Statistics
| Branch: | Revision:

root / target-arm / cpu.h @ 8641136c

History | View | Annotate | Download (32.8 kB)

1
/*
2
 * ARM virtual CPU header
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ARM_H
20
#define CPU_ARM_H
21

    
22
#include "config.h"
23

    
24
#if defined(TARGET_AARCH64)
25
  /* AArch64 definitions */
26
#  define TARGET_LONG_BITS 64
27
#  define ELF_MACHINE EM_AARCH64
28
#else
29
#  define TARGET_LONG_BITS 32
30
#  define ELF_MACHINE EM_ARM
31
#endif
32

    
33
#define CPUArchState struct CPUARMState
34

    
35
#include "qemu-common.h"
36
#include "exec/cpu-defs.h"
37

    
38
#include "fpu/softfloat.h"
39

    
40
#define TARGET_HAS_ICE 1
41

    
42
#define EXCP_UDEF            1   /* undefined instruction */
43
#define EXCP_SWI             2   /* software interrupt */
44
#define EXCP_PREFETCH_ABORT  3
45
#define EXCP_DATA_ABORT      4
46
#define EXCP_IRQ             5
47
#define EXCP_FIQ             6
48
#define EXCP_BKPT            7
49
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51
#define EXCP_STREX          10
52

    
53
#define ARMV7M_EXCP_RESET   1
54
#define ARMV7M_EXCP_NMI     2
55
#define ARMV7M_EXCP_HARD    3
56
#define ARMV7M_EXCP_MEM     4
57
#define ARMV7M_EXCP_BUS     5
58
#define ARMV7M_EXCP_USAGE   6
59
#define ARMV7M_EXCP_SVC     11
60
#define ARMV7M_EXCP_DEBUG   12
61
#define ARMV7M_EXCP_PENDSV  14
62
#define ARMV7M_EXCP_SYSTICK 15
63

    
64
/* ARM-specific interrupt pending bits.  */
65
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
66

    
67
/* Meanings of the ARMCPU object's two inbound GPIO lines */
68
#define ARM_CPU_IRQ 0
69
#define ARM_CPU_FIQ 1
70

    
71
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
72
                            int srcreg, int operand, uint32_t value);
73
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
74
                               int dstreg, int operand);
75

    
76
struct arm_boot_info;
77

    
78
#define NB_MMU_MODES 2
79

    
80
/* We currently assume float and double are IEEE single and double
81
   precision respectively.
82
   Doing runtime conversions is tricky because VFP registers may contain
83
   integer values (eg. as the result of a FTOSI instruction).
84
   s<2n> maps to the least significant half of d<n>
85
   s<2n+1> maps to the most significant half of d<n>
86
 */
87

    
88
/* CPU state for each instance of a generic timer (in cp15 c14) */
89
typedef struct ARMGenericTimer {
90
    uint64_t cval; /* Timer CompareValue register */
91
    uint32_t ctl; /* Timer Control register */
92
} ARMGenericTimer;
93

    
94
#define GTIMER_PHYS 0
95
#define GTIMER_VIRT 1
96
#define NUM_GTIMERS 2
97

    
98
/* Scale factor for generic timers, ie number of ns per tick.
99
 * This gives a 62.5MHz timer.
100
 */
101
#define GTIMER_SCALE 16
102

    
103
typedef struct CPUARMState {
104
    /* Regs for current mode.  */
105
    uint32_t regs[16];
106

    
107
    /* 32/64 switch only happens when taking and returning from
108
     * exceptions so the overlap semantics are taken care of then
109
     * instead of having a complicated union.
110
     */
111
    /* Regs for A64 mode.  */
112
    uint64_t xregs[32];
113
    uint64_t pc;
114
    /* TODO: pstate doesn't correspond to an architectural register;
115
     * it would be better modelled as the underlying fields.
116
     */
117
    uint32_t pstate;
118
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
119

    
120
    /* Frequently accessed CPSR bits are stored separately for efficiency.
121
       This contains all the other bits.  Use cpsr_{read,write} to access
122
       the whole CPSR.  */
123
    uint32_t uncached_cpsr;
124
    uint32_t spsr;
125

