Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 7c9d8e07

History | View | Annotate | Download (23.2 kB)

1 80cabfad bellard
/*
2 80cabfad bellard
 * QEMU NE2000 emulation
3 80cabfad bellard
 * 
4 80cabfad bellard
 * Copyright (c) 2003-2004 Fabrice Bellard
5 80cabfad bellard
 * 
6 80cabfad bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 80cabfad bellard
 * of this software and associated documentation files (the "Software"), to deal
8 80cabfad bellard
 * in the Software without restriction, including without limitation the rights
9 80cabfad bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 80cabfad bellard
 * copies of the Software, and to permit persons to whom the Software is
11 80cabfad bellard
 * furnished to do so, subject to the following conditions:
12 80cabfad bellard
 *
13 80cabfad bellard
 * The above copyright notice and this permission notice shall be included in
14 80cabfad bellard
 * all copies or substantial portions of the Software.
15 80cabfad bellard
 *
16 80cabfad bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 80cabfad bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 80cabfad bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 80cabfad bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 80cabfad bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 80cabfad bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 80cabfad bellard
 * THE SOFTWARE.
23 80cabfad bellard
 */
24 80cabfad bellard
#include "vl.h"
25 80cabfad bellard
26 80cabfad bellard
/* debug NE2000 card */
27 80cabfad bellard
//#define DEBUG_NE2000
28 80cabfad bellard
29 b41a2cd1 bellard
#define MAX_ETH_FRAME_SIZE 1514
30 80cabfad bellard
31 80cabfad bellard
#define E8390_CMD        0x00  /* The command register (for all pages) */
32 80cabfad bellard
/* Page 0 register offsets. */
33 80cabfad bellard
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34 80cabfad bellard
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35 80cabfad bellard
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36 80cabfad bellard
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37 80cabfad bellard
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38 80cabfad bellard
#define EN0_TSR                0x04        /* Transmit status reg RD */
39 80cabfad bellard
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40 80cabfad bellard
#define EN0_NCR                0x05        /* Number of collision reg RD */
41 80cabfad bellard
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42 80cabfad bellard
#define EN0_FIFO        0x06        /* FIFO RD */
43 80cabfad bellard
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44 80cabfad bellard
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45 80cabfad bellard
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46 80cabfad bellard
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47 80cabfad bellard
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48 80cabfad bellard
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49 80cabfad bellard
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50 80cabfad bellard
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
51 80cabfad bellard
#define EN0_RSR                0x0c        /* rx status reg RD */
52 80cabfad bellard
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
53 80cabfad bellard
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
54 80cabfad bellard
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
55 80cabfad bellard
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
56 80cabfad bellard
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
57 80cabfad bellard
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
58 80cabfad bellard
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
59 80cabfad bellard
60 80cabfad bellard
#define EN1_PHYS        0x11
61 80cabfad bellard
#define EN1_CURPAG      0x17
62 80cabfad bellard
#define EN1_MULT        0x18
63 80cabfad bellard
64 a343df16 bellard
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
65 a343df16 bellard
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
66 a343df16 bellard
67 80cabfad bellard
/*  Register accessed at EN_CMD, the 8390 base addr.  */
68 80cabfad bellard
#define E8390_STOP        0x01        /* Stop and reset the chip */
69 80cabfad bellard
#define E8390_START        0x02        /* Start the chip, clear reset */
70 80cabfad bellard
#define E8390_TRANS        0x04        /* Transmit a frame */
71 80cabfad bellard
#define E8390_RREAD        0x08        /* Remote read */
72 80cabfad bellard
#define E8390_RWRITE        0x10        /* Remote write  */
73 80cabfad bellard
#define E8390_NODMA        0x20        /* Remote DMA */
74 80cabfad bellard
#define E8390_PAGE0        0x00        /* Select page chip registers */
75 80cabfad bellard
#define E8390_PAGE1        0x40        /* using the two high-order bits */
76 80cabfad bellard
