Statistics
| Branch: | Revision:

root / hw / spapr.c @ 83c9f4ca

History | View | Annotate | Download (30.2 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "elf.h"
30
#include "net/net.h"
31
#include "sysemu/blockdev.h"
32
#include "sysemu/cpus.h"
33
#include "sysemu/kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44
#include "hw/pci/msi.h"
45

    
46
#include "sysemu/kvm.h"
47
#include "kvm_ppc.h"
48
#include "hw/pci/pci.h"
49

    
50
#include "exec/address-spaces.h"
51
#include "hw/usb.h"
52
#include "qemu/config-file.h"
53

    
54
#include <libfdt.h>
55

    
56
/* SLOF memory layout:
57
 *
58
 * SLOF raw image loaded at 0, copies its romfs right below the flat
59
 * device-tree, then position SLOF itself 31M below that
60
 *
61
 * So we set FW_OVERHEAD to 40MB which should account for all of that
62
 * and more
63
 *
64
 * We load our kernel at 4M, leaving space for SLOF initial image
65
 */
66
#define FDT_MAX_SIZE            0x10000
67
#define RTAS_MAX_SIZE           0x10000
68
#define FW_MAX_SIZE             0x400000
69
#define FW_FILE_NAME            "slof.bin"
70
#define FW_OVERHEAD             0x2800000
71
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
72

    
73
#define MIN_RMA_SLOF            128UL
74

    
75
#define TIMEBASE_FREQ           512000000ULL
76

    
77
#define MAX_CPUS                256
78
#define XICS_IRQS               1024
79

    
80
#define PHANDLE_XICP            0x00001111
81

    
82
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
83

    
84
sPAPREnvironment *spapr;
85

    
86
int spapr_allocate_irq(int hint, bool lsi)
87
{
88
    int irq;
89

    
90
    if (hint) {
91
        irq = hint;
92
        /* FIXME: we should probably check for collisions somehow */
93
    } else {
94
        irq = spapr->next_irq++;
95
    }
96

    
97
    /* Configure irq type */
98
    if (!xics_get_qirq(spapr->icp, irq)) {
99
        return 0;
100
    }
101

    
102
    xics_set_irq_type(spapr->icp, irq, lsi);
103

    
104
    return irq;
105
}
106

    
107
/* Allocate block of consequtive IRQs, returns a number of the first */
108
int spapr_allocate_irq_block(int num, bool lsi)
109
{
110
    int first = -1;
111
    int i;
112

    
113
    for (i = 0; i < num; ++i) {
114
        int irq;
115

    
116
        irq = spapr_allocate_irq(0, lsi);
117
        if (!irq) {
118
            return -1;
119
        }
120

    
121
        if (0 == i) {
122
            first = irq;
123
        }
124

    
125
        /* If the above doesn't create a consecutive block then that's
126
         * an internal bug */
127
        assert(irq == (first + i));
128
    }
129

    
130
    return first;
131
}
132

    
133
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
134
{
135
    int ret = 0, offset;
136
    CPUPPCState *env;
137
    CPUState *cpu;
138
    char cpu_model[32];
139
    int smt = kvmppc_smt_threads();
140
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
141

    
142
    assert(spapr->cpu_model);
143

    
144
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
145
        cpu = CPU(ppc_env_get_cpu(env));
146
        uint32_t associativity[] = {cpu_to_be32(0x5),
147
                                    cpu_to_be32(0x0),
148
                                    cpu_to_be32(0x0),
149
                                    cpu_to_be32(0x0),
150
                                    cpu_to_be32(cpu->numa_node),
151
                                    cpu_to_be32(cpu->cpu_index)};
152

    
153
        if ((cpu->cpu_index % smt) != 0) {
154
            continue;
155
        }
156

    
157
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
158
                 cpu->cpu_index);
159

    
160
        offset = fdt_path_offset(fdt, cpu_model);
161
        if (offset < 0) {
162
            return offset;
163
        }
164

