 8k or 64k */
67
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
68
                                       uint64_t tag_access_register,
69
                                       int page_size)
70
{
71
    uint64_t tsb_base = tsb_register & ~0x1fffULL;
72
    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
73
    int tsb_size  = tsb_register & 0xf;
74

    
75
    /* discard lower 13 bits which hold tag access context */
76
    uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
77

    
78
    /* now reorder bits */
79
    uint64_t tsb_base_mask = ~0x1fffULL;
80
    uint64_t va = tag_access_va;
81

    
82
    /* move va bits to correct position */
83
    if (page_size == 8*1024) {
84
        va >>= 9;
85
    } else if (page_size == 64*1024) {
86
        va >>= 12;
87
    }
88

    
89
    if (tsb_size) {
90
        tsb_base_mask <<= tsb_size;
91
    }
92

    
93
    /* calculate tsb_base mask and adjust va if split is in use */
94
    if (tsb_split) {
95
        if (page_size == 8*1024) {
96
            va &= ~(1ULL << (13 + tsb_size));
97
        } else if (page_size == 64*1024) {
98
            va |= (1ULL << (13 + tsb_size));
99
        }
100
        tsb_base_mask <<= 1;
101
    }
102

    
103
    return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
104
}
105

    
106
/* Calculates tag target register value by reordering bits
107
   in tag access register */
108
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
109
{
110
    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
111
}
112

    
113
static void replace_tlb_entry(SparcTLBEntry *tlb,
114
                              uint64_t tlb_tag, uint64_t tlb_tte,
115
                              CPUState *env1)
116
{
117
    target_ulong mask, size, va, offset;
118

    
119
    /* flush page range if translation is valid */
120
    if (TTE_IS_VALID(tlb->tte)) {
121

    
122
        mask = 0xffffffffffffe000ULL;
123
        mask <<= 3 * ((tlb->tte >> 61) & 3);
124
        size = ~mask + 1;
125

    
126
        va = tlb->tag & mask;
127

    
128
        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
129
            tlb_flush_page(env1, va + offset);
130
        }
131
    }
132

    
133
    tlb->tag = tlb_tag;
134
    tlb->tte = tlb_tte;
135
}
136

    
137
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
138
                      const char *strmmu, CPUState *env1)
139
{
140
    unsigned int i;
141
    target_ulong mask;
142
    uint64_t context;
143

    
144
    int is_demap_context = (demap_addr >> 6) & 1;
145

    
146
    /* demap context */
147
    switch ((demap_addr >> 4) & 3) {
148
    case 0: /* primary */
149
        context = env1->dmmu.mmu_primary_context;
150
        break;
151
    case 1: /* secondary */
152
        context = env1->dmmu.mmu_secondary_context;
153
        break;
154
    case 2: /* nucleus */
155
        context = 0;
156
        break;
157
    case 3: /* reserved */
158
    default:
159
        return;
160
    }
161

    
162
    for (i = 0; i < 64; i++) {
163
        if (TTE_IS_VALID(tlb[i].tte)) {
164

    
165
            if (is_demap_context) {
166
                /* will remove non-global entries matching context value */
167
                if (TTE_IS_GLOBAL(tlb[i].tte) ||
168
                    !tlb_compare_context(&tlb[i], context)) {
169
                    continue;
170
                }
171
            } else {
172
                /* demap page
173
                   will remove any entry matching VA */
174
                mask = 0xffffffffffffe000ULL;
175
                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
176

    
177
                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
178
                    continue;
179
                }
180

    
181
                /* entry should be global or matching context value */
182
                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
183
                    !tlb_compare_context(&tlb[i], context)) {
184
                    continue;
185
                }
186
            }
187

    
188
            replace_tlb_entry(&tlb[i], 0, 0, env1);
189
#ifdef DEBUG_MMU
190
            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
191
            dump_mmu(stdout, fprintf, env1);
192
#endif
193
        }
194
    }
195
}
196

    
197
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
198
                                 uint64_t tlb_tag, uint64_t tlb_tte,
199
                                 const char *strmmu, CPUState *env1)
200
{
201
    unsigned int i, replace_used;
202

    
203
    /* Try replacing invalid entry */
204
    for (i = 0; i < 64; i++) {
205
        if (!TTE_IS_VALID(tlb[i].tte)) {
206
            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
207
#ifdef DEBUG_MMU
208
            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
209
            dump_mmu(stdout, fprintf, env1);
210
#endif
211
            return;
212
        }
213
    }
214

    
215
    /* All entries are valid, try replacing unlocked entry */
216

    
217
    for (replace_used = 0; replace_used < 2; ++replace_used) {
218

    
219
        /* Used entries are not replaced on first pass */
220

    
221
        for (i = 0; i < 64; i++) {
222
            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
223

    
224
                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
225
#ifdef DEBUG_MMU
226
                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
227
                            strmmu, (replace_used ? "used" : "unused"), i);
228
                dump_mmu(stdout, fprintf, env1);
229
#endif
230
                return;
231
            }
232
        }
233

    
234
        /* Now reset used bit and search for unused entries again */
235

    
236
        for (i = 0; i < 64; i++) {
237
            TTE_SET_UNUSED(tlb[i].tte);
238
        }
239
    }
240

    
241
#ifdef DEBUG_MMU
242
    DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
243
#endif
244
    /* error state? */
245
}
246

    
247
#endif
248

    
249
static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
250
{
251
#ifdef TARGET_SPARC64
252
    if (AM_CHECK(env1)) {
253
        addr &= 0xffffffffULL;
254
    }
255
#endif
256
    return addr;
257
}
258

    
259
/* returns true if access using this ASI is to have address translated by MMU
260
   otherwise access is to raw physical address */
261
static inline int is_translating_asi(int asi)
262
{
263
#ifdef TARGET_SPARC64
264
    /* Ultrasparc IIi translating asi
265
       - note this list is defined by cpu implementation
266
    */
267
    switch (asi) {
268
    case 0x04 ... 0x11:
269
    case 0x16 ... 0x19:
270
    case 0x1E ... 0x1F:
271
    case 0x24 ... 0x2C:
272
    case 0x70 ... 0x73:
273
    case 0x78 ... 0x79:
274
    case 0x80 ... 0xFF:
275
        return 1;
276

    
277
    default:
278
        return 0;
279
    }
280
#else
281
    /* TODO: check sparc32 bits */
282
    return 0;
283
#endif
284
}
285

    
286
static inline target_ulong asi_address_mask(CPUState *env1,
287
                                            int asi, target_ulong addr)
288
{
289
    if (is_translating_asi(asi)) {
290
        return address_mask(env, addr);
291
    } else {
292
        return addr;
293
    }
294
}
295

    
296
void helper_check_align(target_ulong addr, uint32_t align)
297
{
298
    if (addr & align) {
299
#ifdef DEBUG_UNALIGNED
300
        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
301
               "\n", addr, env->pc);
302
#endif
303
        helper_raise_exception(env, TT_UNALIGNED);
304
    }
305
}
306

    
307
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
308
    defined(DEBUG_MXCC)
309
static void dump_mxcc(CPUState *env)
310
{
311
    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
312
           "\n",
313
           env->mxccdata[0], env->mxccdata[1],
314
           env->mxccdata[2], env->mxccdata[3]);
315
    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
316
           "\n"
317
           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
318
           "\n",
319
           env->mxccregs[0], env->mxccregs[1],
320
           env->mxccregs[2], env->mxccregs[3],
321
           env->mxccregs[4], env->mxccregs[5],
322
           env->mxccregs[6], env->mxccregs[7]);
323
}
324
#endif
325

    
326
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
327
    && defined(DEBUG_ASI)
328
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
329
                     uint64_t r1)
330
{
331
    switch (size) {
332
    case 1:
333
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
334
                    addr, asi, r1 & 0xff);
335
        break;
336
    case 2:
337
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
338
                    addr, asi, r1 & 0xffff);
339
        break;
340
    case 4:
341
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
342
                    addr, asi, r1 & 0xffffffff);
343
        break;
344
    case 8:
345
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
346
                    addr, asi, r1);
347
        break;
348
    }
349
}
350
#endif
351

    
352
#ifndef TARGET_SPARC64
353
#ifndef CONFIG_USER_ONLY
354

    
355

    
356
/* Leon3 cache control */
357

    
358
static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
359
{
360
    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
361
                          addr, val, size);
362

    
363
    if (size != 4) {
364
        DPRINTF_CACHE_CONTROL("32bits only\n");
365
        return;
366
    }
367

    
368
    switch (addr) {
369
    case 0x00:              /* Cache control */
370

    
371
        /* These values must always be read as zeros */
372
        val &= ~CACHE_CTRL_FD;
373
        val &= ~CACHE_CTRL_FI;
374
        val &= ~CACHE_CTRL_IB;
375
        val &= ~CACHE_CTRL_IP;
376
        val &= ~CACHE_CTRL_DP;
377

    
378
        env->cache_control = val;
379
        break;
380
    case 0x04:              /* Instruction cache configuration */
381
    case 0x08:              /* Data cache configuration */
382
        /* Read Only */
383
        break;
384
    default:
385
        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
386
        break;
387
    };
388
}
389

    
390
static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
391
{
392
    uint64_t ret = 0;
393

    
394
    if (size != 4) {
395
        DPRINTF_CACHE_CONTROL("32bits only\n");
396
        return 0;
397
    }
398

    
399
    switch (addr) {
400
    case 0x00:              /* Cache control */
401
        ret = env->cache_control;
402
        break;
403