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
77 80cabfad bellard
78 80cabfad bellard
/* Bits in EN0_ISR - Interrupt status register */
79 80cabfad bellard
#define ENISR_RX        0x01        /* Receiver, no error */
80 80cabfad bellard
#define ENISR_TX        0x02        /* Transmitter, no error */
81 80cabfad bellard
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
82 80cabfad bellard
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
83 80cabfad bellard
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
84 80cabfad bellard
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
85 80cabfad bellard
#define ENISR_RDC        0x40        /* remote dma complete */
86 80cabfad bellard
#define ENISR_RESET        0x80        /* Reset completed */
87 80cabfad bellard
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
88 80cabfad bellard
89 80cabfad bellard
/* Bits in received packet status byte and EN0_RSR*/
90 80cabfad bellard
#define ENRSR_RXOK        0x01        /* Received a good packet */
91 80cabfad bellard
#define ENRSR_CRC        0x02        /* CRC error */
92 80cabfad bellard
#define ENRSR_FAE        0x04        /* frame alignment error */
93 80cabfad bellard
#define ENRSR_FO        0x08        /* FIFO overrun */
94 80cabfad bellard
#define ENRSR_MPA        0x10        /* missed pkt */
95 80cabfad bellard
#define ENRSR_PHY        0x20        /* physical/multicast address */
96 80cabfad bellard
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
97 80cabfad bellard
#define ENRSR_DEF        0x80        /* deferring */
98 80cabfad bellard
99 80cabfad bellard
/* Transmitted packet status, EN0_TSR. */
100 80cabfad bellard
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
101 80cabfad bellard
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
102 80cabfad bellard
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
103 80cabfad bellard
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
104 80cabfad bellard
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
105 80cabfad bellard
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
106 80cabfad bellard
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
107 80cabfad bellard
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
108 80cabfad bellard
109 ee9dbb29 bellard
#define NE2000_PMEM_SIZE    (32*1024)
110 ee9dbb29 bellard
#define NE2000_PMEM_START   (16*1024)
111 ee9dbb29 bellard
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
112 ee9dbb29 bellard
#define NE2000_MEM_SIZE     NE2000_PMEM_END
113 80cabfad bellard
114 80cabfad bellard
typedef struct NE2000State {
115 80cabfad bellard
    uint8_t cmd;
116 80cabfad bellard
    uint32_t start;
117 80cabfad bellard
    uint32_t stop;
118 80cabfad bellard
    uint8_t boundary;
119 80cabfad bellard
    uint8_t tsr;
120 80cabfad bellard
    uint8_t tpsr;
121 80cabfad bellard
    uint16_t tcnt;
122 80cabfad bellard
    uint16_t rcnt;
123 80cabfad bellard
    uint32_t rsar;
124 8d6c7eb8 bellard
    uint8_t rsr;
125 7c9d8e07 bellard
    uint8_t rxcr;
126 80cabfad bellard
    uint8_t isr;
127 80cabfad bellard
    uint8_t dcfg;
128 80cabfad bellard
    uint8_t imr;
129 80cabfad bellard
    uint8_t phys[6]; /* mac address */
130 80cabfad bellard
    uint8_t curpag;
131 80cabfad bellard
    uint8_t mult[8]; /* multicast mask array */
132 80cabfad bellard
    int irq;
133 4a9c9687 bellard
    PCIDevice *pci_dev;
134 7c9d8e07 bellard
    VLANClientState *vc;
135 7c9d8e07 bellard
    uint8_t macaddr[6];
136 80cabfad bellard
    uint8_t mem[NE2000_MEM_SIZE];
137 80cabfad bellard
} NE2000State;
138 80cabfad bellard
139 80cabfad bellard
static void ne2000_reset(NE2000State *s)
140 80cabfad bellard
{
141 80cabfad bellard
    int i;
142 80cabfad bellard
143 80cabfad bellard
    s->isr = ENISR_RESET;
144 7c9d8e07 bellard
    memcpy(s->mem, s->macaddr, 6);
145 80cabfad bellard
    s->mem[14] = 0x57;
146 80cabfad bellard
    s->mem[15] = 0x57;
147 80cabfad bellard
148 80cabfad bellard
    /* duplicate prom data */
149 80cabfad bellard
    for(i = 15;i >= 0; i--) {
150 80cabfad bellard
        s->mem[2 * i] = s->mem[i];
151 80cabfad bellard
        s->mem[2 * i + 1] = s->mem[i];
152 80cabfad bellard
    }
153 80cabfad bellard
}
154 80cabfad bellard
155 80cabfad bellard
static void ne2000_update_irq(NE2000State *s)
156 80cabfad bellard
{
157 80cabfad bellard
    int isr;
158 a343df16 bellard
    isr = (s->isr & s->imr) & 0x7f;
159 a541f297 bellard
#if defined(DEBUG_NE2000)
160 a541f297 bellard
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
161 a541f297 bellard
           s->irq, isr ? 1 : 0, s->isr, s->imr);
162 a541f297 bellard
#endif
163 4a9c9687 bellard
    if (s->irq == 16) {
164 4a9c9687 bellard
        /* PCI irq */
165 4a9c9687 bellard
        pci_set_irq(s->pci_dev, 0, (isr != 0));
166 4a9c9687 bellard
    } else {
167 4a9c9687 bellard
        /* ISA irq */
168 4a9c9687 bellard