    
126
    /* Banked registers.  */
127
    uint32_t banked_spsr[6];
128
    uint32_t banked_r13[6];
129
    uint32_t banked_r14[6];
130

    
131
    /* These hold r8-r12.  */
132
    uint32_t usr_regs[5];
133
    uint32_t fiq_regs[5];
134

    
135
    /* cpsr flag cache for faster execution */
136
    uint32_t CF; /* 0 or 1 */
137
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
138
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
139
    uint32_t ZF; /* Z set if zero.  */
140
    uint32_t QF; /* 0 or 1 */
141
    uint32_t GE; /* cpsr[19:16] */
142
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
143
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
144

    
145
    /* System control coprocessor (cp15) */
146
    struct {
147
        uint32_t c0_cpuid;
148
        uint32_t c0_cssel; /* Cache size selection.  */
149
        uint32_t c1_sys; /* System control register.  */
150
        uint32_t c1_coproc; /* Coprocessor access register.  */
151
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
152
        uint32_t c1_scr; /* secure config register.  */
153
        uint32_t c2_base0; /* MMU translation table base 0.  */
154
        uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
155
        uint32_t c2_base1; /* MMU translation table base 0.  */
156
        uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
157
        uint32_t c2_control; /* MMU translation table base control.  */
158
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
159
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
160
        uint32_t c2_data; /* MPU data cachable bits.  */
161
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
162
        uint32_t c3; /* MMU domain access control register
163
                        MPU write buffer control.  */
164
        uint32_t c5_insn; /* Fault status registers.  */
165
        uint32_t c5_data;
166
        uint32_t c6_region[8]; /* MPU base/size registers.  */
167
        uint32_t c6_insn; /* Fault address registers.  */
168
        uint32_t c6_data;
169
        uint32_t c7_par;  /* Translation result. */
170
        uint32_t c7_par_hi;  /* Translation result, high 32 bits */
171
        uint32_t c9_insn; /* Cache lockdown registers.  */
172
        uint32_t c9_data;
173
        uint32_t c9_pmcr; /* performance monitor control register */
174
        uint32_t c9_pmcnten; /* perf monitor counter enables */
175
        uint32_t c9_pmovsr; /* perf monitor overflow status */
176
        uint32_t c9_pmxevtyper; /* perf monitor event type */
177
        uint32_t c9_pmuserenr; /* perf monitor user enable */
178
        uint32_t c9_pminten; /* perf monitor interrupt enables */
179
        uint32_t c12_vbar; /* vector base address register */
180
        uint32_t c13_fcse; /* FCSE PID.  */
181
        uint32_t c13_context; /* Context ID.  */
182
        uint32_t c13_tls1; /* User RW Thread register.  */
183
        uint32_t c13_tls2; /* User RO Thread register.  */
184
        uint32_t c13_tls3; /* Privileged Thread register.  */
185
        uint32_t c14_cntfrq; /* Counter Frequency register */
186
        uint32_t c14_cntkctl; /* Timer Control register */
187
        ARMGenericTimer c14_timer[NUM_GTIMERS];
188
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
189
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
190
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
191
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
192
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
193
        uint32_t c15_config_base_address; /* SCU base address.  */
194
        uint32_t c15_diagnostic; /* diagnostic register */
195
        uint32_t c15_power_diagnostic;
196
        uint32_t c15_power_control; /* power control */
197
    } cp15;
198

    
199
    /* System registers (AArch64) */
200
    struct {
201
        uint64_t tpidr_el0;
202
    } sr;
203

    
204
    struct {
205
        uint32_t other_sp;
206
        uint32_t vecbase;
207
        uint32_t basepri;
208
        uint32_t control;
209
        int current_sp;
210
        int exception;
211
        int pending_exception;
212
    } v7m;
213

    
214
    /* Thumb-2 EE state.  */
215
    uint32_t teecr;
216
    uint32_t teehbr;
217

