Statistics
| Branch: | Revision:

root / cpu-exec.c @ 7f777bf3

History | View | Annotate | Download (23.9 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
int tb_invalidated_flag;
25

    
26
//#define DEBUG_EXEC
27
//#define DEBUG_SIGNAL
28

    
29
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
30
/* XXX: unify with i386 target */
31
void cpu_loop_exit(void)
32
{
33
    longjmp(env->jmp_env, 1);
34
}
35
#endif
36

    
37
/* main execution loop */
38

    
39
int cpu_exec(CPUState *env1)
40
{
41
    int saved_T0, saved_T1, saved_T2;
42
    CPUState *saved_env;
43
#ifdef reg_EAX
44
    int saved_EAX;
45
#endif
46
#ifdef reg_ECX
47
    int saved_ECX;
48
#endif
49
#ifdef reg_EDX
50
    int saved_EDX;
51
#endif
52
#ifdef reg_EBX
53
    int saved_EBX;
54
#endif
55
#ifdef reg_ESP
56
    int saved_ESP;
57
#endif
58
#ifdef reg_EBP
59
    int saved_EBP;
60
#endif
61
#ifdef reg_ESI
62
    int saved_ESI;
63
#endif
64
#ifdef reg_EDI
65
    int saved_EDI;
66
#endif
67
#ifdef __sparc__
68
    int saved_i7, tmp_T0;
69
#endif
70
    int code_gen_size, ret, interrupt_request;
71
    void (*gen_func)(void);
72
    TranslationBlock *tb, **ptb;
73
    uint8_t *tc_ptr, *cs_base, *pc;
74
    unsigned int flags;
75

    
76
    /* first we save global registers */
77
    saved_T0 = T0;
78
    saved_T1 = T1;
79
    saved_T2 = T2;
80
    saved_env = env;
81
    env = env1;
82
#ifdef __sparc__
83
    /* we also save i7 because longjmp may not restore it */
84
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
85
#endif
86

    
87
#if defined(TARGET_I386)
88
#ifdef reg_EAX
89
    saved_EAX = EAX;
90
    EAX = env->regs[R_EAX];
91
#endif
92
#ifdef reg_ECX
93
    saved_ECX = ECX;
94
    ECX = env->regs[R_ECX];
95
#endif
96
#ifdef reg_EDX
97
    saved_EDX = EDX;
98
    EDX = env->regs[R_EDX];
99
#endif
100
#ifdef reg_EBX
101
    saved_EBX = EBX;
102
    EBX = env->regs[R_EBX];
103
#endif
104
#ifdef reg_ESP
105
    saved_ESP = ESP;
106
    ESP = env->regs[R_ESP];
107
#endif
108
#ifdef reg_EBP
109
    saved_EBP = EBP;
110
    EBP = env->regs[R_EBP];
111
#endif
112
#ifdef reg_ESI
113
    saved_ESI = ESI;
114
    ESI = env->regs[R_ESI];
115
#endif
116
#ifdef reg_EDI
117
    saved_EDI = EDI;
118
    EDI = env->regs[R_EDI];
119
#endif
120
    
121
    /* put eflags in CPU temporary format */
122
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
123
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
124
    CC_OP = CC_OP_EFLAGS;
125
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
126
#elif defined(TARGET_ARM)
127
    {
128
        unsigned int psr;
129
        psr = env->cpsr;
130
        env->CF = (psr >> 29) & 1;
131
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
132
        env->VF = (psr << 3) & 0x80000000;
133
        env->cpsr = psr & ~0xf0000000;
134
    }
135
#elif defined(TARGET_SPARC)
136
#elif defined(TARGET_PPC)
137
#else
138
#error unsupported target CPU
139
#endif
140
    env->exception_index = -1;
141