        pic_set_irq(s->irq, (isr != 0));
169 4a9c9687 bellard
    }
170 80cabfad bellard
}
171 80cabfad bellard
172 7c9d8e07 bellard
#define POLYNOMIAL 0x04c11db6
173 7c9d8e07 bellard
174 7c9d8e07 bellard
/* From FreeBSD */
175 7c9d8e07 bellard
/* XXX: optimize */
176 7c9d8e07 bellard
static int compute_mcast_idx(const uint8_t *ep)
177 7c9d8e07 bellard
{
178 7c9d8e07 bellard
    uint32_t crc;
179 7c9d8e07 bellard
    int carry, i, j;
180 7c9d8e07 bellard
    uint8_t b;
181 7c9d8e07 bellard
182 7c9d8e07 bellard
    crc = 0xffffffff;
183 7c9d8e07 bellard
    for (i = 0; i < 6; i++) {
184 7c9d8e07 bellard
        b = *ep++;
185 7c9d8e07 bellard
        for (j = 0; j < 8; j++) {
186 7c9d8e07 bellard
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
187 7c9d8e07 bellard
            crc <<= 1;
188 7c9d8e07 bellard
            b >>= 1;
189 7c9d8e07 bellard
            if (carry)
190 7c9d8e07 bellard
                crc = ((crc ^ POLYNOMIAL) | carry);
191 7c9d8e07 bellard
        }
192 7c9d8e07 bellard
    }
193 7c9d8e07 bellard
    return (crc >> 26);
194 7c9d8e07 bellard
}
195 7c9d8e07 bellard
196 b41a2cd1 bellard
/* return the max buffer size if the NE2000 can receive more data */
197 b41a2cd1 bellard
static int ne2000_can_receive(void *opaque)
198 80cabfad bellard
{
199 b41a2cd1 bellard
    NE2000State *s = opaque;
200 80cabfad bellard
    int avail, index, boundary;
201 80cabfad bellard
    
202 80cabfad bellard
    if (s->cmd & E8390_STOP)
203 80cabfad bellard
        return 0;
204 80cabfad bellard
    index = s->curpag << 8;
205 80cabfad bellard
    boundary = s->boundary << 8;
206 80cabfad bellard
    if (index < boundary)
207 80cabfad bellard
        avail = boundary - index;
208 80cabfad bellard
    else
209 80cabfad bellard
        avail = (s->stop - s->start) - (index - boundary);
210 80cabfad bellard
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
211 80cabfad bellard
        return 0;
212 b41a2cd1 bellard
    return MAX_ETH_FRAME_SIZE;
213 80cabfad bellard
}
214 80cabfad bellard
215 b41a2cd1 bellard
#define MIN_BUF_SIZE 60
216 b41a2cd1 bellard
217 b41a2cd1 bellard
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
218 80cabfad bellard
{
219 b41a2cd1 bellard
    NE2000State *s = opaque;
220 80cabfad bellard
    uint8_t *p;
221 7c9d8e07 bellard
    int total_len, next, avail, len, index, mcast_idx;
222 b41a2cd1 bellard
    uint8_t buf1[60];
223 7c9d8e07 bellard
    static const uint8_t broadcast_macaddr[6] = 
224 7c9d8e07 bellard
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
225 b41a2cd1 bellard
    
226 80cabfad bellard
#if defined(DEBUG_NE2000)
227 80cabfad bellard
    printf("NE2000: received len=%d\n", size);
228 80cabfad bellard
#endif
229 80cabfad bellard
230 7c9d8e07 bellard
    if (!ne2000_can_receive(s))
231 7c9d8e07 bellard
        return;
232 7c9d8e07 bellard
    
233 7c9d8e07 bellard
    /* XXX: check this */
234 7c9d8e07 bellard
    if (s->rxcr & 0x10) {
235 7c9d8e07 bellard
        /* promiscuous: receive all */
236 7c9d8e07 bellard
    } else {
237 7c9d8e07 bellard
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
238 7c9d8e07 bellard
            /* broadcast address */
239 7c9d8e07 bellard
            if (!(s->rxcr & 0x04))
240 7c9d8e07 bellard
                return;
241 7c9d8e07 bellard
        } else if (buf[0] & 0x01) {
242 7c9d8e07 bellard
            /* multicast */
243 7c9d8e07 bellard
            if (!(s->rxcr & 0x08))
244 7c9d8e07 bellard
                return;
245 7c9d8e07 bellard
            mcast_idx = compute_mcast_idx(buf);
246 7c9d8e07 bellard
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
247 7c9d8e07 bellard
                return;
248 7c9d8e07 bellard
        } else if (s->mem[0] == buf[0] &&
249 7c9d8e07 bellard
                   s->mem[2] == buf[1] &&                   
250 7c9d8e07 bellard
                   s->mem[4] == buf[2] &&            
251 7c9d8e07 bellard
                   s->mem[6] == buf[3] &&            
252 7c9d8e07 bellard
                   s->mem[8] == buf[4] &&            
253 7c9d8e07 bellard
                   s->mem[10] == buf[5]) {
254 7c9d8e07 bellard
            /* match */
255 7c9d8e07 bellard
        } else {
256 7c9d8e07 bellard
            return;
257 7c9d8e07 bellard
        }
258 7c9d8e07 bellard
    }
259 7c9d8e07 bellard
260 7c9d8e07 bellard
261 b41a2cd1 bellard
    /* if too small buffer, then expand it */
262 b41a2cd1 bellard
    if (size < MIN_BUF_SIZE) {
263 b41a2cd1 bellard
        memcpy(buf1, buf, size);
264 b41a2cd1 bellard
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
265 b41a2cd1 bellard
        buf = buf1;
266 b41a2cd1 bellard
        size = MIN_BUF_SIZE;
267 b41a2cd1 bellard
    }
268 b41a2cd1 bellard
269 80cabfad bellard
    index = s->curpag << 8;
270 80cabfad bellard
    /* 4 bytes for header */
271 80cabfad bellard
    total_len = size + 4;
272 80cabfad bellard
    /* address for next packet (4 bytes for CRC) */