    
404
        /* Configuration registers are read and only always keep those
405
           predefined values */
406

    
407
    case 0x04:              /* Instruction cache configuration */
408
        ret = 0x10220000;
409
        break;
410
    case 0x08:              /* Data cache configuration */
411
        ret = 0x18220000;
412
        break;
413
    default:
414
        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
415
        break;
416
    };
417
    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
418
                          addr, ret, size);
419
    return ret;
420
}
421

    
422
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
423
{
424
    uint64_t ret = 0;
425
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
426
    uint32_t last_addr = addr;
427
#endif
428

    
429
    helper_check_align(addr, size - 1);
430
    switch (asi) {
431
    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
432
        switch (addr) {
433
        case 0x00:          /* Leon3 Cache Control */
434
        case 0x08:          /* Leon3 Instruction Cache config */
435
        case 0x0C:          /* Leon3 Date Cache config */
436
            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
437
                ret = leon3_cache_control_ld(addr, size);
438
            }
439
            break;
440
        case 0x01c00a00: /* MXCC control register */
441
            if (size == 8) {
442
                ret = env->mxccregs[3];
443
            } else {
444
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
445
                             size);
446
            }
447
            break;
448
        case 0x01c00a04: /* MXCC control register */
449
            if (size == 4) {
450
                ret = env->mxccregs[3];
451
            } else {
452
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
453
                             size);
454
            }
455
            break;
456
        case 0x01c00c00: /* Module reset register */
457
            if (size == 8) {
458
                ret = env->mxccregs[5];
459
                /* should we do something here? */
460
            } else {
461
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
462
                             size);
463
            }
464
            break;
465
        case 0x01c00f00: /* MBus port address register */
466
            if (size == 8) {
467
                ret = env->mxccregs[7];
468
            } else {
469
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
470
                             size);
471
            }
472
            break;
473
        default:
474
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
475
                         size);
476
            break;
477
        }
478
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
479
                     "addr = %08x -> ret = %" PRIx64 ","
480
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
481
#ifdef DEBUG_MXCC
482
        dump_mxcc(env);
483
#endif
484
        break;
485
    case 3: /* MMU probe */
486
        {
487
            int mmulev;
488

    
489
            mmulev = (addr >> 8) & 15;
490
            if (mmulev > 4) {
491
                ret = 0;
492
            } else {
493
                ret = mmu_probe(env, addr, mmulev);
494
            }
495
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
496
                        addr, mmulev, ret);
497
        }
498
        break;
499
    case 4: /* read MMU regs */
500
        {
501
            int reg = (addr >> 8) & 0x1f;
502

    
503
            ret = env->mmuregs[reg];
504
            if (reg == 3) { /* Fault status cleared on read */
505
                env->mmuregs[3] = 0;
506
            } else if (reg == 0x13) { /* Fault status read */
507
                ret = env->mmuregs[3];
508
            } else if (reg == 0x14) { /* Fault address read */
509
                ret = env->mmuregs[4];
510
            }
511
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
512
        }
513
        break;
514
    case 5: /* Turbosparc ITLB Diagnostic */
515
    case 6: /* Turbosparc DTLB Diagnostic */
516
    case 7: /* Turbosparc IOTLB Diagnostic */
517
        break;
518
    case 9: /* Supervisor code access */
519
        switch (size) {
520
        case 1:
521
            ret = ldub_code(addr);
522
            break;
523
        case 2:
524
            ret = lduw_code(addr);
525
            break;
526
        default:
527
        case 4:
528
            ret = ldl_code(addr);
529
            break;
530
        case 8:
531
            ret = ldq_code(addr);
532
            break;
533
        }
534
        break;
535
    case 0xa: /* User data access */
536
        switch (size) {
537
        case 1:
538
            ret = ldub_user(addr);
539
            break;
540
        case 2:
541
            ret = lduw_user(addr);
542
            break;
543
        default:
544
        case 4:
545
            ret = ldl_user(addr);
546
            break;
547
        case 8:
548
            ret = ldq_user(addr);
549
            break;
550
        }
551
        break;
552
    case 0xb: /* Supervisor data access */
553
        switch (size) {
554
        case 1:
555
            ret = ldub_kernel(addr);
556
            break;
557
        case 2:
558
            ret = lduw_kernel(addr);
559
            break;
560
        default:
561
        case 4:
562
            ret = ldl_kernel(addr);
563
            break;
564
        case 8:
565
            ret = ldq_kernel(addr);
566
            break;
567
        }
568
        break;
569
    case 0xc: /* I-cache tag */
570
    case 0xd: /* I-cache data */
571
    case 0xe: /* D-cache tag */
572
    case 0xf: /* D-cache data */
573
        break;
574
    case 0x20: /* MMU passthrough */
575
        switch (size) {
576
        case 1:
577
            ret = ldub_phys(addr);
578
            break;
579
        case 2:
580
            ret = lduw_phys(addr);
581
            break;
582
        default:
583
        case 4:
584
            ret = ldl_phys(addr);
585
            break;
586
        case 8:
587
            ret = ldq_phys(addr);
588
            break;
589
        }
590
        break;
591
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
592
        switch (size) {
593
        case 1:
594
            ret = ldub_phys((target_phys_addr_t)addr
595
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
596
            break;
597
        case 2:
598
            ret = lduw_phys((target_phys_addr_t)addr
599
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
600
            break;
601
        default:
602
        case 4:
603
            ret = ldl_phys((target_phys_addr_t)addr
604
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
605
            break;
606
        case 8:
607
            ret = ldq_phys((target_phys_addr_t)addr
608
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
609
            break;
610
        }
611
        break;
612
    case 0x30: /* Turbosparc secondary cache diagnostic */
613
    case 0x31: /* Turbosparc RAM snoop */
614
    case 0x32: /* Turbosparc page table descriptor diagnostic */
615
    case 0x39: /* data cache diagnostic register */
616
        ret = 0;
617
        break;
618
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
619
        {
620
            int reg = (addr >> 8) & 3;
621

    
622
            switch (reg) {
623
            case 0: /* Breakpoint Value (Addr) */
624
                ret = env->mmubpregs[reg];
625
                break;
626
            case 1: /* Breakpoint Mask */
627
                ret = env->mmubpregs[reg];
628
                break;
629
            case 2: /* Breakpoint Control */
630
                ret = env->mmubpregs[reg];
631
                break;
632
            case 3: /* Breakpoint Status */
633
                ret = env->mmubpregs[reg];
634
                env->mmubpregs[reg] = 0ULL;
635
                break;
636
            }
637
            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
638
                        ret);
639
        }
640
        break;
641
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
642
        ret = env->mmubpctrv;
643
        break;
644
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
645
        ret = env->mmubpctrc;
646
        break;
647
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
648
        ret = env->mmubpctrs;
649
        break;
650
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
651
        ret = env->mmubpaction;
652
        break;
653
    case 8: /* User code access, XXX */
654
    default:
655
        do_unassigned_access(addr, 0, 0, asi, size);
656
        ret = 0;
657
        break;
658
    }
659
    if (sign) {
660
        switch (size) {
661
        case 1:
662
            ret = (int8_t) ret;
663
            break;
664
        case 2:
665
            ret = (int16_t) ret;
666
            break;
667
        case 4:
668
            ret = (int32_t) ret;
669
            break;
670
        default:
671
            break;
672
        }
673
    }
674
#ifdef DEBUG_ASI
675
    dump_asi("read ", last_addr, asi, size, ret);
676
#endif
677
    return ret;
678
}
679

    
680
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
681
{
682
    helper_check_align(addr, size - 1);
683
    switch (asi) {
684
    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
685
        switch (addr) {
686
        case 0x00:          /* Leon3 Cache Control */
687
        case 0x08:          /* Leon3 Instruction Cache config */
688
        case 0x0C:          /* Leon3 Date Cache config */
689
            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
690
                leon3_cache_control_st(addr, val, size);
691
            }
692
            break;
693

    
694
        case 0x01c00000: /* MXCC stream data register 0 */
695
            if (size == 8) {
696
                env->mxccdata[0] = val;
697
            } else {
698
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
699
                             size);
700
            }
701
            break;
702
        case 0x01c00008: /* MXCC stream data register 1 */
703
            if (size == 8) {
704
                env->mxccdata[1] = val;
705
            } else {
706
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
707
                             size);
708
            }
709
            break;
710
        case 0x01c00010: /* MXCC stream data register 2 */
711
            if (size == 8) {
712
                env->mxccdata[2] = val;
713
            } else {
714
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
715
                             size);
716
            }
717
            break;
718
        case 0x01c00018: /* MXCC stream data register 3 */
719
            if (size == 8) {
720
                env->mxccdata[3] = val;
721
            } else {
722
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
723
                             size);
724
            }
725
            break;
726
        case 0x01c00100: /* MXCC stream source */
727
            if (size == 8) {
728
                env->mxccregs[0] = val;
729
            } else {
730
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
731
                             size);
732
            }
733
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
734
                                        0);
735
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
736
                                        8);
737
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
738
                                        16);
739
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
740
                                        24);
741
            break;
742
        case 0x01c00200: /* MXCC stream destination */
743
            if (size == 8) {
744
                env->mxccregs[1] = val;
745
            } else {
746
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
747
                             size);
748
            }
749
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
750
                     env->mxccdata[0]);
751
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
752
                     env->mxccdata[1]);
753
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
754
                     env->mxccdata[2]);
755
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
756
                     env->mxccdata[3]);
757
            break;
758
        case 0x01c00a00: /* MXCC control register */
759
            if (size == 8) {
760
                env->mxccregs[3] = val;
761
            } else {
762
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
763
                             size);
764
            }
765
            break;
766
        case 0x01c00a04: /* MXCC control register */
767
            if (size == 4) {
768
                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
769
                    | val;
770
            } else {
771
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
772
                             size);
773
            }
774
            break;
775
        case 0x01c00e00: /* MXCC error register  */
776
            /* writing a 1 bit clears the error */
777
            if (size == 8) {
778
                env->mxccregs[6] &= ~val;
779
            } else {
780
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
781
                             size);
782
            }
783
            break;
784
        case 0x01c00f00: /* MBus port address register */
785
            if (size == 8) {
786
                env->mxccregs[7] = val;
787
            } else {
788
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
789
                             size);
790
            }
791
            break;
792
        default:
793
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
794
                         size);
795
            break;
796
        }
797
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
798
                     asi, size, addr, val);
799
#ifdef DEBUG_MXCC
800
        dump_mxcc(env);
801
#endif
802
        break;
803
    case 3: /* MMU flush */
804
        {
805
            int mmulev;
806