    
165
        if (nb_numa_nodes > 1) {
166
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
167
                              sizeof(associativity));
168
            if (ret < 0) {
169
                return ret;
170
            }
171
        }
172

    
173
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
174
                          pft_size_prop, sizeof(pft_size_prop));
175
        if (ret < 0) {
176
            return ret;
177
        }
178
    }
179
    return ret;
180
}
181

    
182

    
183
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
184
                                     size_t maxsize)
185
{
186
    size_t maxcells = maxsize / sizeof(uint32_t);
187
    int i, j, count;
188
    uint32_t *p = prop;
189

    
190
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
191
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
192

    
193
        if (!sps->page_shift) {
194
            break;
195
        }
196
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
197
            if (sps->enc[count].page_shift == 0) {
198
                break;
199
            }
200
        }
201
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
202
            break;
203
        }
204
        *(p++) = cpu_to_be32(sps->page_shift);
205
        *(p++) = cpu_to_be32(sps->slb_enc);
206
        *(p++) = cpu_to_be32(count);
207
        for (j = 0; j < count; j++) {
208
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
209
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
210
        }
211
    }
212

    
213
    return (p - prop) * sizeof(uint32_t);
214
}
215

    
216
#define _FDT(exp) \
217
    do { \
218
        int ret = (exp);                                           \
219
        if (ret < 0) {                                             \
220
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
221
                    #exp, fdt_strerror(ret));                      \
222
            exit(1);                                               \
223
        }                                                          \
224
    } while (0)
225

    
226

    
227
static void *spapr_create_fdt_skel(const char *cpu_model,
228
                                   hwaddr initrd_base,
229
                                   hwaddr initrd_size,
230
                                   hwaddr kernel_size,
231
                                   const char *boot_device,
232
                                   const char *kernel_cmdline,
233
                                   uint32_t epow_irq)
234
{
235
    void *fdt;
236
    CPUPPCState *env;
237
    uint32_t start_prop = cpu_to_be32(initrd_base);
238
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
239
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
240
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
241
    char qemu_hypertas_prop[] = "hcall-memop1";
242
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
243
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
244
    char *modelname;
245
    int i, smt = kvmppc_smt_threads();
246
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
247

    
248
    fdt = g_malloc0(FDT_MAX_SIZE);
249
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
250

    
251
    if (kernel_size) {
252
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
253
    }
254
    if (initrd_size) {
255
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
256
    }
257
    _FDT((fdt_finish_reservemap(fdt)));
258

    
259
    /* Root node */
260
    _FDT((fdt_begin_node(fdt, "")));
261
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
262
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
263

    
264
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
265
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
266

    
267
    /* /chosen */
268
    _FDT((fdt_begin_node(fdt, "chosen")));
269

    
270
    /* Set Form1_affinity */
271
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
272

    
273
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
274
    _FDT((fdt_property(fdt, "linux,initrd-start",
275
                       &start_prop, sizeof(start_prop))));
276
    _FDT((fdt_property(fdt, "linux,initrd-end",
277
                       &end_prop, sizeof(end_prop))));
278
    if (kernel_size) {
279
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
280
                              cpu_to_be64(kernel_size) };
281

    
282
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
283
    }
284
    if (boot_device) {
285
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
286
    }
287
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
288
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
289
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
290

    
291
    _FDT((fdt_end_node(fdt)));
292

    
293
    /* cpus */
294
    _FDT((fdt_begin_node(fdt, "cpus")));
295

    
296
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
297
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
298

    
299
    modelname = g_strdup(cpu_model);
300

    
301
    for (i = 0; i < strlen(modelname); i++) {
302
        modelname[i] = toupper(modelname[i]);
303
    }
304

    
305
    /* This is needed during FDT finalization */
306
    spapr->cpu_model = g_strdup(modelname);
307