    
218
    /* VFP coprocessor state.  */
219
    struct {
220
        /* VFP/Neon register state. Note that the mapping between S, D and Q
221
         * views of the register bank differs between AArch64 and AArch32:
222
         * In AArch32:
223
         *  Qn = regs[2n+1]:regs[2n]
224
         *  Dn = regs[n]
225
         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
226
         * (and regs[32] to regs[63] are inaccessible)
227
         * In AArch64:
228
         *  Qn = regs[2n+1]:regs[2n]
229
         *  Dn = regs[2n]
230
         *  Sn = regs[2n] bits 31..0
231
         * This corresponds to the architecturally defined mapping between
232
         * the two execution states, and means we do not need to explicitly
233
         * map these registers when changing states.
234
         */
235
        float64 regs[64];
236

    
237
        uint32_t xregs[16];
238
        /* We store these fpcsr fields separately for convenience.  */
239
        int vec_len;
240
        int vec_stride;
241

    
242
        /* scratch space when Tn are not sufficient.  */
243
        uint32_t scratch[8];
244

    
245
        /* fp_status is the "normal" fp status. standard_fp_status retains
246
         * values corresponding to the ARM "Standard FPSCR Value", ie
247
         * default-NaN, flush-to-zero, round-to-nearest and is used by
248
         * any operations (generally Neon) which the architecture defines
249
         * as controlled by the standard FPSCR value rather than the FPSCR.
250
         *
251
         * To avoid having to transfer exception bits around, we simply
252
         * say that the FPSCR cumulative exception flags are the logical
253
         * OR of the flags in the two fp statuses. This relies on the
254
         * only thing which needs to read the exception flags being
255
         * an explicit FPSCR read.
256
         */
257
        float_status fp_status;
258
        float_status standard_fp_status;
259
    } vfp;
260
    uint32_t exclusive_addr;
261
    uint32_t exclusive_val;
262
    uint32_t exclusive_high;
263
#if defined(CONFIG_USER_ONLY)
264
    uint32_t exclusive_test;
265
    uint32_t exclusive_info;
266
#endif
267

    
268
    /* iwMMXt coprocessor state.  */
269
    struct {
270
        uint64_t regs[16];
271
        uint64_t val;
272

    
273
        uint32_t cregs[16];
274
    } iwmmxt;
275

    
276
    /* For mixed endian mode.  */
277
    bool bswap_code;
278

    
279
#if defined(CONFIG_USER_ONLY)
280
    /* For usermode syscall translation.  */
281
    int eabi;
282
#endif
283

    
284
    CPU_COMMON
285

    
286
    /* These fields after the common ones so they are preserved on reset.  */
287

    
288
    /* Internal CPU feature flags.  */
289
    uint64_t features;
290

    
291
    void *nvic;
292
    const struct arm_boot_info *boot_info;
293
} CPUARMState;
294

    
295
#include "cpu-qom.h"
296

    
297
ARMCPU *cpu_arm_init(const char *cpu_model);
298
void arm_translate_init(void);
299
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
300
int cpu_arm_exec(CPUARMState *s);
301
int bank_number(int mode);
302
void switch_mode(CPUARMState *, int);
303
uint32_t do_arm_semihosting(CPUARMState *env);
304

    
305
static inline bool is_a64(CPUARMState *env)
306
{
307
    return env->aarch64;
308
}
309

    
310
#define PSTATE_N_SHIFT 3
311
#define PSTATE_N  (1 << PSTATE_N_SHIFT)
312
#define PSTATE_Z_SHIFT 2
313
#define PSTATE_Z  (1 << PSTATE_Z_SHIFT)
314
#define PSTATE_C_SHIFT 1
315
#define PSTATE_C  (1 << PSTATE_C_SHIFT)
316
#define PSTATE_V_SHIFT 0
317
#define PSTATE_V  (1 << PSTATE_V_SHIFT)
318

    
319
/* you can call this signal handler from your SIGBUS and SIGSEGV
320
   signal handlers to inform the virtual CPU of exceptions. non zero
321
   is returned if the signal was handled by the virtual CPU.  */
322
int cpu_arm_signal_handler(int host_signum, void *pinfo,
323
                           void *puc);
324
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
325
                              int mmu_idx);
326
#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
327