    
142
    /* prepare setjmp context for exception handling */
143
    for(;;) {
144
        if (setjmp(env->jmp_env) == 0) {
145
            /* if an exception is pending, we execute it here */
146
            if (env->exception_index >= 0) {
147
                if (env->exception_index >= EXCP_INTERRUPT) {
148
                    /* exit request from the cpu execution loop */
149
                    ret = env->exception_index;
150
                    break;
151
                } else if (env->user_mode_only) {
152
                    /* if user mode only, we simulate a fake exception
153
                       which will be hanlded outside the cpu execution
154
                       loop */
155
#if defined(TARGET_I386)
156
                    do_interrupt_user(env->exception_index, 
157
                                      env->exception_is_int, 
158
                                      env->error_code, 
159
                                      env->exception_next_eip);
160
#endif
161
                    ret = env->exception_index;
162
                    break;
163
                } else {
164
#if defined(TARGET_I386)
165
                    /* simulate a real cpu exception. On i386, it can
166
                       trigger new exceptions, but we do not handle
167
                       double or triple faults yet. */
168
                    do_interrupt(env->exception_index, 
169
                                 env->exception_is_int, 
170
                                 env->error_code, 
171
                                 env->exception_next_eip, 0);
172
#elif defined(TARGET_PPC)
173
                    do_interrupt(env);
174
#endif
175
                }
176
                env->exception_index = -1;
177
            }
178
            T0 = 0; /* force lookup of first TB */
179
            for(;;) {
180
#ifdef __sparc__
181
                /* g1 can be modified by some libc? functions */ 
182
                tmp_T0 = T0;
183
#endif            
184
                interrupt_request = env->interrupt_request;
185
                if (__builtin_expect(interrupt_request, 0)) {
186
#if defined(TARGET_I386)
187
                    /* if hardware interrupt pending, we execute it */
188
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
189
                        (env->eflags & IF_MASK) && 
190
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
191
                        int intno;
192
                        intno = cpu_x86_get_pic_interrupt(env);
193
                        if (loglevel) {
194
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
195
                        }
196
                        do_interrupt(intno, 0, 0, 0, 1);
197
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
198
                        /* ensure that no TB jump will be modified as
199
                           the program flow was changed */
200
#ifdef __sparc__
201
                        tmp_T0 = 0;
202
#else
203
                        T0 = 0;
204
#endif
205
                    }
206
#elif defined(TARGET_PPC)
207
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
208
                        do_queue_exception(EXCP_EXTERNAL);
209
                        if (check_exception_state(env))
210
                            do_interrupt(env);
211
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
212
                    }
213
#endif
214
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
215
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
216
                        env->exception_index = EXCP_INTERRUPT;
217
                        cpu_loop_exit();
218
                    }
219
                }
220
#ifdef DEBUG_EXEC
221
                if (loglevel) {
222
#if defined(TARGET_I386)
223
                    /* restore flags in standard format */
224
                    env->regs[R_EAX] = EAX;
225
                    env->regs[R_EBX] = EBX;
226
                    env->regs[R_ECX] = ECX;
227
                    env->regs[R_EDX] = EDX;
228
                    env->regs[R_ESI] = ESI;
229
                    env->regs[R_EDI] = EDI;
230
                    env->regs[R_EBP] = EBP;
231
                    env->regs[R_ESP] = ESP;
232
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
233
                    cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
234
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
235
#elif defined(TARGET_ARM)
236
                    env->cpsr = compute_cpsr();
237
                    cpu_arm_dump_state(env, logfile, 0);
238
                    env->cpsr &= ~0xf0000000;
239
#elif defined(TARGET_SPARC)
240
                    cpu_sparc_dump_state (env, logfile, 0);
241
#elif defined(TARGET_PPC)
242
                    cpu_ppc_dump_state(env, logfile, 0);
243
#else
244
#error unsupported target CPU 
245
#endif
246
                }
247
#endif
248
                /* we record a subset of the CPU state. It will
249
                   always be the same before a given translated block
250
                   is executed. */
251
#if defined(TARGET_I386)
252
                flags = env->hflags;
253
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
254
                cs_base = env->segs[R_CS].base;
255
                pc = cs_base + env->eip;
256
#elif defined(TARGET_ARM)
257
                flags = 0;
258
                cs_base = 0;
259
                pc = (uint8_t *)env->regs[15];
260
#elif defined(TARGET_SPARC)
261
                flags = 0;
262
                cs_base = (uint8_t *)env->npc;
263
                pc = (uint8_t *) env->pc;
264
#elif defined(TARGET_PPC)
265
                flags = 0;
266
                cs_base = 0;
267
                pc = (uint8_t *)env->nip;
268
#else
269
#error unsupported CPU
270
#endif
271
                tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
272
                             flags);
273
                if (!tb) {
274
                    TranslationBlock **ptb1;
275
                    unsigned int h;
276
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
277
                    