    
308
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
309
        CPUState *cpu = CPU(ppc_env_get_cpu(env));
310
        int index = cpu->cpu_index;
311
        uint32_t servers_prop[smp_threads];
312
        uint32_t gservers_prop[smp_threads * 2];
313
        char *nodename;
314
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315
                           0xffffffff, 0xffffffff};
316
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318
        uint32_t page_sizes_prop[64];
319
        size_t page_sizes_prop_size;
320

    
321
        if ((index % smt) != 0) {
322
            continue;
323
        }
324

    
325
        nodename = g_strdup_printf("%s@%x", modelname, index);
326

    
327
        _FDT((fdt_begin_node(fdt, nodename)));
328

    
329
        g_free(nodename);
330

    
331
        _FDT((fdt_property_cell(fdt, "reg", index)));
332
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
333

    
334
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
335
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
336
                                env->dcache_line_size)));
337
        _FDT((fdt_property_cell(fdt, "icache-block-size",
338
                                env->icache_line_size)));
339
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
340
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
341
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
342
        _FDT((fdt_property_string(fdt, "status", "okay")));
343
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
344

    
345
        /* Build interrupt servers and gservers properties */
346
        for (i = 0; i < smp_threads; i++) {
347
            servers_prop[i] = cpu_to_be32(index + i);
348
            /* Hack, direct the group queues back to cpu 0 */
349
            gservers_prop[i*2] = cpu_to_be32(index + i);
350
            gservers_prop[i*2 + 1] = 0;
351
        }
352
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
353
                           servers_prop, sizeof(servers_prop))));
354
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
355
                           gservers_prop, sizeof(gservers_prop))));
356

    
357
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
358
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
359
                               segs, sizeof(segs))));
360
        }
361

    
362
        /* Advertise VMX/VSX (vector extensions) if available
363
         *   0 / no property == no vector extensions
364
         *   1               == VMX / Altivec available
365
         *   2               == VSX available */
366
        if (env->insns_flags & PPC_ALTIVEC) {
367
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
368

    
369
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
370
        }
371

    
372
        /* Advertise DFP (Decimal Floating Point) if available
373
         *   0 / no property == no DFP
374
         *   1               == DFP available */
375
        if (env->insns_flags2 & PPC2_DFP) {
376
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
377
        }
378

    
379
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
380
                                                      sizeof(page_sizes_prop));
381
        if (page_sizes_prop_size) {
382
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
383
                               page_sizes_prop, page_sizes_prop_size)));
384
        }
385

    
386
        _FDT((fdt_end_node(fdt)));
387
    }
388

    
389
    g_free(modelname);
390

    
391
    _FDT((fdt_end_node(fdt)));
392

    
393
    /* RTAS */
394
    _FDT((fdt_begin_node(fdt, "rtas")));
395

    
396
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
397
                       sizeof(hypertas_prop))));
398
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
399
                       sizeof(qemu_hypertas_prop))));
400

    
401
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
402
        refpoints, sizeof(refpoints))));
403

    
404
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
405

    
406
    _FDT((fdt_end_node(fdt)));
407

    
408
    /* interrupt controller */
409
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
410

    
411
    _FDT((fdt_property_string(fdt, "device_type",
412
                              "PowerPC-External-Interrupt-Presentation")));
413
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
414
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
415
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
416
                       interrupt_server_ranges_prop,
417
                       sizeof(interrupt_server_ranges_prop))));
418
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
419
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
420
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
421

    
422
    _FDT((fdt_end_node(fdt)));
423

    
424
    /* vdevice */
425
    _FDT((fdt_begin_node(fdt, "vdevice")));
426

    
427
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
428
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
429
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
430
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
431
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
432
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
433

    
434
    _FDT((fdt_end_node(fdt)));
435

    
436
    /* event-sources */
437
    spapr_events_fdt_skel(fdt, epow_irq);
438

    
439
    _FDT((fdt_end_node(fdt))); /* close root node */
440
    _FDT((fdt_finish(fdt)));
441