    
328
#define CPSR_M (0x1fU)
329
#define CPSR_T (1U << 5)
330
#define CPSR_F (1U << 6)
331
#define CPSR_I (1U << 7)
332
#define CPSR_A (1U << 8)
333
#define CPSR_E (1U << 9)
334
#define CPSR_IT_2_7 (0xfc00U)
335
#define CPSR_GE (0xfU << 16)
336
#define CPSR_RESERVED (0xfU << 20)
337
#define CPSR_J (1U << 24)
338
#define CPSR_IT_0_1 (3U << 25)
339
#define CPSR_Q (1U << 27)
340
#define CPSR_V (1U << 28)
341
#define CPSR_C (1U << 29)
342
#define CPSR_Z (1U << 30)
343
#define CPSR_N (1U << 31)
344
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
345

    
346
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
347
#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
348
/* Bits writable in user mode.  */
349
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
350
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
351
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
352

    
353
/* Return the current CPSR value.  */
354
uint32_t cpsr_read(CPUARMState *env);
355
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
356
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
357

    
358
/* Return the current xPSR value.  */
359
static inline uint32_t xpsr_read(CPUARMState *env)
360
{
361
    int ZF;
362
    ZF = (env->ZF == 0);
363
    return (env->NF & 0x80000000) | (ZF << 30)
364
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
365
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
366
        | ((env->condexec_bits & 0xfc) << 8)
367
        | env->v7m.exception;
368
}
369

    
370
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
371
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
372
{
373
    if (mask & CPSR_NZCV) {
374
        env->ZF = (~val) & CPSR_Z;
375
        env->NF = val;
376
        env->CF = (val >> 29) & 1;
377
        env->VF = (val << 3) & 0x80000000;
378
    }
379
    if (mask & CPSR_Q)
380
        env->QF = ((val & CPSR_Q) != 0);
381
    if (mask & (1 << 24))
382
        env->thumb = ((val & (1 << 24)) != 0);
383
    if (mask & CPSR_IT_0_1) {
384
        env->condexec_bits &= ~3;
385
        env->condexec_bits |= (val >> 25) & 3;
386
    }
387
    if (mask & CPSR_IT_2_7) {
388
        env->condexec_bits &= 3;
389
        env->condexec_bits |= (val >> 8) & 0xfc;
390
    }
391
    if (mask & 0x1ff) {
392
        env->v7m.exception = val & 0x1ff;
393
    }
394
}
395

    
396
/* Return the current FPSCR value.  */
397
uint32_t vfp_get_fpscr(CPUARMState *env);
398
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
399

    
400
enum arm_cpu_mode {
401
  ARM_CPU_MODE_USR = 0x10,
402
  ARM_CPU_MODE_FIQ = 0x11,
403
  ARM_CPU_MODE_IRQ = 0x12,
404
  ARM_CPU_MODE_SVC = 0x13,
405
  ARM_CPU_MODE_ABT = 0x17,
406
  ARM_CPU_MODE_UND = 0x1b,
407
  ARM_CPU_MODE_SYS = 0x1f
408
};
409

    
410
/* VFP system registers.  */
411
#define ARM_VFP_FPSID   0
412
#define ARM_VFP_FPSCR   1
413
#define ARM_VFP_MVFR1   6
414
#define ARM_VFP_MVFR0   7
415
#define ARM_VFP_FPEXC   8
416
#define ARM_VFP_FPINST  9
417
#define ARM_VFP_FPINST2 10
418

    
419
/* iwMMXt coprocessor control registers.  */
420
#define ARM_IWMMXT_wCID                0
421
#define ARM_IWMMXT_wCon                1
422
#define ARM_IWMMXT_wCSSF        2
423
#define ARM_IWMMXT_wCASF        3
424
#define ARM_IWMMXT_wCGR0        8
425
#define ARM_IWMMXT_wCGR1        9
426
#define ARM_IWMMXT_wCGR2        10
427
#define ARM_IWMMXT_wCGR3        11
428