    
807
            mmulev = (addr >> 8) & 15;
808
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
809
            switch (mmulev) {
810
            case 0: /* flush page */
811
                tlb_flush_page(env, addr & 0xfffff000);
812
                break;
813
            case 1: /* flush segment (256k) */
814
            case 2: /* flush region (16M) */
815
            case 3: /* flush context (4G) */
816
            case 4: /* flush entire */
817
                tlb_flush(env, 1);
818
                break;
819
            default:
820
                break;
821
            }
822
#ifdef DEBUG_MMU
823
            dump_mmu(stdout, fprintf, env);
824
#endif
825
        }
826
        break;
827
    case 4: /* write MMU regs */
828
        {
829
            int reg = (addr >> 8) & 0x1f;
830
            uint32_t oldreg;
831

    
832
            oldreg = env->mmuregs[reg];
833
            switch (reg) {
834
            case 0: /* Control Register */
835
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
836
                    (val & 0x00ffffff);
837
                /* Mappings generated during no-fault mode or MMU
838
                   disabled mode are invalid in normal mode */
839
                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
840
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
841
                    tlb_flush(env, 1);
842
                }
843
                break;
844
            case 1: /* Context Table Pointer Register */
845
                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
846
                break;
847
            case 2: /* Context Register */
848
                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
849
                if (oldreg != env->mmuregs[reg]) {
850
                    /* we flush when the MMU context changes because
851
                       QEMU has no MMU context support */
852
                    tlb_flush(env, 1);
853
                }
854
                break;
855
            case 3: /* Synchronous Fault Status Register with Clear */
856
            case 4: /* Synchronous Fault Address Register */
857
                break;
858
            case 0x10: /* TLB Replacement Control Register */
859
                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
860
                break;
861
            case 0x13: /* Synchronous Fault Status Register with Read
862
                          and Clear */
863
                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
864
                break;
865
            case 0x14: /* Synchronous Fault Address Register */
866
                env->mmuregs[4] = val;
867
                break;
868
            default:
869
                env->mmuregs[reg] = val;
870
                break;
871
            }
872
            if (oldreg != env->mmuregs[reg]) {
873
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
874
                            reg, oldreg, env->mmuregs[reg]);
875
            }
876
#ifdef DEBUG_MMU
877
            dump_mmu(stdout, fprintf, env);
878
#endif
879
        }
880
        break;
881
    case 5: /* Turbosparc ITLB Diagnostic */
882
    case 6: /* Turbosparc DTLB Diagnostic */
883
    case 7: /* Turbosparc IOTLB Diagnostic */
884
        break;
885
    case 0xa: /* User data access */
886
        switch (size) {
887
        case 1:
888
            stb_user(addr, val);
889
            break;
890
        case 2:
891
            stw_user(addr, val);
892
            break;
893
        default:
894
        case 4:
895
            stl_user(addr, val);
896
            break;
897
        case 8:
898
            stq_user(addr, val);
899
            break;
900
        }
901
        break;
902
    case 0xb: /* Supervisor data access */
903
        switch (size) {
904
        case 1:
905
            stb_kernel(addr, val);
906
            break;
907
        case 2:
908
            stw_kernel(addr, val);
909
            break;
910
        default:
911
        case 4:
912
            stl_kernel(addr, val);
913
            break;
914
        case 8:
915
            stq_kernel(addr, val);
916
            break;
917
        }
918
        break;
919
    case 0xc: /* I-cache tag */
920
    case 0xd: /* I-cache data */
921
    case 0xe: /* D-cache tag */
922
    case 0xf: /* D-cache data */
923
    case 0x10: /* I/D-cache flush page */
924
    case 0x11: /* I/D-cache flush segment */
925
    case 0x12: /* I/D-cache flush region */
926
    case 0x13: /* I/D-cache flush context */
927
    case 0x14: /* I/D-cache flush user */
928
        break;
929
    case 0x17: /* Block copy, sta access */
930
        {
931
            /* val = src
932
               addr = dst
933
               copy 32 bytes */
934
            unsigned int i;
935
            uint32_t src = val & ~3, dst = addr & ~3, temp;
936

    
937
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
938
                temp = ldl_kernel(src);
939
                stl_kernel(dst, temp);
940
            }
941
        }
942
        break;
943
    case 0x1f: /* Block fill, stda access */
944
        {
945
            /* addr = dst
946
               fill 32 bytes with val */
947
            unsigned int i;
948
            uint32_t dst = addr & 7;
949

    
950
            for (i = 0; i < 32; i += 8, dst += 8) {
951
                stq_kernel(dst, val);
952
            }
953
        }
954
        break;
955
    case 0x20: /* MMU passthrough */
956
        {
957
            switch (size) {
958
            case 1:
959
                stb_phys(addr, val);
960
                break;
961
            case 2:
962
                stw_phys(addr, val);
963
                break;
964
            case 4:
965
            default:
966
                stl_phys(addr, val);
967
                break;
968
            case 8:
969
                stq_phys(addr, val);
970
                break;
971
            }
972
        }
973
        break;
974
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
975
        {
976
            switch (size) {
977
            case 1:
978
                stb_phys((target_phys_addr_t)addr
979
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
980
                break;
981
            case 2:
982
                stw_phys((target_phys_addr_t)addr
983
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
984
                break;
985
            case 4:
986
            default:
987
                stl_phys((target_phys_addr_t)addr
988
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
989
                break;
990
            case 8:
991
                stq_phys((target_phys_addr_t)addr
992
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
993
                break;
994
            }
995
        }
996
        break;
997
    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
998
    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
999
                  Turbosparc snoop RAM */
1000
    case 0x32: /* store buffer control or Turbosparc page table
1001
                  descriptor diagnostic */
1002
    case 0x36: /* I-cache flash clear */
1003
    case 0x37: /* D-cache flash clear */
1004
        break;
1005
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1006
        {
1007
            int reg = (addr >> 8) & 3;
1008

    
1009
            switch (reg) {
1010
            case 0: /* Breakpoint Value (Addr) */
1011
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1012
                break;
1013
            case 1: /* Breakpoint Mask */
1014
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1015
                break;
1016
            case 2: /* Breakpoint Control */
1017
                env->mmubpregs[reg] = (val & 0x7fULL);
1018
                break;
1019
            case 3: /* Breakpoint Status */
1020
                env->mmubpregs[reg] = (val & 0xfULL);
1021
                break;
1022
            }
1023
            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1024
                        env->mmuregs[reg]);
1025
        }
1026
        break;
1027
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1028
        env->mmubpctrv = val & 0xffffffff;
1029
        break;
1030
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1031
        env->mmubpctrc = val & 0x3;
1032
        break;
1033
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1034
        env->mmubpctrs = val & 0x3;
1035
        break;
1036
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1037
        env->mmubpaction = val & 0x1fff;
1038
        break;
1039
    case 8: /* User code access, XXX */
1040
    case 9: /* Supervisor code access, XXX */
1041
    default:
1042
        do_unassigned_access(addr, 1, 0, asi, size);
1043
        break;
1044
    }
1045
#ifdef DEBUG_ASI
1046
    dump_asi("write", addr, asi, size, val);
1047
#endif
1048
}
1049

    
1050
#endif /* CONFIG_USER_ONLY */
1051
#else /* TARGET_SPARC64 */
1052

    
1053
#ifdef CONFIG_USER_ONLY
1054
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1055
{
1056
    uint64_t ret = 0;
1057
#if defined(DEBUG_ASI)
1058
    target_ulong last_addr = addr;
1059
#endif
1060

    
1061
    if (asi < 0x80) {
1062
        helper_raise_exception(env, TT_PRIV_ACT);
1063
    }
1064

    
1065
    helper_check_align(addr, size - 1);
1066
    addr = asi_address_mask(env, asi, addr);
1067