    
442
    return fdt;
443
}
444

    
445
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
446
{
447
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
448
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
449
                                cpu_to_be32(0x0)};
450
    char mem_name[32];
451
    hwaddr node0_size, mem_start;
452
    uint64_t mem_reg_property[2];
453
    int i, off;
454

    
455
    /* memory node(s) */
456
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
457
    if (spapr->rma_size > node0_size) {
458
        spapr->rma_size = node0_size;
459
    }
460

    
461
    /* RMA */
462
    mem_reg_property[0] = 0;
463
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
464
    off = fdt_add_subnode(fdt, 0, "memory@0");
465
    _FDT(off);
466
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
467
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
468
                      sizeof(mem_reg_property))));
469
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
470
                      sizeof(associativity))));
471

    
472
    /* RAM: Node 0 */
473
    if (node0_size > spapr->rma_size) {
474
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
475
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
476

    
477
        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
478
        off = fdt_add_subnode(fdt, 0, mem_name);
479
        _FDT(off);
480
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
481
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
482
                          sizeof(mem_reg_property))));
483
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
484
                          sizeof(associativity))));
485
    }
486

    
487
    /* RAM: Node 1 and beyond */
488
    mem_start = node0_size;
489
    for (i = 1; i < nb_numa_nodes; i++) {
490
        mem_reg_property[0] = cpu_to_be64(mem_start);
491
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
492
        associativity[3] = associativity[4] = cpu_to_be32(i);
493
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
494
        off = fdt_add_subnode(fdt, 0, mem_name);
495
        _FDT(off);
496
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
497
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
498
                          sizeof(mem_reg_property))));
499
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
500
                          sizeof(associativity))));
501
        mem_start += node_mem[i];
502
    }
503

    
504
    return 0;
505
}
506

    
507
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
508
                               hwaddr fdt_addr,
509
                               hwaddr rtas_addr,
510
                               hwaddr rtas_size)
511
{
512
    int ret;
513
    void *fdt;
514
    sPAPRPHBState *phb;
515

    
516
    fdt = g_malloc(FDT_MAX_SIZE);
517

    
518
    /* open out the base tree into a temp buffer for the final tweaks */
519
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
520

    
521
    ret = spapr_populate_memory(spapr, fdt);
522
    if (ret < 0) {
523
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
524
        exit(1);
525
    }
526

    
527
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
528
    if (ret < 0) {
529
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
530
        exit(1);
531
    }
532

    
533
    QLIST_FOREACH(phb, &spapr->phbs, list) {
534
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
535
    }
536

    
537
    if (ret < 0) {
538
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
539
        exit(1);
540
    }
541

    
542
    /* RTAS */
543
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
544
    if (ret < 0) {
545
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
546
    }
547

    
548
    /* Advertise NUMA via ibm,associativity */
549
    ret = spapr_fixup_cpu_dt(fdt, spapr);
550
    if (ret < 0) {
551
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
552
    }
553

    
554
    if (!spapr->has_graphics) {
555
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
556
    }
557

    
558
    _FDT((fdt_pack(fdt)));
559

    
560
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
561
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
562
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
563
        exit(1);
564
    }
565

    
566
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
567

    
568
    g_free(fdt);
569
}
570

    
571
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
572
{
573
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
574
}
575

    
576
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
577
{
578
    CPUPPCState *env = &cpu->env;
579

    
580
    if (msr_pr) {
581
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
582
        env->gpr[3] = H_PRIVILEGE;
583
    } else {
584
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
585
    }
586
}
587

    
588
static void spapr_reset_htab(sPAPREnvironment *spapr)
589
{
590
    long shift;
591

    
592
    /* allocate hash page table.  For now we always make this 16mb,
593
     * later we should probably make it scale to the size of guest
594
     * RAM */
595