278
                    
279
                    spin_lock(&tb_lock);
280

    
281
                    tb_invalidated_flag = 0;
282

    
283
                    /* find translated block using physical mappings */
284
                    phys_pc = get_phys_addr_code(env, (unsigned long)pc);
285
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
286
                    phys_page2 = -1;
287
                    h = tb_phys_hash_func(phys_pc);
288
                    ptb1 = &tb_phys_hash[h];
289
                    for(;;) {
290
                        tb = *ptb1;
291
                        if (!tb)
292
                            goto not_found;
293
                        if (tb->pc == (unsigned long)pc && 
294
                            tb->page_addr[0] == phys_page1 &&
295
                            tb->cs_base == (unsigned long)cs_base && 
296
                            tb->flags == flags) {
297
                            /* check next page if needed */
298
                            if (tb->page_addr[1] != -1) {
299
                                virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) + 
300
                                    TARGET_PAGE_SIZE;
301
                                phys_page2 = get_phys_addr_code(env, virt_page2);
302
                                if (tb->page_addr[1] == phys_page2)
303
                                    goto found;
304
                            } else {
305
                                goto found;
306
                            }
307
                        }
308
                        ptb1 = &tb->phys_hash_next;
309
                    }
310
                not_found:
311
                    /* if no translated code available, then translate it now */
312
                    tb = tb_alloc((unsigned long)pc);
313
                    if (!tb) {
314
                        /* flush must be done */
315
                        tb_flush(env);
316
                        /* cannot fail at this point */
317
                        tb = tb_alloc((unsigned long)pc);
318
                        /* don't forget to invalidate previous TB info */
319
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
320
                        T0 = 0;
321
                    }
322
                    tc_ptr = code_gen_ptr;
323
                    tb->tc_ptr = tc_ptr;
324
                    tb->cs_base = (unsigned long)cs_base;
325
                    tb->flags = flags;
326
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
327
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
328
                    
329
                    /* check next page if needed */
330
                    virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
331
                    phys_page2 = -1;
332
                    if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
333
                        phys_page2 = get_phys_addr_code(env, virt_page2);
334
                    }
335
                    tb_link_phys(tb, phys_pc, phys_page2);
336

    
337
                found:
338
                    if (tb_invalidated_flag) {
339
                        /* as some TB could have been invalidated because
340
                           of memory exceptions while generating the code, we
341
                           must recompute the hash index here */
342
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
343
                        while (*ptb != NULL)
344
                            ptb = &(*ptb)->hash_next;
345
                        T0 = 0;
346
                    }
347
                    /* we add the TB in the virtual pc hash table */
348
                    *ptb = tb;
349
                    tb->hash_next = NULL;
350
                    tb_link(tb);
351
                    spin_unlock(&tb_lock);
352
                }
353
#ifdef DEBUG_EXEC
354
                if (loglevel) {
355
                    fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
356
                            (long)tb->tc_ptr, (long)tb->pc,
357
                            lookup_symbol((void *)tb->pc));
358
                }
359
#endif
360
#ifdef __sparc__
361
                T0 = tmp_T0;
362
#endif            
363
                /* see if we can patch the calling TB. */
364
                if (T0 != 0) {
365
                    spin_lock(&tb_lock);
366
                    tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
367
                    spin_unlock(&tb_lock);
368
                }
369
                tc_ptr = tb->tc_ptr;
370
                env->current_tb = tb;
371
                /* execute the generated code */
372
                gen_func = (void *)tc_ptr;
373
#if defined(__sparc__)
374
                __asm__ __volatile__("call        %0\n\t"
375
                                     "mov        %%o7,%%i0"
376
                                     : /* no outputs */
377
                                     : "r" (gen_func) 
378
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
379
#elif defined(__arm__)
380
                asm volatile ("mov pc, %0\n\t"
381
                              ".global exec_loop\n\t"
382
                              "exec_loop:\n\t"
383
                              : /* no outputs */
384
                              : "r" (gen_func)
385
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
386
#else
387
                gen_func();
388
#endif
389
                env->current_tb = NULL;
390
                /* reset soft MMU for next block (it can currently
391
                   only be set by a memory fault) */
392
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
393
                if (env->hflags & HF_SOFTMMU_MASK) {
394
                    env->hflags &= ~HF_SOFTMMU_MASK;
395
                    /* do not allow linking to another block */
396
                    T0 = 0;
397
                }
398
#endif
399
            }
400
        } else {
401
        }
402
    } /* for(;;) */
403