    
1068
    switch (asi) {
1069
    case 0x82: /* Primary no-fault */
1070
    case 0x8a: /* Primary no-fault LE */
1071
        if (page_check_range(addr, size, PAGE_READ) == -1) {
1072
#ifdef DEBUG_ASI
1073
            dump_asi("read ", last_addr, asi, size, ret);
1074
#endif
1075
            return 0;
1076
        }
1077
        /* Fall through */
1078
    case 0x80: /* Primary */
1079
    case 0x88: /* Primary LE */
1080
        {
1081
            switch (size) {
1082
            case 1:
1083
                ret = ldub_raw(addr);
1084
                break;
1085
            case 2:
1086
                ret = lduw_raw(addr);
1087
                break;
1088
            case 4:
1089
                ret = ldl_raw(addr);
1090
                break;
1091
            default:
1092
            case 8:
1093
                ret = ldq_raw(addr);
1094
                break;
1095
            }
1096
        }
1097
        break;
1098
    case 0x83: /* Secondary no-fault */
1099
    case 0x8b: /* Secondary no-fault LE */
1100
        if (page_check_range(addr, size, PAGE_READ) == -1) {
1101
#ifdef DEBUG_ASI
1102
            dump_asi("read ", last_addr, asi, size, ret);
1103
#endif
1104
            return 0;
1105
        }
1106
        /* Fall through */
1107
    case 0x81: /* Secondary */
1108
    case 0x89: /* Secondary LE */
1109
        /* XXX */
1110
        break;
1111
    default:
1112
        break;
1113
    }
1114

    
1115
    /* Convert from little endian */
1116
    switch (asi) {
1117
    case 0x88: /* Primary LE */
1118
    case 0x89: /* Secondary LE */
1119
    case 0x8a: /* Primary no-fault LE */
1120
    case 0x8b: /* Secondary no-fault LE */
1121
        switch (size) {
1122
        case 2:
1123
            ret = bswap16(ret);
1124
            break;
1125
        case 4:
1126
            ret = bswap32(ret);
1127
            break;
1128
        case 8:
1129
            ret = bswap64(ret);
1130
            break;
1131
        default:
1132
            break;
1133
        }
1134
    default:
1135
        break;
1136
    }
1137

    
1138
    /* Convert to signed number */
1139
    if (sign) {
1140
        switch (size) {
1141
        case 1:
1142
            ret = (int8_t) ret;
1143
            break;
1144
        case 2:
1145
            ret = (int16_t) ret;
1146
            break;
1147
        case 4:
1148
            ret = (int32_t) ret;
1149
            break;
1150
        default:
1151
            break;
1152
        }
1153
    }
1154
#ifdef DEBUG_ASI
1155
    dump_asi("read ", last_addr, asi, size, ret);
1156
#endif
1157
    return ret;
1158
}
1159

    
1160
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1161
{
1162
#ifdef DEBUG_ASI
1163
    dump_asi("write", addr, asi, size, val);
1164
#endif
1165
    if (asi < 0x80) {
1166
        helper_raise_exception(env, TT_PRIV_ACT);
1167
    }
1168

    
1169
    helper_check_align(addr, size - 1);
1170
    addr = asi_address_mask(env, asi, addr);
1171

    
1172
    /* Convert to little endian */
1173
    switch (asi) {
1174
    case 0x88: /* Primary LE */
1175
    case 0x89: /* Secondary LE */
1176
        switch (size) {
1177
        case 2:
1178
            val = bswap16(val);
1179
            break;
1180
        case 4:
1181
            val = bswap32(val);
1182
            break;
1183
        case 8:
1184
            val = bswap64(val);
1185
            break;
1186
        default:
1187
            break;
1188
        }
1189
    default:
1190
        break;
1191
    }
1192

    
1193
    switch (asi) {
1194
    case 0x80: /* Primary */
1195
    case 0x88: /* Primary LE */
1196
        {
1197
            switch (size) {
1198
            case 1:
1199
                stb_raw(addr, val);
1200
                break;
1201
            case 2:
1202
                stw_raw(addr, val);
1203
                break;
1204
            case 4:
1205
                stl_raw(addr, val);
1206
                break;
1207
            case 8:
1208
            default:
1209
                stq_raw(addr, val);
1210
                break;
1211
            }
1212
        }
1213
        break;
1214
    case 0x81: /* Secondary */
1215
    case 0x89: /* Secondary LE */
1216
        /* XXX */
1217
        return;
1218

    
1219
    case 0x82: /* Primary no-fault, RO */
1220
    case 0x83: /* Secondary no-fault, RO */
1221
    case 0x8a: /* Primary no-fault LE, RO */
1222
    case 0x8b: /* Secondary no-fault LE, RO */
1223
    default:
1224
        do_unassigned_access(addr, 1, 0, 1, size);
1225
        return;
1226
    }
1227
}
1228

    
1229
#else /* CONFIG_USER_ONLY */
1230

    
1231
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1232
{
1233
    uint64_t ret = 0;
1234
#if defined(DEBUG_ASI)
1235
    target_ulong last_addr = addr;
1236
#endif
1237

    
1238
    asi &= 0xff;
1239

    
1240
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1241
        || (cpu_has_hypervisor(env)
1242
            && asi >= 0x30 && asi < 0x80
1243
            && !(env->hpstate & HS_PRIV))) {
1244
        helper_raise_exception(env, TT_PRIV_ACT);
1245
    }
1246

    
1247
    helper_check_align(addr, size - 1);
1248
    addr = asi_address_mask(env, asi, addr);
1249

    
1250
    /* process nonfaulting loads first */
1251
    if ((asi & 0xf6) == 0x82) {
1252
        int mmu_idx;
1253

    
1254
        /* secondary space access has lowest asi bit equal to 1 */
1255
        if (env->pstate & PS_PRIV) {
1256
            mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
1257
        } else {
1258
            mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
1259
        }
1260

    
1261
        if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
1262
#ifdef DEBUG_ASI
1263
            dump_asi("read ", last_addr, asi, size, ret);
1264
#endif
1265
            /* env->exception_index is set in get_physical_address_data(). */
1266
            helper_raise_exception(env, env->exception_index);
1267
        }
1268

    
1269
        /* convert nonfaulting load ASIs to normal load ASIs */
1270
        asi &= ~0x02;
1271
    }
1272

    
1273
    switch (asi) {
1274
    case 0x10: /* As if user primary */
1275
    case 0x11: /* As if user secondary */
1276
    case 0x18: /* As if user primary LE */
1277
    case 0x19: /* As if user secondary LE */
1278
    case 0x80: /* Primary */
1279
    case 0x81: /* Secondary */
1280
    case 0x88: /* Primary LE */
1281
    case 0x89: /* Secondary LE */
1282
    case 0xe2: /* UA2007 Primary block init */
1283
    case 0xe3: /* UA2007 Secondary block init */
1284
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1285
            if (cpu_hypervisor_mode(env)) {
1286
                switch (size) {
1287
                case 1:
1288
                    ret = ldub_hypv(addr);
1289
                    break;
1290
                case 2:
1291
                    ret = lduw_hypv(addr);
1292
                    break;
1293
                case 4:
1294
                    ret = ldl_hypv(addr);
1295
                    break;
1296
                default:
1297
                case 8:
1298
                    ret = ldq_hypv(addr);
1299
                    break;
1300
                }
1301
            } else {
1302
                /* secondary space access has lowest asi bit equal to 1 */
1303
                if (asi & 1) {
1304
                    switch (size) {
1305
                    case 1:
1306
                        ret = ldub_kernel_secondary(addr);
1307
                        break;
1308
                    case 2:
1309
                        ret = lduw_kernel_secondary(addr);
1310
                        break;
1311
                    case 4:
1312
                        ret = ldl_kernel_secondary(addr);
1313
                        break;
1314
                    default:
1315
                    case 8:
1316
                        ret = ldq_kernel_secondary(addr);
1317
                        break;
1318
                    }
1319
                } else {
1320
                    switch (size) {
1321
                    case 1:
1322
                        ret = ldub_kernel(addr);
1323
                        break;
1324
                    case 2:
1325
                        ret = lduw_kernel(addr);
1326
                        break;
1327
                    case 4:
1328
                        ret = ldl_kernel(addr);
1329
                        break;
1330
                    default:
1331
                    case 8:
1332
                        ret = ldq_kernel(addr);
1333
                        break;
1334
                    }
1335
                }
1336
            }
1337
        } else {
1338
            /* secondary space access has lowest asi bit equal to 1 */
1339
            if (asi & 1) {
1340
                switch (size) {
1341
                case 1:
1342
                    ret = ldub_user_secondary(addr);
1343
                    break;
1344
                case 2:
1345
                    ret = lduw_user_secondary(addr);
1346
                    break;
1347
                case 4:
1348
                    ret = ldl_user_secondary(addr);
1349
                    break;
1350
                default:
1351
                case 8:
1352
                    ret = ldq_user_secondary(addr);
1353
                    break;
1354
                }
1355
            } else {
1356
                switch (size) {
1357
                case 1:
1358
                    ret = ldub_user(addr);
1359
                    break;
1360
                case 2:
1361
                    ret = lduw_user(addr);
1362
                    break;
1363
                case 4:
1364
                    ret = ldl_user(addr);
1365
                    break;
1366
                default:
1367
                case 8:
1368
                    ret = ldq_user(addr);
1369
                    break;
1370
                }
1371
            }
1372
        }
1373
        break;
1374
    case 0x14: /* Bypass */
1375
    case 0x15: /* Bypass, non-cacheable */
1376
    case 0x1c: /* Bypass LE */
1377
    case 0x1d: /* Bypass, non-cacheable LE */
1378
        {
1379
            switch (size) {
1380
            case 1:
1381
                ret = ldub_phys(addr);
1382
                break;
1383
            case 2:
1384
                ret = lduw_phys(addr);
1385
                break;
1386
            case 4:
1387
                ret = ldl_phys(addr);
1388
                break;
1389
            default:
1390
            case 8:
1391
                ret = ldq_phys(addr);
1392
                break;
1393
            }
1394
            break;
1395
        }
1396
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
1397
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1398
                  Only ldda allowed */
1399
        helper_raise_exception(env, TT_ILL_INSN);
1400
        return 0;
1401
    case 0x04: /* Nucleus */
1402
    case 0x0c: /* Nucleus Little Endian (LE) */
1403
        {
1404
            switch (size) {
1405
            case 1:
1406
                ret = ldub_nucleus(addr);
1407
                break;
1408
            case 2:
1409
                ret = lduw_nucleus(addr);
1410
                break;
1411
            case 4:
1412
                ret = ldl_nucleus(addr);
1413
                break;
1414
            default:
1415
            case 8:
1416
                ret = ldq_nucleus(addr);
1417
                break;
1418
            }
1419
            break;
1420
        }
1421
    case 0x4a: /* UPA config */
1422
        /* XXX */
1423
        break;
1424
    case 0x45: /* LSU */
1425
        ret = env->lsu;
1426
        break;
1427
    case 0x50: /* I-MMU regs */
1428
        {
1429
            int reg = (addr >> 3) & 0xf;
1430