    
596
    shift = kvmppc_reset_htab(spapr->htab_shift);
597

    
598
    if (shift > 0) {
599
        /* Kernel handles htab, we don't need to allocate one */
600
        spapr->htab_shift = shift;
601
    } else {
602
        if (!spapr->htab) {
603
            /* Allocate an htab if we don't yet have one */
604
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
605
        }
606

    
607
        /* And clear it */
608
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
609
    }
610

    
611
    /* Update the RMA size if necessary */
612
    if (spapr->vrma_adjust) {
613
        spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
614
    }
615
}
616

    
617
static void ppc_spapr_reset(void)
618
{
619
    /* Reset the hash table & recalc the RMA */
620
    spapr_reset_htab(spapr);
621

    
622
    qemu_devices_reset();
623

    
624
    /* Load the fdt */
625
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
626
                       spapr->rtas_size);
627

    
628
    /* Set up the entry state */
629
    first_cpu->gpr[3] = spapr->fdt_addr;
630
    first_cpu->gpr[5] = 0;
631
    first_cpu->halted = 0;
632
    first_cpu->nip = spapr->entry_point;
633

    
634
}
635

    
636
static void spapr_cpu_reset(void *opaque)
637
{
638
    PowerPCCPU *cpu = opaque;
639
    CPUPPCState *env = &cpu->env;
640

    
641
    cpu_reset(CPU(cpu));
642

    
643
    /* All CPUs start halted.  CPU0 is unhalted from the machine level
644
     * reset code and the rest are explicitly started up by the guest
645
     * using an RTAS call */
646
    env->halted = 1;
647

    
648
    env->spr[SPR_HIOR] = 0;
649

    
650
    env->external_htab = spapr->htab;
651
    env->htab_base = -1;
652
    env->htab_mask = HTAB_SIZE(spapr) - 1;
653
    env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
654
        (spapr->htab_shift - 18);
655
}
656

    
657
static void spapr_create_nvram(sPAPREnvironment *spapr)
658
{
659
    QemuOpts *machine_opts;
660
    DeviceState *dev;
661

    
662
    dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
663

    
664
    machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
665
    if (machine_opts) {
666
        const char *drivename;
667

    
668
        drivename = qemu_opt_get(machine_opts, "nvram");
669
        if (drivename) {
670
            BlockDriverState *bs;
671

    
672
            bs = bdrv_find(drivename);
673
            if (!bs) {
674
                fprintf(stderr, "No such block device \"%s\" for nvram\n",
675
                        drivename);
676
                exit(1);
677
            }
678
            qdev_prop_set_drive_nofail(dev, "drive", bs);
679
        }
680
    }
681

    
682
    qdev_init_nofail(dev);
683

    
684
    spapr->nvram = (struct sPAPRNVRAM *)dev;
685
}
686

    
687
/* Returns whether we want to use VGA or not */
688
static int spapr_vga_init(PCIBus *pci_bus)
689
{
690
    switch (vga_interface_type) {
691
    case VGA_NONE:
692
    case VGA_STD:
693
        return pci_vga_init(pci_bus) != NULL;
694
    default:
695
        fprintf(stderr, "This vga model is not supported,"
696
                "currently it only supports -vga std\n");
697
        exit(0);
698
        break;
699
    }
700
}
701

    
702
/* pSeries LPAR / sPAPR hardware init */
703
static void ppc_spapr_init(QEMUMachineInitArgs *args)
704
{
705
    ram_addr_t ram_size = args->ram_size;
706
    const char *cpu_model = args->cpu_model;
707
    const char *kernel_filename = args->kernel_filename;
708
    const char *kernel_cmdline = args->kernel_cmdline;
709
    const char *initrd_filename = args->initrd_filename;
710
    const char *boot_device = args->boot_device;
711
    PowerPCCPU *cpu;
712
    CPUPPCState *env;
713
    PCIHostState *phb;
714
    int i;
715
    MemoryRegion *sysmem = get_system_memory();
716
    MemoryRegion *ram = g_new(MemoryRegion, 1);
717
    hwaddr rma_alloc_size;
718
    uint32_t initrd_base = 0;
719
    long kernel_size = 0, initrd_size = 0;
720
    long load_limit, rtas_limit, fw_size;
721
    char *filename;
722