    
404

    
405
#if defined(TARGET_I386)
406
    /* restore flags in standard format */
407
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
408

    
409
    /* restore global registers */
410
#ifdef reg_EAX
411
    EAX = saved_EAX;
412
#endif
413
#ifdef reg_ECX
414
    ECX = saved_ECX;
415
#endif
416
#ifdef reg_EDX
417
    EDX = saved_EDX;
418
#endif
419
#ifdef reg_EBX
420
    EBX = saved_EBX;
421
#endif
422
#ifdef reg_ESP
423
    ESP = saved_ESP;
424
#endif
425
#ifdef reg_EBP
426
    EBP = saved_EBP;
427
#endif
428
#ifdef reg_ESI
429
    ESI = saved_ESI;
430
#endif
431
#ifdef reg_EDI
432
    EDI = saved_EDI;
433
#endif
434
#elif defined(TARGET_ARM)
435
    env->cpsr = compute_cpsr();
436
#elif defined(TARGET_SPARC)
437
#elif defined(TARGET_PPC)
438
#else
439
#error unsupported target CPU
440
#endif
441
#ifdef __sparc__
442
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
443
#endif
444
    T0 = saved_T0;
445
    T1 = saved_T1;
446
    T2 = saved_T2;
447
    env = saved_env;
448
    return ret;
449
}
450

    
451
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
452

    
453
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
454
{
455
    CPUX86State *saved_env;
456

    
457
    saved_env = env;
458
    env = s;
459
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
460
        selector &= 0xffff;
461
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
462
                               (uint8_t *)(selector << 4), 0xffff, 0);
463
    } else {
464
        load_seg(seg_reg, selector);
465
    }
466
    env = saved_env;
467
}
468

    
469
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
470
{
471
    CPUX86State *saved_env;
472

    
473
    saved_env = env;
474
    env = s;
475
    
476
    helper_fsave(ptr, data32);
477

    
478
    env = saved_env;
479
}
480

    
481
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
482
{
483
    CPUX86State *saved_env;
484

    
485
    saved_env = env;
486
    env = s;
487
    
488
    helper_frstor(ptr, data32);
489

    
490
    env = saved_env;
491
}
492

    
493
#endif /* TARGET_I386 */
494

    
495
#undef EAX
496
#undef ECX
497
#undef EDX
498
#undef EBX
499
#undef ESP
500
#undef EBP
501
#undef ESI
502
#undef EDI
503
#undef EIP
504
#include <signal.h>
505
#include <sys/ucontext.h>
506

    
507
#if defined(TARGET_I386)
508

    
509
/* 'pc' is the host PC at which the exception was raised. 'address' is
510
   the effective address of the memory exception. 'is_write' is 1 if a
511
   write caused the exception and otherwise 0'. 'old_set' is the
512
   signal set which should be restored */
513
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
514
                                    int is_write, sigset_t *old_set)
515
{
516
    TranslationBlock *tb;
517
    int ret;
518