    
1431
            if (reg == 0) {
1432
                /* I-TSB Tag Target register */
1433
                ret = ultrasparc_tag_target(env->immu.tag_access);
1434
            } else {
1435
                ret = env->immuregs[reg];
1436
            }
1437

    
1438
            break;
1439
        }
1440
    case 0x51: /* I-MMU 8k TSB pointer */
1441
        {
1442
            /* env->immuregs[5] holds I-MMU TSB register value
1443
               env->immuregs[6] holds I-MMU Tag Access register value */
1444
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1445
                                         8*1024);
1446
            break;
1447
        }
1448
    case 0x52: /* I-MMU 64k TSB pointer */
1449
        {
1450
            /* env->immuregs[5] holds I-MMU TSB register value
1451
               env->immuregs[6] holds I-MMU Tag Access register value */
1452
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1453
                                         64*1024);
1454
            break;
1455
        }
1456
    case 0x55: /* I-MMU data access */
1457
        {
1458
            int reg = (addr >> 3) & 0x3f;
1459

    
1460
            ret = env->itlb[reg].tte;
1461
            break;
1462
        }
1463
    case 0x56: /* I-MMU tag read */
1464
        {
1465
            int reg = (addr >> 3) & 0x3f;
1466

    
1467
            ret = env->itlb[reg].tag;
1468
            break;
1469
        }
1470
    case 0x58: /* D-MMU regs */
1471
        {
1472
            int reg = (addr >> 3) & 0xf;
1473

    
1474
            if (reg == 0) {
1475
                /* D-TSB Tag Target register */
1476
                ret = ultrasparc_tag_target(env->dmmu.tag_access);
1477
            } else {
1478
                ret = env->dmmuregs[reg];
1479
            }
1480
            break;
1481
        }
1482
    case 0x59: /* D-MMU 8k TSB pointer */
1483
        {
1484
            /* env->dmmuregs[5] holds D-MMU TSB register value
1485
               env->dmmuregs[6] holds D-MMU Tag Access register value */
1486
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1487
                                         8*1024);
1488
            break;
1489
        }
1490
    case 0x5a: /* D-MMU 64k TSB pointer */
1491
        {
1492
            /* env->dmmuregs[5] holds D-MMU TSB register value
1493
               env->dmmuregs[6] holds D-MMU Tag Access register value */
1494
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1495
                                         64*1024);
1496
            break;
1497
        }
1498
    case 0x5d: /* D-MMU data access */
1499
        {
1500
            int reg = (addr >> 3) & 0x3f;
1501

    
1502
            ret = env->dtlb[reg].tte;
1503
            break;
1504
        }
1505
    case 0x5e: /* D-MMU tag read */
1506
        {
1507
            int reg = (addr >> 3) & 0x3f;
1508

    
1509
            ret = env->dtlb[reg].tag;
1510
            break;
1511
        }
1512
    case 0x46: /* D-cache data */
1513
    case 0x47: /* D-cache tag access */
1514
    case 0x4b: /* E-cache error enable */
1515
    case 0x4c: /* E-cache asynchronous fault status */
1516
    case 0x4d: /* E-cache asynchronous fault address */
1517
    case 0x4e: /* E-cache tag data */
1518
    case 0x66: /* I-cache instruction access */
1519
    case 0x67: /* I-cache tag access */
1520
    case 0x6e: /* I-cache predecode */
1521
    case 0x6f: /* I-cache LRU etc. */
1522
    case 0x76: /* E-cache tag */
1523
    case 0x7e: /* E-cache tag */
1524
        break;
1525
    case 0x5b: /* D-MMU data pointer */
1526
    case 0x48: /* Interrupt dispatch, RO */
1527
    case 0x49: /* Interrupt data receive */
1528
    case 0x7f: /* Incoming interrupt vector, RO */
1529
        /* XXX */
1530
        break;
1531
    case 0x54: /* I-MMU data in, WO */
1532
    case 0x57: /* I-MMU demap, WO */
1533
    case 0x5c: /* D-MMU data in, WO */
1534
    case 0x5f: /* D-MMU demap, WO */
1535
    case 0x77: /* Interrupt vector, WO */
1536
    default:
1537
        do_unassigned_access(addr, 0, 0, 1, size);
1538
        ret = 0;
1539
        break;
1540
    }
1541

    
1542
    /* Convert from little endian */
1543
    switch (asi) {
1544
    case 0x0c: /* Nucleus Little Endian (LE) */
1545
    case 0x18: /* As if user primary LE */
1546
    case 0x19: /* As if user secondary LE */
1547
    case 0x1c: /* Bypass LE */
1548
    case 0x1d: /* Bypass, non-cacheable LE */
1549
    case 0x88: /* Primary LE */
1550
    case 0x89: /* Secondary LE */
1551
        switch(size) {
1552
        case 2:
1553
            ret = bswap16(ret);
1554
            break;
1555
        case 4:
1556
            ret = bswap32(ret);
1557
            break;
1558
        case 8:
1559
            ret = bswap64(ret);
1560
            break;
1561
        default:
1562
            break;
1563
        }
1564
    default:
1565
        break;
1566
    }
1567

    
1568
    /* Convert to signed number */
1569
    if (sign) {
1570
        switch (size) {
1571
        case 1:
1572
            ret = (int8_t) ret;
1573
            break;
1574
        case 2:
1575
            ret = (int16_t) ret;
1576
            break;
1577
        case 4:
1578
            ret = (int32_t) ret;
1579
            break;
1580
        default:
1581
            break;
1582
        }
1583
    }
1584
#ifdef DEBUG_ASI
1585
    dump_asi("read ", last_addr, asi, size, ret);
1586
#endif
1587
    return ret;
1588
}
1589

    
1590
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1591
{
1592
#ifdef DEBUG_ASI
1593
    dump_asi("write", addr, asi, size, val);
1594
#endif
1595

    
1596
    asi &= 0xff;
1597

    
1598
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1599
        || (cpu_has_hypervisor(env)
1600
            && asi >= 0x30 && asi < 0x80
1601
            && !(env->hpstate & HS_PRIV))) {
1602
        helper_raise_exception(env, TT_PRIV_ACT);
1603
    }
1604

    
1605
    helper_check_align(addr, size - 1);
1606
    addr = asi_address_mask(env, asi, addr);
1607

    
1608
    /* Convert to little endian */
1609
    switch (asi) {
1610
    case 0x0c: /* Nucleus Little Endian (LE) */
1611
    case 0x18: /* As if user primary LE */
1612
    case 0x19: /* As if user secondary LE */
1613
    case 0x1c: /* Bypass LE */
1614
    case 0x1d: /* Bypass, non-cacheable LE */
1615
    case 0x88: /* Primary LE */
1616
    case 0x89: /* Secondary LE */
1617
        switch (size) {
1618
        case 2:
1619
            val = bswap16(val);
1620
            break;
1621
        case 4:
1622
            val = bswap32(val);
1623
            break;
1624
        case 8:
1625
            val = bswap64(val);
1626
            break;
1627
        default:
1628
            break;
1629
        }
1630
    default:
1631
        break;
1632
    }
1633