273 80cabfad bellard
    next = index + ((total_len + 4 + 255) & ~0xff);
274 80cabfad bellard
    if (next >= s->stop)
275 80cabfad bellard
        next -= (s->stop - s->start);
276 80cabfad bellard
    /* prepare packet header */
277 80cabfad bellard
    p = s->mem + index;
278 8d6c7eb8 bellard
    s->rsr = ENRSR_RXOK; /* receive status */
279 8d6c7eb8 bellard
    /* XXX: check this */
280 8d6c7eb8 bellard
    if (buf[0] & 0x01)
281 8d6c7eb8 bellard
        s->rsr |= ENRSR_PHY;
282 8d6c7eb8 bellard
    p[0] = s->rsr;
283 80cabfad bellard
    p[1] = next >> 8;
284 80cabfad bellard
    p[2] = total_len;
285 80cabfad bellard
    p[3] = total_len >> 8;
286 80cabfad bellard
    index += 4;
287 80cabfad bellard
288 80cabfad bellard
    /* write packet data */
289 80cabfad bellard
    while (size > 0) {
290 80cabfad bellard
        avail = s->stop - index;
291 80cabfad bellard
        len = size;
292 80cabfad bellard
        if (len > avail)
293 80cabfad bellard
            len = avail;
294 80cabfad bellard
        memcpy(s->mem + index, buf, len);
295 80cabfad bellard
        buf += len;
296 80cabfad bellard
        index += len;
297 80cabfad bellard
        if (index == s->stop)
298 80cabfad bellard
            index = s->start;
299 80cabfad bellard
        size -= len;
300 80cabfad bellard
    }
301 80cabfad bellard
    s->curpag = next >> 8;
302 8d6c7eb8 bellard
303 80cabfad bellard
    /* now we can signal we have receive something */
304 80cabfad bellard
    s->isr |= ENISR_RX;
305 80cabfad bellard
    ne2000_update_irq(s);
306 80cabfad bellard
}
307 80cabfad bellard
308 b41a2cd1 bellard
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
309 80cabfad bellard
{
310 b41a2cd1 bellard
    NE2000State *s = opaque;
311 40545f84 bellard
    int offset, page, index;
312 80cabfad bellard
313 80cabfad bellard
    addr &= 0xf;
314 80cabfad bellard
#ifdef DEBUG_NE2000
315 80cabfad bellard
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
316 80cabfad bellard
#endif
317 80cabfad bellard
    if (addr == E8390_CMD) {
318 80cabfad bellard
        /* control register */
319 80cabfad bellard
        s->cmd = val;
320 a343df16 bellard
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
321 ee9dbb29 bellard
            s->isr &= ~ENISR_RESET;
322 80cabfad bellard
            /* test specific case: zero length transfert */
323 80cabfad bellard
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
324 80cabfad bellard
                s->rcnt == 0) {
325 80cabfad bellard
                s->isr |= ENISR_RDC;
326 80cabfad bellard
                ne2000_update_irq(s);
327 80cabfad bellard
            }
328 80cabfad bellard
            if (val & E8390_TRANS) {
329 40545f84 bellard
                index = (s->tpsr << 8);
330 40545f84 bellard
                /* XXX: next 2 lines are a hack to make netware 3.11 work */ 
331 40545f84 bellard
                if (index >= NE2000_PMEM_END)
332 40545f84 bellard
                    index -= NE2000_PMEM_SIZE;
333 40545f84 bellard
                /* fail safe: check range on the transmitted length  */
334 40545f84 bellard
                if (index + s->tcnt <= NE2000_PMEM_END) {
335 7c9d8e07 bellard
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
336 40545f84 bellard
                }
337 80cabfad bellard
                /* signal end of transfert */
338 80cabfad bellard
                s->tsr = ENTSR_PTX;
339 80cabfad bellard
                s->isr |= ENISR_TX;
340 40545f84 bellard
                s->cmd &= ~E8390_TRANS; 
341 80cabfad bellard
                ne2000_update_irq(s);
342 80cabfad bellard
            }
343 80cabfad bellard
        }
344 80cabfad bellard
    } else {
345 80cabfad bellard
        page = s->cmd >> 6;
346 80cabfad bellard
        offset = addr | (page << 4);
347 80cabfad bellard
        switch(offset) {
348 80cabfad bellard
        case EN0_STARTPG:
349 80cabfad bellard
            s->start = val << 8;
350 80cabfad bellard
            break;
351 80cabfad bellard
        case EN0_STOPPG:
352 80cabfad bellard
            s->stop = val << 8;
353 80cabfad bellard
            break;
354 80cabfad bellard
        case EN0_BOUNDARY:
355 80cabfad bellard
            s->boundary = val;
356 80cabfad bellard
            break;
357 80cabfad bellard
        case EN0_IMR:
358 80cabfad bellard
            s->imr = val;
359 80cabfad bellard
            ne2000_update_irq(s);
360 80cabfad bellard
            break;
361 80cabfad bellard
        case EN0_TPSR:
362 80cabfad bellard
            s->tpsr = val;
363 80cabfad bellard
            break;
364 80cabfad bellard
        case EN0_TCNTLO:
365 80cabfad bellard
            s->tcnt = (s->tcnt & 0xff00) | val;
366 80cabfad bellard
            break;
367 80cabfad bellard
        case EN0_TCNTHI:
368 80cabfad bellard
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
369 80cabfad bellard
            break;
370 80cabfad bellard