    
429
/* If adding a feature bit which corresponds to a Linux ELF
430
 * HWCAP bit, remember to update the feature-bit-to-hwcap
431
 * mapping in linux-user/elfload.c:get_elf_hwcap().
432
 */
433
enum arm_features {
434
    ARM_FEATURE_VFP,
435
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
436
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
437
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
438
    ARM_FEATURE_V6,
439
    ARM_FEATURE_V6K,
440
    ARM_FEATURE_V7,
441
    ARM_FEATURE_THUMB2,
442
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
443
    ARM_FEATURE_VFP3,
444
    ARM_FEATURE_VFP_FP16,
445
    ARM_FEATURE_NEON,
446
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
447
    ARM_FEATURE_M, /* Microcontroller profile.  */
448
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
449
    ARM_FEATURE_THUMB2EE,
450
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
451
    ARM_FEATURE_V4T,
452
    ARM_FEATURE_V5,
453
    ARM_FEATURE_STRONGARM,
454
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
455
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
456
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
457
    ARM_FEATURE_GENERIC_TIMER,
458
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
459
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
460
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
461
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
462
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
463
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
464
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
465
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
466
    ARM_FEATURE_V8,
467
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
468
};
469

    
470
static inline int arm_feature(CPUARMState *env, int feature)
471
{
472
    return (env->features & (1ULL << feature)) != 0;
473
}
474

    
475
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
476

    
477
/* Interface between CPU and Interrupt controller.  */
478
void armv7m_nvic_set_pending(void *opaque, int irq);
479
int armv7m_nvic_acknowledge_irq(void *opaque);
480
void armv7m_nvic_complete_irq(void *opaque, int irq);
481

    
482
/* Interface for defining coprocessor registers.
483
 * Registers are defined in tables of arm_cp_reginfo structs
484
 * which are passed to define_arm_cp_regs().
485
 */
486

    
487
/* When looking up a coprocessor register we look for it
488
 * via an integer which encodes all of:
489
 *  coprocessor number
490
 *  Crn, Crm, opc1, opc2 fields
491
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
492
 *    or via MRRC/MCRR?)
493
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
494
 * (In this case crn and opc2 should be zero.)
495
 */
496
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
497
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
498
     ((crm) << 7) | ((opc1) << 3) | (opc2))
499

    
500
/* Note that these must line up with the KVM/ARM register
501
 * ID field definitions (kvm.c will check this, but we
502
 * can't just use the KVM defines here as the kvm headers
503
 * are unavailable to non-KVM-specific files)
504
 */
505
#define CP_REG_SIZE_SHIFT 52
506
#define CP_REG_SIZE_MASK       0x00f0000000000000ULL
507
#define CP_REG_SIZE_U32        0x0020000000000000ULL
508
#define CP_REG_SIZE_U64        0x0030000000000000ULL
509
#define CP_REG_ARM             0x4000000000000000ULL
510

    
511
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
512
 * version used as a key for the coprocessor register hashtable
513
 */
514
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
515
{
516
    uint32_t cpregid = kvmid;
517
    if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
518
        cpregid |= (1 << 15);
519
    }
520
    return cpregid;
521
}
522

    
523
/* Convert a truncated 32 bit hashtable key into the full
524
 * 64 bit KVM register ID.
525
 */
526
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
527
{
528
    uint64_t kvmid = cpregid & ~(1 << 15);
529
    if (cpregid & (1 << 15)) {
530
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
531
    } else {
532
        kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
533
    }
534
    return kvmid;
535
}
536