    
519
    if (cpu_single_env)
520
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
521
#if defined(DEBUG_SIGNAL)
522
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
523
           pc, address, is_write, *(unsigned long *)old_set);
524
#endif
525
    /* XXX: locking issue */
526
    if (is_write && page_unprotect(address)) {
527
        return 1;
528
    }
529
    /* see if it is an MMU fault */
530
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
531
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
532
    if (ret < 0)
533
        return 0; /* not an MMU fault */
534
    if (ret == 0)
535
        return 1; /* the MMU fault was handled without causing real CPU fault */
536
    /* now we have a real cpu fault */
537
    tb = tb_find_pc(pc);
538
    if (tb) {
539
        /* the PC is inside the translated code. It means that we have
540
           a virtual CPU fault */
541
        cpu_restore_state(tb, env, pc);
542
    }
543
    if (ret == 1) {
544
#if 0
545
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
546
               env->eip, env->cr[2], env->error_code);
547
#endif
548
        /* we restore the process signal mask as the sigreturn should
549
           do it (XXX: use sigsetjmp) */
550
        sigprocmask(SIG_SETMASK, old_set, NULL);
551
        raise_exception_err(EXCP0E_PAGE, env->error_code);
552
    } else {
553
        /* activate soft MMU for this block */
554
        env->hflags |= HF_SOFTMMU_MASK;
555
        sigprocmask(SIG_SETMASK, old_set, NULL);
556
        cpu_loop_exit();
557
    }
558
    /* never comes here */
559
    return 1;
560
}
561

    
562
#elif defined(TARGET_ARM)
563
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
564
                                    int is_write, sigset_t *old_set)
565
{
566
    /* XXX: do more */
567
    return 0;
568
}
569
#elif defined(TARGET_SPARC)
570
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
571
                                    int is_write, sigset_t *old_set)
572
{
573
    /* XXX: locking issue */
574
    if (is_write && page_unprotect(address)) {
575
        return 1;
576
    }
577
    return 0;
578
}
579
#elif defined (TARGET_PPC)
580
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
581
                                    int is_write, sigset_t *old_set)
582
{
583
    TranslationBlock *tb;
584
    int ret;
585
    
586
#if 1
587
    if (cpu_single_env)
588
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
589
#endif
590
#if defined(DEBUG_SIGNAL)
591
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
592
           pc, address, is_write, *(unsigned long *)old_set);
593
#endif
594
    /* XXX: locking issue */
595
    if (is_write && page_unprotect(address)) {
596
        return 1;
597
    }
598

    
599
    /* see if it is an MMU fault */
600
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
601
    if (ret < 0)
602
        return 0; /* not an MMU fault */
603
    if (ret == 0)
604
        return 1; /* the MMU fault was handled without causing real CPU fault */
605

    
606
    /* now we have a real cpu fault */
607
    tb = tb_find_pc(pc);
608
    if (tb) {
609
        /* the PC is inside the translated code. It means that we have
610
           a virtual CPU fault */
611
        cpu_restore_state(tb, env, pc);
612
    }
613
    if (ret == 1) {
614
#if 0
615
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
616
               env->nip, env->error_code, tb);
617
#endif
618
    /* we restore the process signal mask as the sigreturn should
619
       do it (XXX: use sigsetjmp) */
620
    sigprocmask(SIG_SETMASK, old_set, NULL);
621
        do_queue_exception_err(env->exception_index, env->error_code);
622
    } else {
623
        /* activate soft MMU for this block */
624
        sigprocmask(SIG_SETMASK, old_set, NULL);
625
        cpu_loop_exit();
626
    }
627
    /* never comes here */
628
    return 1;
629
}
630
#else
631
#error unsupported target CPU
632
#endif
633

    
634
#if defined(__i386__)
635

    
636
int cpu_signal_handler(int host_signum, struct siginfo *info, 
637
                       void *puc)
638
{
639
    struct ucontext *uc = puc;
640
    unsigned long pc;
641
    