        case EN0_RSARLO:
371 80cabfad bellard
            s->rsar = (s->rsar & 0xff00) | val;
372 80cabfad bellard
            break;
373 80cabfad bellard
        case EN0_RSARHI:
374 80cabfad bellard
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
375 80cabfad bellard
            break;
376 80cabfad bellard
        case EN0_RCNTLO:
377 80cabfad bellard
            s->rcnt = (s->rcnt & 0xff00) | val;
378 80cabfad bellard
            break;
379 80cabfad bellard
        case EN0_RCNTHI:
380 80cabfad bellard
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
381 80cabfad bellard
            break;
382 7c9d8e07 bellard
        case EN0_RXCR:
383 7c9d8e07 bellard
            s->rxcr = val;
384 7c9d8e07 bellard
            break;
385 80cabfad bellard
        case EN0_DCFG:
386 80cabfad bellard
            s->dcfg = val;
387 80cabfad bellard
            break;
388 80cabfad bellard
        case EN0_ISR:
389 ee9dbb29 bellard
            s->isr &= ~(val & 0x7f);
390 80cabfad bellard
            ne2000_update_irq(s);
391 80cabfad bellard
            break;
392 80cabfad bellard
        case EN1_PHYS ... EN1_PHYS + 5:
393 80cabfad bellard
            s->phys[offset - EN1_PHYS] = val;
394 80cabfad bellard
            break;
395 80cabfad bellard
        case EN1_CURPAG:
396 80cabfad bellard
            s->curpag = val;
397 80cabfad bellard
            break;
398 80cabfad bellard
        case EN1_MULT ... EN1_MULT + 7:
399 80cabfad bellard
            s->mult[offset - EN1_MULT] = val;
400 80cabfad bellard
            break;
401 80cabfad bellard
        }
402 80cabfad bellard
    }
403 80cabfad bellard
}
404 80cabfad bellard
405 b41a2cd1 bellard
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
406 80cabfad bellard
{
407 b41a2cd1 bellard
    NE2000State *s = opaque;
408 80cabfad bellard
    int offset, page, ret;
409 80cabfad bellard
410 80cabfad bellard
    addr &= 0xf;
411 80cabfad bellard
    if (addr == E8390_CMD) {
412 80cabfad bellard
        ret = s->cmd;
413 80cabfad bellard
    } else {
414 80cabfad bellard
        page = s->cmd >> 6;
415 80cabfad bellard
        offset = addr | (page << 4);
416 80cabfad bellard
        switch(offset) {
417 80cabfad bellard
        case EN0_TSR:
418 80cabfad bellard
            ret = s->tsr;
419 80cabfad bellard
            break;
420 80cabfad bellard
        case EN0_BOUNDARY:
421 80cabfad bellard
            ret = s->boundary;
422 80cabfad bellard
            break;
423 80cabfad bellard
        case EN0_ISR:
424 80cabfad bellard
            ret = s->isr;
425 80cabfad bellard
            break;
426 ee9dbb29 bellard
        case EN0_RSARLO:
427 ee9dbb29 bellard
            ret = s->rsar & 0x00ff;
428 ee9dbb29 bellard
            break;
429 ee9dbb29 bellard
        case EN0_RSARHI:
430 ee9dbb29 bellard
            ret = s->rsar >> 8;
431 ee9dbb29 bellard
            break;
432 80cabfad bellard
        case EN1_PHYS ... EN1_PHYS + 5:
433 80cabfad bellard
            ret = s->phys[offset - EN1_PHYS];
434 80cabfad bellard
            break;
435 80cabfad bellard
        case EN1_CURPAG:
436 80cabfad bellard
            ret = s->curpag;
437 80cabfad bellard
            break;
438 80cabfad bellard
        case EN1_MULT ... EN1_MULT + 7:
439 80cabfad bellard
            ret = s->mult[offset - EN1_MULT];
440 80cabfad bellard
            break;
441 8d6c7eb8 bellard
        case EN0_RSR:
442 8d6c7eb8 bellard
            ret = s->rsr;
443 8d6c7eb8 bellard
            break;
444 a343df16 bellard
        case EN2_STARTPG:
445 a343df16 bellard
            ret = s->start >> 8;
446 a343df16 bellard
            break;
447 a343df16 bellard
        case EN2_STOPPG:
448 a343df16 bellard
            ret = s->stop >> 8;
449 a343df16 bellard
            break;
450 80cabfad bellard
        default:
451 80cabfad bellard
            ret = 0x00;
452 80cabfad bellard
            break;
453 80cabfad bellard
        }
454 80cabfad bellard
    }
455 80cabfad bellard
#ifdef DEBUG_NE2000
456 80cabfad bellard
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
457 80cabfad bellard
#endif
458 80cabfad bellard
    return ret;
459 80cabfad bellard
}
460 80cabfad bellard
461 ee9dbb29 bellard
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
462 69b91039 bellard
                                     uint32_t val)
463 ee9dbb29 bellard
{
464 ee9dbb29 bellard
    if (addr < 32 || 
465 ee9dbb29 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
466 ee9dbb29 bellard
        s->mem[addr] = val;
467 ee9dbb29 bellard
    }
468 ee9dbb29 bellard
}
469 ee9dbb29 bellard
470 ee9dbb29 bellard
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
471 ee9dbb29 bellard
                                     uint32_t val)
472 ee9dbb29 bellard
{
473 ee9dbb29 bellard
    addr &= ~1; /* XXX: check exact behaviour if not even */
474 ee9dbb29 bellard
    if (addr < 32 || 
475 ee9dbb29 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