    
1634
    switch (asi) {
1635
    case 0x10: /* As if user primary */
1636
    case 0x11: /* As if user secondary */
1637
    case 0x18: /* As if user primary LE */
1638
    case 0x19: /* As if user secondary LE */
1639
    case 0x80: /* Primary */
1640
    case 0x81: /* Secondary */
1641
    case 0x88: /* Primary LE */
1642
    case 0x89: /* Secondary LE */
1643
    case 0xe2: /* UA2007 Primary block init */
1644
    case 0xe3: /* UA2007 Secondary block init */
1645
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1646
            if (cpu_hypervisor_mode(env)) {
1647
                switch (size) {
1648
                case 1:
1649
                    stb_hypv(addr, val);
1650
                    break;
1651
                case 2:
1652
                    stw_hypv(addr, val);
1653
                    break;
1654
                case 4:
1655
                    stl_hypv(addr, val);
1656
                    break;
1657
                case 8:
1658
                default:
1659
                    stq_hypv(addr, val);
1660
                    break;
1661
                }
1662
            } else {
1663
                /* secondary space access has lowest asi bit equal to 1 */
1664
                if (asi & 1) {
1665
                    switch (size) {
1666
                    case 1:
1667
                        stb_kernel_secondary(addr, val);
1668
                        break;
1669
                    case 2:
1670
                        stw_kernel_secondary(addr, val);
1671
                        break;
1672
                    case 4:
1673
                        stl_kernel_secondary(addr, val);
1674
                        break;
1675
                    case 8:
1676
                    default:
1677
                        stq_kernel_secondary(addr, val);
1678
                        break;
1679
                    }
1680
                } else {
1681
                    switch (size) {
1682
                    case 1:
1683
                        stb_kernel(addr, val);
1684
                        break;
1685
                    case 2:
1686
                        stw_kernel(addr, val);
1687
                        break;
1688
                    case 4:
1689
                        stl_kernel(addr, val);
1690
                        break;
1691
                    case 8:
1692
                    default:
1693
                        stq_kernel(addr, val);
1694
                        break;
1695
                    }
1696
                }
1697
            }
1698
        } else {
1699
            /* secondary space access has lowest asi bit equal to 1 */
1700
            if (asi & 1) {
1701
                switch (size) {
1702
                case 1:
1703
                    stb_user_secondary(addr, val);
1704
                    break;
1705
                case 2:
1706
                    stw_user_secondary(addr, val);
1707
                    break;
1708
                case 4:
1709
                    stl_user_secondary(addr, val);
1710
                    break;
1711
                case 8:
1712
                default:
1713
                    stq_user_secondary(addr, val);
1714
                    break;
1715
                }
1716
            } else {
1717
                switch (size) {
1718
                case 1:
1719
                    stb_user(addr, val);
1720
                    break;
1721
                case 2:
1722
                    stw_user(addr, val);
1723
                    break;
1724
                case 4:
1725
                    stl_user(addr, val);
1726
                    break;
1727
                case 8:
1728
                default:
1729
                    stq_user(addr, val);
1730
                    break;
1731
                }
1732
            }
1733
        }
1734
        break;
1735
    case 0x14: /* Bypass */
1736
    case 0x15: /* Bypass, non-cacheable */
1737
    case 0x1c: /* Bypass LE */
1738
    case 0x1d: /* Bypass, non-cacheable LE */
1739
        {
1740
            switch (size) {
1741
            case 1:
1742
                stb_phys(addr, val);
1743
                break;
1744
            case 2:
1745
                stw_phys(addr, val);
1746
                break;
1747
            case 4:
1748
                stl_phys(addr, val);
1749
                break;
1750
            case 8:
1751
            default:
1752
                stq_phys(addr, val);
1753
                break;
1754
            }
1755
        }
1756
        return;
1757
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
1758
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1759
                  Only ldda allowed */
1760
        helper_raise_exception(env, TT_ILL_INSN);
1761
        return;
1762
    case 0x04: /* Nucleus */
1763
    case 0x0c: /* Nucleus Little Endian (LE) */
1764
        {
1765
            switch (size) {
1766
            case 1:
1767
                stb_nucleus(addr, val);
1768
                break;
1769
            case 2:
1770
                stw_nucleus(addr, val);
1771
                break;
1772
            case 4:
1773
                stl_nucleus(addr, val);
1774
                break;
1775
            default:
1776
            case 8:
1777
                stq_nucleus(addr, val);
1778
                break;
1779
            }
1780
            break;
1781
        }
1782

    
1783
    case 0x4a: /* UPA config */
1784
        /* XXX */
1785
        return;
1786
    case 0x45: /* LSU */
1787
        {
1788
            uint64_t oldreg;
1789

    
1790
            oldreg = env->lsu;
1791
            env->lsu = val & (DMMU_E | IMMU_E);
1792
            /* Mappings generated during D/I MMU disabled mode are
1793
               invalid in normal mode */
1794
            if (oldreg != env->lsu) {
1795
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1796
                            oldreg, env->lsu);
1797
#ifdef DEBUG_MMU
1798
                dump_mmu(stdout, fprintf, env1);
1799
#endif
1800
                tlb_flush(env, 1);
1801
            }
1802
            return;
1803
        }
1804
    case 0x50: /* I-MMU regs */
1805
        {
1806
            int reg = (addr >> 3) & 0xf;
1807
            uint64_t oldreg;
1808

    
1809
            oldreg = env->immuregs[reg];
1810
            switch (reg) {
1811
            case 0: /* RO */
1812
                return;
1813
            case 1: /* Not in I-MMU */
1814
            case 2:
1815
                return;
1816
            case 3: /* SFSR */
1817
                if ((val & 1) == 0) {
1818
                    val = 0; /* Clear SFSR */
1819
                }
1820
                env->immu.sfsr = val;
1821
                break;
1822
            case 4: /* RO */
1823
                return;
1824
            case 5: /* TSB access */
1825
                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1826
                            PRIx64 "\n", env->immu.tsb, val);
1827
                env->immu.tsb = val;
1828
                break;
1829
            case 6: /* Tag access */
1830
                env->immu.tag_access = val;
1831
                break;
1832
            case 7:
1833
            case 8:
1834
                return;
1835
            default:
1836
                break;
1837
            }
1838

    
1839
            if (oldreg != env->immuregs[reg]) {
1840
                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1841
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1842
            }
1843
#ifdef DEBUG_MMU
1844
            dump_mmu(stdout, fprintf, env);
1845
#endif
1846
            return;
1847
        }
1848
    case 0x54: /* I-MMU data in */
1849
        replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
1850
        return;
1851
    case 0x55: /* I-MMU data access */
1852
        {
1853
            /* TODO: auto demap */
1854

    
1855
            unsigned int i = (addr >> 3) & 0x3f;
1856

    
1857
            replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
1858

    
1859
#ifdef DEBUG_MMU
1860
            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1861
            dump_mmu(stdout, fprintf, env);
1862
#endif
1863
            return;
1864
        }
1865
    case 0x57: /* I-MMU demap */
1866
        demap_tlb(env->itlb, addr, "immu", env);
1867
        return;
1868
    case 0x58: /* D-MMU regs */
1869
        {
1870
            int reg = (addr >> 3) & 0xf;
1871
            uint64_t oldreg;
1872

    
1873
            oldreg = env->dmmuregs[reg];
1874
            switch (reg) {
1875
            case 0: /* RO */
1876
            case 4:
1877
                return;
1878
            case 3: /* SFSR */
1879
                if ((val & 1) == 0) {
1880
                    val = 0; /* Clear SFSR, Fault address */
1881
                    env->dmmu.sfar = 0;
1882
                }
1883
                env->dmmu.sfsr = val;
1884
                break;
1885
            case 1: /* Primary context */
1886
                env->dmmu.mmu_primary_context = val;
1887
                /* can be optimized to only flush MMU_USER_IDX
1888
                   and MMU_KERNEL_IDX entries */
1889
                tlb_flush(env, 1);
1890
                break;
1891
            case 2: /* Secondary context */
1892
                env->dmmu.mmu_secondary_context = val;
1893
                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1894
                   and MMU_KERNEL_SECONDARY_IDX entries */
1895
                tlb_flush(env, 1);
1896
                break;
1897
            case 5: /* TSB access */
1898
                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1899
                            PRIx64 "\n", env->dmmu.tsb, val);
1900
                env->dmmu.tsb = val;
1901
                break;
1902
            case 6: /* Tag access */
1903
                env->dmmu.tag_access = val;
1904
                break;
1905
            case 7: /* Virtual Watchpoint */
1906
            case 8: /* Physical Watchpoint */
1907
            default:
1908
                env->dmmuregs[reg] = val;
1909
                break;
1910
            }
1911

    
1912
            if (oldreg != env->dmmuregs[reg]) {
1913
                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1914
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1915
            }
1916
#ifdef DEBUG_MMU
1917
            dump_mmu(stdout, fprintf, env);
1918
#endif
1919
            return;
1920
        }
1921
    case 0x5c: /* D-MMU data in */
1922
        replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
1923
        return;
1924
    case 0x5d: /* D-MMU data access */
1925
        {
1926
            unsigned int i = (addr >> 3) & 0x3f;
1927

    
1928
            replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
1929

    
1930
#ifdef DEBUG_MMU
1931
            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1932
            dump_mmu(stdout, fprintf, env);
1933
#endif
1934
            return;
1935
        }
1936
    case 0x5f: /* D-MMU demap */
1937
        demap_tlb(env->dtlb, addr, "dmmu", env);
1938
        return;
1939
    case 0x49: /* Interrupt data receive */
1940
        /* XXX */
1941
        return;
1942
    case 0x46: /* D-cache data */
1943
    case 0x47: /* D-cache tag access */
1944
    case 0x4b: /* E-cache error enable */
1945
    case 0x4c: /* E-cache asynchronous fault status */
1946
    case 0x4d: /* E-cache asynchronous fault address */
1947
    case 0x4e: /* E-cache tag data */
1948
    case 0x66: /* I-cache instruction access */
1949
    case 0x67: /* I-cache tag access */
1950
    case 0x6e: /* I-cache predecode */
1951
    case 0x6f: /* I-cache LRU etc. */
1952
    case 0x76: /* E-cache tag */
1953
    case 0x7e: /* E-cache tag */
1954
        return;
1955
    case 0x51: /* I-MMU 8k TSB pointer, RO */
1956
    case 0x52: /* I-MMU 64k TSB pointer, RO */
1957
    case 0x56: /* I-MMU tag read, RO */
1958
    case 0x59: /* D-MMU 8k TSB pointer, RO */
1959
    case 0x5a: /* D-MMU 64k TSB pointer, RO */
1960
    case 0x5b: /* D-MMU data pointer, RO */
1961
    case 0x5e: /* D-MMU tag read, RO */
1962
    case 0x48: /* Interrupt dispatch, RO */
1963
    case 0x7f: /* Incoming interrupt vector, RO */
1964
    case 0x82: /* Primary no-fault, RO */
1965
    case 0x83: /* Secondary no-fault, RO */
1966
    case 0x8a: /* Primary no-fault LE, RO */
1967
    case 0x8b: /* Secondary no-fault LE, RO */
1968
    default:
1969
        do_unassigned_access(addr, 1, 0, 1, size);
1970
        return;
1971
    }
1972
}
1973
#endif /* CONFIG_USER_ONLY */
1974