    
537
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
538
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
539
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
540
 * TCG can assume the value to be constant (ie load at translate time)
541
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
542
 * indicates that the TB should not be ended after a write to this register
543
 * (the default is that the TB ends after cp writes). OVERRIDE permits
544
 * a register definition to override a previous definition for the
545
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
546
 * old must have the OVERRIDE bit set.
547
 * NO_MIGRATE indicates that this register should be ignored for migration;
548
 * (eg because any state is accessed via some other coprocessor register).
549
 * IO indicates that this register does I/O and therefore its accesses
550
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
551
 * registers which implement clocks or timers require this.
552
 */
553
#define ARM_CP_SPECIAL 1
554
#define ARM_CP_CONST 2
555
#define ARM_CP_64BIT 4
556
#define ARM_CP_SUPPRESS_TB_END 8
557
#define ARM_CP_OVERRIDE 16
558
#define ARM_CP_NO_MIGRATE 32
559
#define ARM_CP_IO 64
560
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
561
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
562
#define ARM_LAST_SPECIAL ARM_CP_WFI
563
/* Used only as a terminator for ARMCPRegInfo lists */
564
#define ARM_CP_SENTINEL 0xffff
565
/* Mask of only the flag bits in a type field */
566
#define ARM_CP_FLAG_MASK 0x7f
567

    
568
/* Return true if cptype is a valid type field. This is used to try to
569
 * catch errors where the sentinel has been accidentally left off the end
570
 * of a list of registers.
571
 */
572
static inline bool cptype_valid(int cptype)
573
{
574
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
575
        || ((cptype & ARM_CP_SPECIAL) &&
576
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
577
}
578

    
579
/* Access rights:
580
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
581
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
582
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
583
 * (ie any of the privileged modes in Secure state, or Monitor mode).
584
 * If a register is accessible in one privilege level it's always accessible
585
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
586
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
587
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
588
 * terminology a little and call this PL3.
589
 *
590
 * If access permissions for a register are more complex than can be
591
 * described with these bits, then use a laxer set of restrictions, and
592
 * do the more restrictive/complex check inside a helper function.
593
 */
594
#define PL3_R 0x80
595
#define PL3_W 0x40
596
#define PL2_R (0x20 | PL3_R)
597
#define PL2_W (0x10 | PL3_W)
598
#define PL1_R (0x08 | PL2_R)
599
#define PL1_W (0x04 | PL2_W)
600
#define PL0_R (0x02 | PL1_R)
601
#define PL0_W (0x01 | PL1_W)
602

    
603
#define PL3_RW (PL3_R | PL3_W)
604
#define PL2_RW (PL2_R | PL2_W)
605
#define PL1_RW (PL1_R | PL1_W)
606
#define PL0_RW (PL0_R | PL0_W)
607

    
608
static inline int arm_current_pl(CPUARMState *env)
609
{
610
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
611
        return 0;
612
    }
613
    /* We don't currently implement the Virtualization or TrustZone
614
     * extensions, so PL2 and PL3 don't exist for us.
615
     */
616
    return 1;
617
}
618

    
619
typedef struct ARMCPRegInfo ARMCPRegInfo;
620

    
621
/* Access functions for coprocessor registers. These should return
622
 * 0 on success, or one of the EXCP_* constants if access should cause
623
 * an exception (in which case *value is not written).
624
 */
625
typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
626
                     uint64_t *value);
627
typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
628
                      uint64_t value);
629
/* Hook function for register reset */
630
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
631