476 69b91039 bellard
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
477 69b91039 bellard
    }
478 69b91039 bellard
}
479 69b91039 bellard
480 69b91039 bellard
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
481 69b91039 bellard
                                     uint32_t val)
482 69b91039 bellard
{
483 57ccbabe bellard
    addr &= ~1; /* XXX: check exact behaviour if not even */
484 69b91039 bellard
    if (addr < 32 || 
485 69b91039 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
486 57ccbabe bellard
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
487 ee9dbb29 bellard
    }
488 ee9dbb29 bellard
}
489 ee9dbb29 bellard
490 ee9dbb29 bellard
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
491 ee9dbb29 bellard
{
492 ee9dbb29 bellard
    if (addr < 32 || 
493 ee9dbb29 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
494 ee9dbb29 bellard
        return s->mem[addr];
495 ee9dbb29 bellard
    } else {
496 ee9dbb29 bellard
        return 0xff;
497 ee9dbb29 bellard
    }
498 ee9dbb29 bellard
}
499 ee9dbb29 bellard
500 ee9dbb29 bellard
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
501 ee9dbb29 bellard
{
502 ee9dbb29 bellard
    addr &= ~1; /* XXX: check exact behaviour if not even */
503 ee9dbb29 bellard
    if (addr < 32 || 
504 ee9dbb29 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
505 69b91039 bellard
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
506 ee9dbb29 bellard
    } else {
507 ee9dbb29 bellard
        return 0xffff;
508 ee9dbb29 bellard
    }
509 ee9dbb29 bellard
}
510 ee9dbb29 bellard
511 69b91039 bellard
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
512 69b91039 bellard
{
513 57ccbabe bellard
    addr &= ~1; /* XXX: check exact behaviour if not even */
514 69b91039 bellard
    if (addr < 32 || 
515 69b91039 bellard
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
516 57ccbabe bellard
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
517 69b91039 bellard
    } else {
518 69b91039 bellard
        return 0xffffffff;
519 69b91039 bellard
    }
520 69b91039 bellard
}
521 69b91039 bellard
522 3df3f6fd bellard
static inline void ne2000_dma_update(NE2000State *s, int len)
523 3df3f6fd bellard
{
524 3df3f6fd bellard
    s->rsar += len;
525 3df3f6fd bellard
    /* wrap */
526 3df3f6fd bellard
    /* XXX: check what to do if rsar > stop */
527 3df3f6fd bellard
    if (s->rsar == s->stop)
528 3df3f6fd bellard
        s->rsar = s->start;
529 3df3f6fd bellard
530 3df3f6fd bellard
    if (s->rcnt <= len) {
531 3df3f6fd bellard
        s->rcnt = 0;
532 3df3f6fd bellard
        /* signal end of transfert */
533 3df3f6fd bellard
        s->isr |= ENISR_RDC;
534 3df3f6fd bellard
        ne2000_update_irq(s);
535 3df3f6fd bellard
    } else {
536 3df3f6fd bellard
        s->rcnt -= len;
537 3df3f6fd bellard
    }
538 3df3f6fd bellard
}
539 3df3f6fd bellard
540 b41a2cd1 bellard
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
541 80cabfad bellard
{
542 b41a2cd1 bellard
    NE2000State *s = opaque;
543 80cabfad bellard
544 80cabfad bellard
#ifdef DEBUG_NE2000
545 80cabfad bellard
    printf("NE2000: asic write val=0x%04x\n", val);
546 80cabfad bellard
#endif
547 ee9dbb29 bellard
    if (s->rcnt == 0)
548 3df3f6fd bellard
        return;
549 80cabfad bellard
    if (s->dcfg & 0x01) {
550 80cabfad bellard
        /* 16 bit access */
551 ee9dbb29 bellard
        ne2000_mem_writew(s, s->rsar, val);
552 3df3f6fd bellard
        ne2000_dma_update(s, 2);
553 80cabfad bellard
    } else {
554 80cabfad bellard
        /* 8 bit access */
555 ee9dbb29 bellard
        ne2000_mem_writeb(s, s->rsar, val);
556 3df3f6fd bellard
        ne2000_dma_update(s, 1);
557 80cabfad bellard
    }
558 80cabfad bellard
}
559 80cabfad bellard
560 b41a2cd1 bellard
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
561 80cabfad bellard
{
562 b41a2cd1 bellard
    NE2000State *s = opaque;
563 80cabfad bellard
    int ret;
564 80cabfad bellard
565 80cabfad bellard
    if (s->dcfg & 0x01) {
566 80cabfad bellard
        /* 16 bit access */
567 ee9dbb29 bellard
        ret = ne2000_mem_readw(s, s->rsar);
568 3df3f6fd bellard
        ne2000_dma_update(s, 2);
569 80cabfad bellard
    } else {
570 80cabfad bellard
        /* 8 bit access */
571 ee9dbb29 bellard
        ret = ne2000_mem_readb(s, s->rsar);
572 3df3f6fd bellard
        ne2000_dma_update(s, 1);
573 80cabfad bellard
    }
574 80cabfad bellard
#ifdef DEBUG_NE2000
575 80cabfad bellard
    printf("NE2000: asic read val=0x%04x\n", ret);
576 80cabfad bellard
#endif
577 80cabfad bellard
    return ret;
578 80cabfad bellard
}
579 80cabfad bellard
580 69b91039 bellard
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
581 69b91039 bellard
{
582 69b91039 bellard
    NE2000State *s = opaque;
583 69b91039 bellard
584 69b91039 bellard
#ifdef DEBUG_NE2000
585 69b91039 bellard
    printf("NE2000: asic writel val=0x%04x\n", val);
586 69b91039 bellard