    
723
    msi_supported = true;
724

    
725
    spapr = g_malloc0(sizeof(*spapr));
726
    QLIST_INIT(&spapr->phbs);
727

    
728
    cpu_ppc_hypercall = emulate_spapr_hypercall;
729

    
730
    /* Allocate RMA if necessary */
731
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
732

    
733
    if (rma_alloc_size == -1) {
734
        hw_error("qemu: Unable to create RMA\n");
735
        exit(1);
736
    }
737

    
738
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
739
        spapr->rma_size = rma_alloc_size;
740
    } else {
741
        spapr->rma_size = ram_size;
742

    
743
        /* With KVM, we don't actually know whether KVM supports an
744
         * unbounded RMA (PR KVM) or is limited by the hash table size
745
         * (HV KVM using VRMA), so we always assume the latter
746
         *
747
         * In that case, we also limit the initial allocations for RTAS
748
         * etc... to 256M since we have no way to know what the VRMA size
749
         * is going to be as it depends on the size of the hash table
750
         * isn't determined yet.
751
         */
752
        if (kvm_enabled()) {
753
            spapr->vrma_adjust = 1;
754
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
755
        }
756
    }
757

    
758
    /* We place the device tree and RTAS just below either the top of the RMA,
759
     * or just below 2GB, whichever is lowere, so that it can be
760
     * processed with 32-bit real mode code if necessary */
761
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
762
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
763
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
764
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
765

    
766
    /* We aim for a hash table of size 1/128 the size of RAM.  The
767
     * normal rule of thumb is 1/64 the size of RAM, but that's much
768
     * more than needed for the Linux guests we support. */
769
    spapr->htab_shift = 18; /* Minimum architected size */
770
    while (spapr->htab_shift <= 46) {
771
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
772
            break;
773
        }
774
        spapr->htab_shift++;
775
    }
776

    
777
    /* init CPUs */
778
    if (cpu_model == NULL) {
779
        cpu_model = kvm_enabled() ? "host" : "POWER7";
780
    }
781
    for (i = 0; i < smp_cpus; i++) {
782
        cpu = cpu_ppc_init(cpu_model);
783
        if (cpu == NULL) {
784
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
785
            exit(1);
786
        }
787
        env = &cpu->env;
788

    
789
        /* Set time-base frequency to 512 MHz */
790
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
791

    
792
        /* PAPR always has exception vectors in RAM not ROM */
793
        env->hreset_excp_prefix = 0;
794

    
795
        /* Tell KVM that we're in PAPR mode */
796
        if (kvm_enabled()) {
797
            kvmppc_set_papr(cpu);
798
        }
799

    
800
        qemu_register_reset(spapr_cpu_reset, cpu);
801
    }
802

    
803
    /* allocate RAM */
804
    spapr->ram_limit = ram_size;
805
    if (spapr->ram_limit > rma_alloc_size) {
806
        ram_addr_t nonrma_base = rma_alloc_size;
807
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
808

    
809
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
810
        vmstate_register_ram_global(ram);
811
        memory_region_add_subregion(sysmem, nonrma_base, ram);
812
    }
813

    
814
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
815
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
816
                                           rtas_limit - spapr->rtas_addr);
817
    if (spapr->rtas_size < 0) {
818
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
819
        exit(1);
820
    }
821
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
822
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
823
                 spapr->rtas_size, RTAS_MAX_SIZE);
824
        exit(1);
825
    }
826
    g_free(filename);
827