    
632
#define CP_ANY 0xff
633

    
634
/* Definition of an ARM coprocessor register */
635
struct ARMCPRegInfo {
636
    /* Name of register (useful mainly for debugging, need not be unique) */
637
    const char *name;
638
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
639
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
640
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
641
     * will be decoded to this register. The register read and write
642
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
643
     * used by the program, so it is possible to register a wildcard and
644
     * then behave differently on read/write if necessary.
645
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
646
     * must both be zero.
647
     */
648
    uint8_t cp;
649
    uint8_t crn;
650
    uint8_t crm;
651
    uint8_t opc1;
652
    uint8_t opc2;
653
    /* Register type: ARM_CP_* bits/values */
654
    int type;
655
    /* Access rights: PL*_[RW] */
656
    int access;
657
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
658
     * this register was defined: can be used to hand data through to the
659
     * register read/write functions, since they are passed the ARMCPRegInfo*.
660
     */
661
    void *opaque;
662
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
663
     * fieldoffset is non-zero, the reset value of the register.
664
     */
665
    uint64_t resetvalue;
666
    /* Offset of the field in CPUARMState for this register. This is not
667
     * needed if either:
668
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
669
     *  2. both readfn and writefn are specified
670
     */
671
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
672
    /* Function for handling reads of this register. If NULL, then reads
673
     * will be done by loading from the offset into CPUARMState specified
674
     * by fieldoffset.
675
     */
676
    CPReadFn *readfn;
677
    /* Function for handling writes of this register. If NULL, then writes
678
     * will be done by writing to the offset into CPUARMState specified
679
     * by fieldoffset.
680
     */
681
    CPWriteFn *writefn;
682
    /* Function for doing a "raw" read; used when we need to copy
683
     * coprocessor state to the kernel for KVM or out for
684
     * migration. This only needs to be provided if there is also a
685
     * readfn and it makes an access permission check.
686
     */
687
    CPReadFn *raw_readfn;
688
    /* Function for doing a "raw" write; used when we need to copy KVM
689
     * kernel coprocessor state into userspace, or for inbound
690
     * migration. This only needs to be provided if there is also a
691
     * writefn and it makes an access permission check or masks out
692
     * "unwritable" bits or has write-one-to-clear or similar behaviour.
693
     */
694
    CPWriteFn *raw_writefn;
695
    /* Function for resetting the register. If NULL, then reset will be done
696
     * by writing resetvalue to the field specified in fieldoffset. If
697
     * fieldoffset is 0 then no reset will be done.
698
     */
699
    CPResetFn *resetfn;
700
};
701

    
702
/* Macros which are lvalues for the field in CPUARMState for the
703
 * ARMCPRegInfo *ri.
704
 */
705
#define CPREG_FIELD32(env, ri) \
706
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
707
#define CPREG_FIELD64(env, ri) \
708
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
709

    
710
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
711

    
712
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
713
                                    const ARMCPRegInfo *regs, void *opaque);
714
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
715
                                       const ARMCPRegInfo *regs, void *opaque);
716
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
717
{
718
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
719
}
720
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
721
{
722
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
723
}
724
const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
725

    
726
/* CPWriteFn that can be used to implement writes-ignored behaviour */
727
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
728
                        uint64_t value);
729
/* CPReadFn that can be used for read-as-zero behaviour */
730
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
731

    
732
static inline bool cp_access_ok(CPUARMState *env,
733
                                const ARMCPRegInfo *ri, int isread)
734
{
735
    return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
736
}
737

    
738
/**
739
 * write_list_to_cpustate
740
 * @cpu: ARMCPU
741
 *
742
 * For each register listed in the ARMCPU cpreg_indexes list, write
743
 * its value from the cpreg_values list into the ARMCPUState structure.
744
 * This updates TCG's working data structures from KVM data or
745
 * from incoming migration state.
746
 *
747
 * Returns: true if all register values were updated correctly,
748
 * false if some register was unknown or could not be written.
749
 * Note that we do not stop early on failure -- we will attempt
750
 * writing all registers in the list.
751
 */
752
bool write_list_to_cpustate(ARMCPU *cpu);
753

    
754
/**
755
 * write_cpustate_to_list:
756
 * @cpu: ARMCPU
757
 *
758
 * For each register listed in the ARMCPU cpreg_indexes list, write
759
 * its value from the ARMCPUState structure into the cpreg_values list.
760
 * This is used to copy info from TCG's working data structures into
761
 * KVM or for outbound migration.
762
 *
763
 * Returns: true if all register values were read correctly,
764
 * false if some register was unknown or could not be read.
765
 * Note that we do not stop early on failure -- we will attempt
766
 * reading all registers in the list.
767
 */
768
bool write_cpustate_to_list(ARMCPU *cpu);
769

    
770
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
771
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
772
   conventional cores (ie. Application or Realtime profile).  */
773

    
774
#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
775

    
776
#define ARM_CPUID_TI915T      0x54029152
777
#define ARM_CPUID_TI925T      0x54029252
778

    
779
#if defined(CONFIG_USER_ONLY)
780
#define TARGET_PAGE_BITS 12
781
#else
782
/* The ARM MMU allows 1k pages.  */
783
/* ??? Linux doesn't actually use these, and they're deprecated in recent
784
   architecture revisions.  Maybe a configure option to disable them.  */
785
#define TARGET_PAGE_BITS 10
786
#endif
787