    
1975
void helper_ldda_asi(target_ulong addr, int asi, int rd)
1976
{
1977
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1978
        || (cpu_has_hypervisor(env)
1979
            && asi >= 0x30 && asi < 0x80
1980
            && !(env->hpstate & HS_PRIV))) {
1981
        helper_raise_exception(env, TT_PRIV_ACT);
1982
    }
1983

    
1984
    addr = asi_address_mask(env, asi, addr);
1985

    
1986
    switch (asi) {
1987
#if !defined(CONFIG_USER_ONLY)
1988
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
1989
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
1990
        helper_check_align(addr, 0xf);
1991
        if (rd == 0) {
1992
            env->gregs[1] = ldq_nucleus(addr + 8);
1993
            if (asi == 0x2c) {
1994
                bswap64s(&env->gregs[1]);
1995
            }
1996
        } else if (rd < 8) {
1997
            env->gregs[rd] = ldq_nucleus(addr);
1998
            env->gregs[rd + 1] = ldq_nucleus(addr + 8);
1999
            if (asi == 0x2c) {
2000
                bswap64s(&env->gregs[rd]);
2001
                bswap64s(&env->gregs[rd + 1]);
2002
            }
2003
        } else {
2004
            env->regwptr[rd] = ldq_nucleus(addr);
2005
            env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
2006
            if (asi == 0x2c) {
2007
                bswap64s(&env->regwptr[rd]);
2008
                bswap64s(&env->regwptr[rd + 1]);
2009
            }
2010
        }
2011
        break;
2012
#endif
2013
    default:
2014
        helper_check_align(addr, 0x3);
2015
        if (rd == 0) {
2016
            env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2017
        } else if (rd < 8) {
2018
            env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2019
            env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2020
        } else {
2021
            env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2022
            env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2023
        }
2024
        break;
2025
    }
2026
}
2027

    
2028
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2029
{
2030
    unsigned int i;
2031
    CPU_DoubleU u;
2032

    
2033
    helper_check_align(addr, 3);
2034
    addr = asi_address_mask(env, asi, addr);
2035

    
2036
    switch (asi) {
2037
    case 0xf0: /* UA2007/JPS1 Block load primary */
2038
    case 0xf1: /* UA2007/JPS1 Block load secondary */
2039
    case 0xf8: /* UA2007/JPS1 Block load primary LE */
2040
    case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2041
        if (rd & 7) {
2042
            helper_raise_exception(env, TT_ILL_INSN);
2043
            return;
2044
        }
2045
        helper_check_align(addr, 0x3f);
2046
        for (i = 0; i < 16; i++) {
2047
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2048
                                                         0);
2049
            addr += 4;
2050
        }
2051

    
2052
        return;
2053
    case 0x16: /* UA2007 Block load primary, user privilege */
2054
    case 0x17: /* UA2007 Block load secondary, user privilege */
2055
    case 0x1e: /* UA2007 Block load primary LE, user privilege */
2056
    case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2057
    case 0x70: /* JPS1 Block load primary, user privilege */
2058
    case 0x71: /* JPS1 Block load secondary, user privilege */
2059
    case 0x78: /* JPS1 Block load primary LE, user privilege */
2060
    case 0x79: /* JPS1 Block load secondary LE, user privilege */
2061
        if (rd & 7) {
2062
            helper_raise_exception(env, TT_ILL_INSN);
2063
            return;
2064
        }
2065
        helper_check_align(addr, 0x3f);
2066
        for (i = 0; i < 16; i++) {
2067
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x19, 4,
2068
                                                         0);
2069
            addr += 4;
2070
        }
2071

    
2072
        return;
2073
    default:
2074
        break;
2075
    }
2076

    
2077
    switch (size) {
2078
    default:
2079
    case 4:
2080
        *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
2081
        break;
2082
    case 8:
2083
        u.ll = helper_ld_asi(addr, asi, size, 0);
2084
        *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
2085
        *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
2086
        break;
2087
    case 16:
2088
        u.ll = helper_ld_asi(addr, asi, 8, 0);
2089
        *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
2090
        *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
2091
        u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
2092
        *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
2093
        *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
2094
        break;
2095
    }
2096
}
2097

    
2098
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2099
{
2100
    unsigned int i;
2101
    target_ulong val = 0;
2102
    CPU_DoubleU u;
2103

    
2104
    helper_check_align(addr, 3);
2105
    addr = asi_address_mask(env, asi, addr);
2106

    
2107
    switch (asi) {
2108
    case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2109
    case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2110
    case 0xf0: /* UA2007/JPS1 Block store primary */
2111
    case 0xf1: /* UA2007/JPS1 Block store secondary */
2112
    case 0xf8: /* UA2007/JPS1 Block store primary LE */
2113
    case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2114
        if (rd & 7) {
2115
            helper_raise_exception(env, TT_ILL_INSN);
2116
            return;
2117
        }
2118
        helper_check_align(addr, 0x3f);
2119
        for (i = 0; i < 16; i++) {
2120
            val = *(uint32_t *)&env->fpr[rd++];
2121
            helper_st_asi(addr, val, asi & 0x8f, 4);
2122
            addr += 4;
2123
        }
2124

    
2125
        return;
2126
    case 0x16: /* UA2007 Block load primary, user privilege */
2127
    case 0x17: /* UA2007 Block load secondary, user privilege */
2128
    case 0x1e: /* UA2007 Block load primary LE, user privilege */
2129
    case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2130
    case 0x70: /* JPS1 Block store primary, user privilege */
2131
    case 0x71: /* JPS1 Block store secondary, user privilege */
2132
    case 0x78: /* JPS1 Block load primary LE, user privilege */
2133
    case 0x79: /* JPS1 Block load secondary LE, user privilege */
2134
        if (rd & 7) {
2135
            helper_raise_exception(env, TT_ILL_INSN);
2136
            return;
2137
        }
2138
        helper_check_align(addr, 0x3f);
2139
        for (i = 0; i < 16; i++) {
2140
            val = *(uint32_t *)&env->fpr[rd++];
2141
            helper_st_asi(addr, val, asi & 0x19, 4);
2142
            addr += 4;
2143
        }
2144

    
2145
        return;
2146
    default:
2147
        break;
2148
    }
2149

    
2150
    switch (size) {
2151
    default:
2152
    case 4:
2153
        helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
2154
        break;
2155
    case 8:
2156
        u.l.upper = *(uint32_t *)&env->fpr[rd++];
2157
        u.l.lower = *(uint32_t *)&env->fpr[rd++];
2158
        helper_st_asi(addr, u.ll, asi, size);
2159
        break;
2160
    case 16:
2161
        u.l.upper = *(uint32_t *)&env->fpr[rd++];
2162
        u.l.lower = *(uint32_t *)&env->fpr[rd++];
2163
        helper_st_asi(addr, u.ll, asi, 8);
2164
        u.l.upper = *(uint32_t *)&env->fpr[rd++];
2165
        u.l.lower = *(uint32_t *)&env->fpr[rd++];
2166
        helper_st_asi(addr + 8, u.ll, asi, 8);
2167
        break;
2168
    }
2169
}
2170

    
2171
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2172
                            target_ulong val2, uint32_t asi)
2173
{
2174
    target_ulong ret;
2175

    
2176
    val2 &= 0xffffffffUL;
2177
    ret = helper_ld_asi(addr, asi, 4, 0);
2178
    ret &= 0xffffffffUL;
2179
    if (val2 == ret) {
2180
        helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2181
    }
2182
    return ret;
2183
}
2184

    
2185
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2186
                             target_ulong val2, uint32_t asi)
2187
{
2188
    target_ulong ret;
2189

    
2190
    ret = helper_ld_asi(addr, asi, 8, 0);
2191
    if (val2 == ret) {
2192
        helper_st_asi(addr, val1, asi, 8);
2193
    }
2194
    return ret;
2195
}
2196
#endif /* TARGET_SPARC64 */
2197

    
2198
void helper_stdf(target_ulong addr, int mem_idx)
2199
{
2200
    helper_check_align(addr, 7);
2201
#if !defined(CONFIG_USER_ONLY)
2202
    switch (mem_idx) {
2203
    case MMU_USER_IDX:
2204
        stfq_user(addr, DT0);
2205
        break;
2206
    case MMU_KERNEL_IDX:
2207
        stfq_kernel(addr, DT0);
2208
        break;
2209
#ifdef TARGET_SPARC64
2210
    case MMU_HYPV_IDX:
2211
        stfq_hypv(addr, DT0);
2212
        break;
2213
#endif
2214
    default:
2215
        DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
2216
        break;
2217
    }
2218
#else
2219
    stfq_raw(address_mask(env, addr), DT0);
2220
#endif
2221
}
2222