642
#ifndef REG_EIP
643
/* for glibc 2.1 */
644
#define REG_EIP    EIP
645
#define REG_ERR    ERR
646
#define REG_TRAPNO TRAPNO
647
#endif
648
    pc = uc->uc_mcontext.gregs[REG_EIP];
649
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
650
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
651
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
652
                             &uc->uc_sigmask);
653
}
654

    
655
#elif defined(__powerpc)
656

    
657
int cpu_signal_handler(int host_signum, struct siginfo *info, 
658
                       void *puc)
659
{
660
    struct ucontext *uc = puc;
661
    struct pt_regs *regs = uc->uc_mcontext.regs;
662
    unsigned long pc;
663
    int is_write;
664

    
665
    pc = regs->nip;
666
    is_write = 0;
667
#if 0
668
    /* ppc 4xx case */
669
    if (regs->dsisr & 0x00800000)
670
        is_write = 1;
671
#else
672
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
673
        is_write = 1;
674
#endif
675
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
676
                             is_write, &uc->uc_sigmask);
677
}
678

    
679
#elif defined(__alpha__)
680

    
681
int cpu_signal_handler(int host_signum, struct siginfo *info, 
682
                           void *puc)
683
{
684
    struct ucontext *uc = puc;
685
    uint32_t *pc = uc->uc_mcontext.sc_pc;
686
    uint32_t insn = *pc;
687
    int is_write = 0;
688

    
689
    /* XXX: need kernel patch to get write flag faster */
690
    switch (insn >> 26) {
691
    case 0x0d: // stw
692
    case 0x0e: // stb
693
    case 0x0f: // stq_u
694
    case 0x24: // stf
695
    case 0x25: // stg
696
    case 0x26: // sts
697
    case 0x27: // stt
698
    case 0x2c: // stl
699
    case 0x2d: // stq
700
    case 0x2e: // stl_c
701
    case 0x2f: // stq_c
702
        is_write = 1;
703
    }
704

    
705
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
706
                             is_write, &uc->uc_sigmask);
707
}
708
#elif defined(__sparc__)
709

    
710
int cpu_signal_handler(int host_signum, struct siginfo *info, 
711
                       void *puc)
712
{
713
    uint32_t *regs = (uint32_t *)(info + 1);
714
    void *sigmask = (regs + 20);
715
    unsigned long pc;
716
    int is_write;
717
    uint32_t insn;
718
    
719
    /* XXX: is there a standard glibc define ? */
720
    pc = regs[1];
721
    /* XXX: need kernel patch to get write flag faster */
722
    is_write = 0;
723
    insn = *(uint32_t *)pc;
724
    if ((insn >> 30) == 3) {
725
      switch((insn >> 19) & 0x3f) {
726
      case 0x05: // stb
727
      case 0x06: // sth
728
      case 0x04: // st
729
      case 0x07: // std
730
      case 0x24: // stf
731
      case 0x27: // stdf
732
      case 0x25: // stfsr
733
        is_write = 1;
734
        break;
735
      }
736
    }
737
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
738
                             is_write, sigmask);
739
}
740

    
741
#elif defined(__arm__)
742

    
743
int cpu_signal_handler(int host_signum, struct siginfo *info, 
744
                       void *puc)
745
{
746
    struct ucontext *uc = puc;
747
    unsigned long pc;
748
    int is_write;
749
    
750
    pc = uc->uc_mcontext.gregs[R15];
751
    /* XXX: compute is_write */
752
    is_write = 0;
753
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
754
                             is_write,
755
                             &uc->uc_sigmask);
756
}
757

    
758
#elif defined(__mc68000)
759

    
760
int cpu_signal_handler(int host_signum, struct siginfo *info, 
761
                       void *puc)
762
{
763
    struct ucontext *uc = puc;
764
    unsigned long pc;
765
    int is_write;
766
    
767
    pc = uc->uc_mcontext.gregs[16];
768
    /* XXX: compute is_write */
769
    is_write = 0;
770
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
771
                             is_write,
772
                             &uc->uc_sigmask);
773
}
774

    
775
#else
776

    
777
#error host CPU specific signal handler needed
778

    
779
#endif