#endif
587 69b91039 bellard
    if (s->rcnt == 0)
588 3df3f6fd bellard
        return;
589 69b91039 bellard
    /* 32 bit access */
590 69b91039 bellard
    ne2000_mem_writel(s, s->rsar, val);
591 3df3f6fd bellard
    ne2000_dma_update(s, 4);
592 69b91039 bellard
}
593 69b91039 bellard
594 69b91039 bellard
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
595 69b91039 bellard
{
596 69b91039 bellard
    NE2000State *s = opaque;
597 69b91039 bellard
    int ret;
598 69b91039 bellard
599 69b91039 bellard
    /* 32 bit access */
600 69b91039 bellard
    ret = ne2000_mem_readl(s, s->rsar);
601 3df3f6fd bellard
    ne2000_dma_update(s, 4);
602 69b91039 bellard
#ifdef DEBUG_NE2000
603 69b91039 bellard
    printf("NE2000: asic readl val=0x%04x\n", ret);
604 69b91039 bellard
#endif
605 69b91039 bellard
    return ret;
606 69b91039 bellard
}
607 69b91039 bellard
608 b41a2cd1 bellard
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
609 80cabfad bellard
{
610 80cabfad bellard
    /* nothing to do (end of reset pulse) */
611 80cabfad bellard
}
612 80cabfad bellard
613 b41a2cd1 bellard
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
614 80cabfad bellard
{
615 b41a2cd1 bellard
    NE2000State *s = opaque;
616 80cabfad bellard
    ne2000_reset(s);
617 80cabfad bellard
    return 0;
618 80cabfad bellard
}
619 80cabfad bellard
620 30ca2aab bellard
static void ne2000_save(QEMUFile* f,void* opaque)
621 30ca2aab bellard
{
622 30ca2aab bellard
        NE2000State* s=(NE2000State*)opaque;
623 30ca2aab bellard
624 30ca2aab bellard
        qemu_put_8s(f, &s->cmd);
625 30ca2aab bellard
        qemu_put_be32s(f, &s->start);
626 30ca2aab bellard
        qemu_put_be32s(f, &s->stop);
627 30ca2aab bellard
        qemu_put_8s(f, &s->boundary);
628 30ca2aab bellard
        qemu_put_8s(f, &s->tsr);
629 30ca2aab bellard
        qemu_put_8s(f, &s->tpsr);
630 30ca2aab bellard
        qemu_put_be16s(f, &s->tcnt);
631 30ca2aab bellard
        qemu_put_be16s(f, &s->rcnt);
632 30ca2aab bellard
        qemu_put_be32s(f, &s->rsar);
633 30ca2aab bellard
        qemu_put_8s(f, &s->rsr);
634 30ca2aab bellard
        qemu_put_8s(f, &s->isr);
635 30ca2aab bellard
        qemu_put_8s(f, &s->dcfg);
636 30ca2aab bellard
        qemu_put_8s(f, &s->imr);
637 30ca2aab bellard
        qemu_put_buffer(f, s->phys, 6);
638 30ca2aab bellard
        qemu_put_8s(f, &s->curpag);
639 30ca2aab bellard
        qemu_put_buffer(f, s->mult, 8);
640 30ca2aab bellard
        qemu_put_be32s(f, &s->irq);
641 30ca2aab bellard
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
642 30ca2aab bellard
}
643 30ca2aab bellard
644 30ca2aab bellard
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
645 30ca2aab bellard
{
646 30ca2aab bellard
        NE2000State* s=(NE2000State*)opaque;
647 30ca2aab bellard
648 30ca2aab bellard
        if (version_id != 1)
649 30ca2aab bellard
            return -EINVAL;
650 30ca2aab bellard
651 30ca2aab bellard
        qemu_get_8s(f, &s->cmd);
652 30ca2aab bellard
        qemu_get_be32s(f, &s->start);
653 30ca2aab bellard
        qemu_get_be32s(f, &s->stop);
654 30ca2aab bellard
        qemu_get_8s(f, &s->boundary);
655 30ca2aab bellard
        qemu_get_8s(f, &s->tsr);
656 30ca2aab bellard
        qemu_get_8s(f, &s->tpsr);
657 30ca2aab bellard
        qemu_get_be16s(f, &s->tcnt);
658 30ca2aab bellard
        qemu_get_be16s(f, &s->rcnt);
659 30ca2aab bellard
        qemu_get_be32s(f, &s->rsar);
660 30ca2aab bellard
        qemu_get_8s(f, &s->rsr);
661 30ca2aab bellard
        qemu_get_8s(f, &s->isr);
662 30ca2aab bellard
        qemu_get_8s(f, &s->dcfg);
663 30ca2aab bellard
        qemu_get_8s(f, &s->imr);
664 30ca2aab bellard
        qemu_get_buffer(f, s->phys, 6);
665 30ca2aab bellard
        qemu_get_8s(f, &s->curpag);
666 30ca2aab bellard
        qemu_get_buffer(f, s->mult, 8);
667 30ca2aab bellard
        qemu_get_be32s(f, &s->irq);
668 30ca2aab bellard
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
669 30ca2aab bellard
670 30ca2aab bellard
        return 0;
671 30ca2aab bellard
}
672 30ca2aab bellard
673 7c9d8e07 bellard
void isa_ne2000_init(int base, int irq, NICInfo *nd)
674 80cabfad bellard
{
675 b41a2cd1 bellard
    NE2000State *s;
676 7c9d8e07 bellard
    
677 b41a2cd1 bellard
    s = qemu_mallocz(sizeof(NE2000State));
678 b41a2cd1 bellard
    if (!s)
679 b41a2cd1 bellard
        return;
680 b41a2cd1 bellard
    
681 b41a2cd1 bellard
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
682 b41a2cd1 bellard
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
683 80cabfad bellard
684 b41a2cd1 bellard
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
685 b41a2cd1 bellard
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
686 b41a2cd1 bellard
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
687 b41a2cd1 bellard
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
688 80cabfad bellard
689 b41a2cd1 bellard