    
2223
void helper_lddf(target_ulong addr, int mem_idx)
2224
{
2225
    helper_check_align(addr, 7);
2226
#if !defined(CONFIG_USER_ONLY)
2227
    switch (mem_idx) {
2228
    case MMU_USER_IDX:
2229
        DT0 = ldfq_user(addr);
2230
        break;
2231
    case MMU_KERNEL_IDX:
2232
        DT0 = ldfq_kernel(addr);
2233
        break;
2234
#ifdef TARGET_SPARC64
2235
    case MMU_HYPV_IDX:
2236
        DT0 = ldfq_hypv(addr);
2237
        break;
2238
#endif
2239
    default:
2240
        DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
2241
        break;
2242
    }
2243
#else
2244
    DT0 = ldfq_raw(address_mask(env, addr));
2245
#endif
2246
}
2247

    
2248
void helper_ldqf(target_ulong addr, int mem_idx)
2249
{
2250
    /* XXX add 128 bit load */
2251
    CPU_QuadU u;
2252

    
2253
    helper_check_align(addr, 7);
2254
#if !defined(CONFIG_USER_ONLY)
2255
    switch (mem_idx) {
2256
    case MMU_USER_IDX:
2257
        u.ll.upper = ldq_user(addr);
2258
        u.ll.lower = ldq_user(addr + 8);
2259
        QT0 = u.q;
2260
        break;
2261
    case MMU_KERNEL_IDX:
2262
        u.ll.upper = ldq_kernel(addr);
2263
        u.ll.lower = ldq_kernel(addr + 8);
2264
        QT0 = u.q;
2265
        break;
2266
#ifdef TARGET_SPARC64
2267
    case MMU_HYPV_IDX:
2268
        u.ll.upper = ldq_hypv(addr);
2269
        u.ll.lower = ldq_hypv(addr + 8);
2270
        QT0 = u.q;
2271
        break;
2272
#endif
2273
    default:
2274
        DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
2275
        break;
2276
    }
2277
#else
2278
    u.ll.upper = ldq_raw(address_mask(env, addr));
2279
    u.ll.lower = ldq_raw(address_mask(env, addr + 8));
2280
    QT0 = u.q;
2281
#endif
2282
}
2283

    
2284
void helper_stqf(target_ulong addr, int mem_idx)
2285
{
2286
    /* XXX add 128 bit store */
2287
    CPU_QuadU u;
2288

    
2289
    helper_check_align(addr, 7);
2290
#if !defined(CONFIG_USER_ONLY)
2291
    switch (mem_idx) {
2292
    case MMU_USER_IDX:
2293
        u.q = QT0;
2294
        stq_user(addr, u.ll.upper);
2295
        stq_user(addr + 8, u.ll.lower);
2296
        break;
2297
    case MMU_KERNEL_IDX:
2298
        u.q = QT0;
2299
        stq_kernel(addr, u.ll.upper);
2300
        stq_kernel(addr + 8, u.ll.lower);
2301
        break;
2302
#ifdef TARGET_SPARC64
2303
    case MMU_HYPV_IDX:
2304
        u.q = QT0;
2305
        stq_hypv(addr, u.ll.upper);
2306
        stq_hypv(addr + 8, u.ll.lower);
2307
        break;
2308
#endif
2309
    default:
2310
        DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
2311
        break;
2312
    }
2313
#else
2314
    u.q = QT0;
2315
    stq_raw(address_mask(env, addr), u.ll.upper);
2316
    stq_raw(address_mask(env, addr + 8), u.ll.lower);
2317
#endif
2318
}
2319

    
2320
#if !defined(CONFIG_USER_ONLY)
2321

    
2322
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2323
                                void *retaddr);
2324

    
2325
#define MMUSUFFIX _mmu
2326
#define ALIGNED_ONLY
2327

    
2328
#define SHIFT 0
2329
#include "softmmu_template.h"
2330

    
2331
#define SHIFT 1
2332
#include "softmmu_template.h"
2333

    
2334
#define SHIFT 2
2335
#include "softmmu_template.h"
2336

    
2337
#define SHIFT 3
2338
#include "softmmu_template.h"
2339

    
2340
/* XXX: make it generic ? */
2341
static void cpu_restore_state2(void *retaddr)
2342
{
2343
    TranslationBlock *tb;
2344
    unsigned long pc;
2345

    
2346
    if (retaddr) {
2347
        /* now we have a real cpu fault */
2348
        pc = (unsigned long)retaddr;
2349
        tb = tb_find_pc(pc);
2350
        if (tb) {
2351
            /* the PC is inside the translated code. It means that we have
2352
               a virtual CPU fault */
2353
            cpu_restore_state(tb, env, pc);
2354
        }
2355
    }
2356
}
2357

    
2358
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2359
                                void *retaddr)
2360
{
2361
#ifdef DEBUG_UNALIGNED
2362
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2363
           "\n", addr, env->pc);
2364
#endif
2365
    cpu_restore_state2(retaddr);
2366
    helper_raise_exception(env, TT_UNALIGNED);
2367
}
2368

    
2369
/* try to fill the TLB and return an exception if error. If retaddr is
2370
   NULL, it means that the function was called in C code (i.e. not
2371
   from generated code or from helper.c) */
2372
/* XXX: fix it to restore all registers */
2373
void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
2374
              void *retaddr)
2375
{
2376
    int ret;
2377
    CPUState *saved_env;
2378

    
2379
    saved_env = env;
2380
    env = env1;
2381

    
2382
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx);
2383
    if (ret) {
2384
        cpu_restore_state2(retaddr);
2385
        cpu_loop_exit(env);
2386
    }
2387
    env = saved_env;
2388
}
2389

    
2390
#endif /* !CONFIG_USER_ONLY */
2391

    
2392
#ifndef TARGET_SPARC64
2393
#if !defined(CONFIG_USER_ONLY)
2394
static void do_unassigned_access(target_phys_addr_t addr, int is_write,
2395
                                 int is_exec, int is_asi, int size)
2396
{
2397
    int fault_type;
2398

    
2399
#ifdef DEBUG_UNASSIGNED
2400
    if (is_asi) {
2401
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2402
               " asi 0x%02x from " TARGET_FMT_lx "\n",
2403
               is_exec ? "exec" : is_write ? "write" : "read", size,
2404
               size == 1 ? "" : "s", addr, is_asi, env->pc);
2405
    } else {
2406
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2407
               " from " TARGET_FMT_lx "\n",
2408
               is_exec ? "exec" : is_write ? "write" : "read", size,
2409
               size == 1 ? "" : "s", addr, env->pc);
2410
    }
2411
#endif
2412
    /* Don't overwrite translation and access faults */
2413
    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
2414
    if ((fault_type > 4) || (fault_type == 0)) {
2415
        env->mmuregs[3] = 0; /* Fault status register */
2416
        if (is_asi) {
2417
            env->mmuregs[3] |= 1 << 16;
2418
        }
2419
        if (env->psrs) {
2420
            env->mmuregs[3] |= 1 << 5;
2421
        }
2422
        if (is_exec) {
2423
            env->mmuregs[3] |= 1 << 6;
2424
        }
2425
        if (is_write) {
2426
            env->mmuregs[3] |= 1 << 7;
2427
        }
2428
        env->mmuregs[3] |= (5 << 2) | 2;
2429
        /* SuperSPARC will never place instruction fault addresses in the FAR */
2430
        if (!is_exec) {
2431
            env->mmuregs[4] = addr; /* Fault address register */
2432
        }
2433
    }
2434
    /* overflow (same type fault was not read before another fault) */
2435
    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
2436
        env->mmuregs[3] |= 1;
2437
    }
2438

    
2439
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2440
        if (is_exec) {
2441
            helper_raise_exception(env, TT_CODE_ACCESS);
2442
        } else {
2443
            helper_raise_exception(env, TT_DATA_ACCESS);
2444
        }
2445
    }
2446

    
2447
    /* flush neverland mappings created during no-fault mode,
2448
       so the sequential MMU faults report proper fault types */
2449
    if (env->mmuregs[0] & MMU_NF) {
2450
        tlb_flush(env, 1);
2451
    }
2452
}
2453
#endif
2454
#else
2455
#if defined(CONFIG_USER_ONLY)
2456
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
2457
                                 int is_asi, int size)
2458
#else
2459
static void do_unassigned_access(target_phys_addr_t addr, int is_write,
2460
                                 int is_exec, int is_asi, int size)
2461
#endif
2462
{
2463
#ifdef DEBUG_UNASSIGNED
2464
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2465
           "\n", addr, env->pc);
2466
#endif
2467

    
2468
    if (is_exec) {
2469
        helper_raise_exception(env, TT_CODE_ACCESS);
2470
    } else {
2471
        helper_raise_exception(env, TT_DATA_ACCESS);
2472
    }
2473
}
2474
#endif
2475

    
2476
#if !defined(CONFIG_USER_ONLY)
2477
void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
2478
                           int is_write, int is_exec, int is_asi, int size)
2479
{
2480
    CPUState *saved_env;
2481

    
2482
    saved_env = env;
2483
    env = env1;
2484
    /* Ignore unassigned accesses outside of CPU context */
2485
    if (env1) {
2486
        do_unassigned_access(addr, is_write, is_exec, is_asi, size);
2487
    }
2488
    env = saved_env;
2489
}
2490
#endif