    
788
#if defined(TARGET_AARCH64)
789
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
790
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
791
#else
792
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
793
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
794
#endif
795

    
796
static inline CPUARMState *cpu_init(const char *cpu_model)
797
{
798
    ARMCPU *cpu = cpu_arm_init(cpu_model);
799
    if (cpu) {
800
        return &cpu->env;
801
    }
802
    return NULL;
803
}
804

    
805
#define cpu_exec cpu_arm_exec
806
#define cpu_gen_code cpu_arm_gen_code
807
#define cpu_signal_handler cpu_arm_signal_handler
808
#define cpu_list arm_cpu_list
809

    
810
/* MMU modes definitions */
811
#define MMU_MODE0_SUFFIX _kernel
812
#define MMU_MODE1_SUFFIX _user
813
#define MMU_USER_IDX 1
814
static inline int cpu_mmu_index (CPUARMState *env)
815
{
816
    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
817
}
818

    
819
#include "exec/cpu-all.h"
820

    
821
/* Bit usage in the TB flags field: bit 31 indicates whether we are
822
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
823
 */
824
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
825
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
826

    
827
/* Bit usage when in AArch32 state: */
828
#define ARM_TBFLAG_THUMB_SHIFT      0
829
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
830
#define ARM_TBFLAG_VECLEN_SHIFT     1
831
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
832
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
833
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
834
#define ARM_TBFLAG_PRIV_SHIFT       6
835
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
836
#define ARM_TBFLAG_VFPEN_SHIFT      7
837
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
838
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
839
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
840
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
841
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
842

    
843
/* Bit usage when in AArch64 state: currently no bits defined */
844

    
845
/* some convenience accessor macros */
846
#define ARM_TBFLAG_AARCH64_STATE(F) \
847
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
848
#define ARM_TBFLAG_THUMB(F) \
849
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
850
#define ARM_TBFLAG_VECLEN(F) \
851
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
852
#define ARM_TBFLAG_VECSTRIDE(F) \
853
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
854
#define ARM_TBFLAG_PRIV(F) \
855
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
856
#define ARM_TBFLAG_VFPEN(F) \
857
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
858
#define ARM_TBFLAG_CONDEXEC(F) \
859
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
860
#define ARM_TBFLAG_BSWAP_CODE(F) \
861
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
862

    
863
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
864
                                        target_ulong *cs_base, int *flags)
865
{
866
    if (is_a64(env)) {
867
        *pc = env->pc;
868
        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
869
    } else {
870
        int privmode;
871
        *pc = env->regs[15];
872
        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
873
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
874
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
875
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
876
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
877
        if (arm_feature(env, ARM_FEATURE_M)) {
878
            privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
879
        } else {
880
            privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
881
        }
882
        if (privmode) {
883
            *flags |= ARM_TBFLAG_PRIV_MASK;
884
        }
885
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
886
            *flags |= ARM_TBFLAG_VFPEN_MASK;
887
        }
888
    }
889

    
890
    *cs_base = 0;
891
}
892

    
893
static inline bool cpu_has_work(CPUState *cpu)
894
{
895
    return cpu->interrupt_request &
896
        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
897
}
898

    
899
#include "exec/exec-all.h"
900

    
901
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
902
{
903
    if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
904
        env->pc = tb->pc;
905
    } else {
906
        env->regs[15] = tb->pc;
907
    }
908
}
909

    
910
/* Load an instruction and return it in the standard little-endian order */
911
static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
912
                                    bool do_swap)
913
{
914
    uint32_t insn = cpu_ldl_code(env, addr);
915
    if (do_swap) {
916
        return bswap32(insn);
917
    }
918
    return insn;
919
}
920

    
921
/* Ditto, for a halfword (Thumb) instruction */
922
static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
923
                                     bool do_swap)
924
{
925
    uint16_t insn = cpu_lduw_code(env, addr);
926
    if (do_swap) {
927
        return bswap16(insn);
928
    }
929
    return insn;
930
}
931

    
932
#endif