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
690 b41a2cd1 bellard
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
691 80cabfad bellard
    s->irq = irq;
692 7c9d8e07 bellard
    memcpy(s->macaddr, nd->macaddr, 6);
693 80cabfad bellard
694 80cabfad bellard
    ne2000_reset(s);
695 b41a2cd1 bellard
696 7c9d8e07 bellard
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
697 7c9d8e07 bellard
698 7c9d8e07 bellard
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
699 7c9d8e07 bellard
             "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
700 7c9d8e07 bellard
             s->macaddr[0],
701 7c9d8e07 bellard
             s->macaddr[1],
702 7c9d8e07 bellard
             s->macaddr[2],
703 7c9d8e07 bellard
             s->macaddr[3],
704 7c9d8e07 bellard
             s->macaddr[4],
705 7c9d8e07 bellard
             s->macaddr[5]);
706 7c9d8e07 bellard
             
707 30ca2aab bellard
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
708 80cabfad bellard
}
709 69b91039 bellard
710 69b91039 bellard
/***********************************************************/
711 69b91039 bellard
/* PCI NE2000 definitions */
712 69b91039 bellard
713 69b91039 bellard
typedef struct PCINE2000State {
714 69b91039 bellard
    PCIDevice dev;
715 69b91039 bellard
    NE2000State ne2000;
716 69b91039 bellard
} PCINE2000State;
717 69b91039 bellard
718 69b91039 bellard
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
719 69b91039 bellard
                       uint32_t addr, uint32_t size, int type)
720 69b91039 bellard
{
721 69b91039 bellard
    PCINE2000State *d = (PCINE2000State *)pci_dev;
722 69b91039 bellard
    NE2000State *s = &d->ne2000;
723 69b91039 bellard
724 69b91039 bellard
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
725 69b91039 bellard
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
726 69b91039 bellard
727 69b91039 bellard
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
728 69b91039 bellard
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
729 69b91039 bellard
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
730 69b91039 bellard
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
731 69b91039 bellard
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
732 69b91039 bellard
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
733 69b91039 bellard
734 69b91039 bellard
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
735 69b91039 bellard
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
736 69b91039 bellard
}
737 69b91039 bellard
738 7c9d8e07 bellard
void pci_ne2000_init(PCIBus *bus, NICInfo *nd)
739 69b91039 bellard
{
740 69b91039 bellard
    PCINE2000State *d;
741 69b91039 bellard
    NE2000State *s;
742 69b91039 bellard
    uint8_t *pci_conf;
743 69b91039 bellard
    
744 46e50e9d bellard
    d = (PCINE2000State *)pci_register_device(bus,
745 46e50e9d bellard
                                              "NE2000", sizeof(PCINE2000State),
746 46e50e9d bellard
                                              -1, 
747 4a9c9687 bellard
                                              NULL, NULL);
748 69b91039 bellard
    pci_conf = d->dev.config;
749 69b91039 bellard
    pci_conf[0x00] = 0xec; // Realtek 8029
750 69b91039 bellard
    pci_conf[0x01] = 0x10;
751 69b91039 bellard
    pci_conf[0x02] = 0x29;
752 69b91039 bellard
    pci_conf[0x03] = 0x80;
753 69b91039 bellard
    pci_conf[0x0a] = 0x00; // ethernet network controller 
754 69b91039 bellard
    pci_conf[0x0b] = 0x02;
755 69b91039 bellard
    pci_conf[0x0e] = 0x00; // header_type
756 4a9c9687 bellard
    pci_conf[0x3d] = 1; // interrupt pin 0
757 69b91039 bellard
    
758 30ca2aab bellard
    pci_register_io_region(&d->dev, 0, 0x100, 
759 69b91039 bellard
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
760 69b91039 bellard
    s = &d->ne2000;
761 4a9c9687 bellard
    s->irq = 16; // PCI interrupt
762 4a9c9687 bellard
    s->pci_dev = (PCIDevice *)d;
763 7c9d8e07 bellard
    memcpy(s->macaddr, nd->macaddr, 6);
764 69b91039 bellard
    ne2000_reset(s);
765 7c9d8e07 bellard
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
766 7c9d8e07 bellard
767 7c9d8e07 bellard
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
768 7c9d8e07 bellard
             "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
769 7c9d8e07 bellard
             s->macaddr[0],
770 7c9d8e07 bellard
             s->macaddr[1],
771 7c9d8e07 bellard
             s->macaddr[2],
772 7c9d8e07 bellard
             s->macaddr[3],
773 7c9d8e07 bellard
             s->macaddr[4],
774 7c9d8e07 bellard
             s->macaddr[5]);
775 7c9d8e07 bellard
             
776 30ca2aab bellard
    /* XXX: instance number ? */
777 30ca2aab bellard
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
778 30ca2aab bellard
    register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load, 
779 30ca2aab bellard
                    &d->dev);
780 69b91039 bellard
}