    
828

    
829
    /* Set up Interrupt Controller */
830
    spapr->icp = xics_system_init(XICS_IRQS);
831
    spapr->next_irq = XICS_IRQ_BASE;
832

    
833
    /* Set up EPOW events infrastructure */
834
    spapr_events_init(spapr);
835

    
836
    /* Set up IOMMU */
837
    spapr_iommu_init();
838

    
839
    /* Set up VIO bus */
840
    spapr->vio_bus = spapr_vio_bus_init();
841

    
842
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
843
        if (serial_hds[i]) {
844
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
845
        }
846
    }
847

    
848
    /* We always have at least the nvram device on VIO */
849
    spapr_create_nvram(spapr);
850

    
851
    /* Set up PCI */
852
    spapr_pci_rtas_init();
853

    
854
    phb = spapr_create_phb(spapr, 0, "pci");
855

    
856
    for (i = 0; i < nb_nics; i++) {
857
        NICInfo *nd = &nd_table[i];
858

    
859
        if (!nd->model) {
860
            nd->model = g_strdup("ibmveth");
861
        }
862

    
863
        if (strcmp(nd->model, "ibmveth") == 0) {
864
            spapr_vlan_create(spapr->vio_bus, nd);
865
        } else {
866
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
867
        }
868
    }
869

    
870
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
871
        spapr_vscsi_create(spapr->vio_bus);
872
    }
873

    
874
    /* Graphics */
875
    if (spapr_vga_init(phb->bus)) {
876
        spapr->has_graphics = true;
877
    }
878

    
879
    if (usb_enabled(spapr->has_graphics)) {
880
        pci_create_simple(phb->bus, -1, "pci-ohci");
881
        if (spapr->has_graphics) {
882
            usbdevice_create("keyboard");
883
            usbdevice_create("mouse");
884
        }
885
    }
886

    
887
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
888
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
889
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
890
        exit(1);
891
    }
892

    
893
    if (kernel_filename) {
894
        uint64_t lowaddr = 0;
895

    
896
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
897
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
898
        if (kernel_size < 0) {
899
            kernel_size = load_image_targphys(kernel_filename,
900
                                              KERNEL_LOAD_ADDR,
901
                                              load_limit - KERNEL_LOAD_ADDR);
902
        }
903
        if (kernel_size < 0) {
904
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
905
                    kernel_filename);
906
            exit(1);
907
        }
908

    
909
        /* load initrd */
910
        if (initrd_filename) {
911
            /* Try to locate the initrd in the gap between the kernel
912
             * and the firmware. Add a bit of space just in case
913
             */
914
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
915
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
916
                                              load_limit - initrd_base);
917
            if (initrd_size < 0) {
918
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
919
                        initrd_filename);
920
                exit(1);
921
            }
922
        } else {
923
            initrd_base = 0;
924
            initrd_size = 0;
925
        }
926
    }
927

    
928
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
929
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
930
    if (fw_size < 0) {
931
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
932
        exit(1);
933
    }
934
    g_free(filename);
935

    
936
    spapr->entry_point = 0x100;
937

    
938
    /* Prepare the device tree */
939
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
940
                                            initrd_base, initrd_size,
941
                                            kernel_size,
942
                                            boot_device, kernel_cmdline,
943
                                            spapr->epow_irq);
944
    assert(spapr->fdt_skel != NULL);
945
}
946

    
947
static QEMUMachine spapr_machine = {
948
    .name = "pseries",
949
    .desc = "pSeries Logical Partition (PAPR compliant)",
950
    .init = ppc_spapr_init,
951
    .reset = ppc_spapr_reset,
952
    .block_default_type = IF_SCSI,
953
    .max_cpus = MAX_CPUS,
954
    .no_parallel = 1,
955
    .boot_order = NULL,
956
};
957

    
958
static void spapr_machine_init(void)
959
{
960
    qemu_register_machine(&spapr_machine);
961
}
962

    
963
machine_init(spapr_machine_init);