Statistics
| Branch: | Revision:

root / exec-all.h @ 90cb786c

History | View | Annotate | Download (17.3 kB)

1 d4e8164f bellard
/*
2 d4e8164f bellard
 * internal execution defines for qemu
3 5fafdf24 ths
 *
4 d4e8164f bellard
 *  Copyright (c) 2003 Fabrice Bellard
5 d4e8164f bellard
 *
6 d4e8164f bellard
 * This library is free software; you can redistribute it and/or
7 d4e8164f bellard
 * modify it under the terms of the GNU Lesser General Public
8 d4e8164f bellard
 * License as published by the Free Software Foundation; either
9 d4e8164f bellard
 * version 2 of the License, or (at your option) any later version.
10 d4e8164f bellard
 *
11 d4e8164f bellard
 * This library is distributed in the hope that it will be useful,
12 d4e8164f bellard
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 d4e8164f bellard
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 d4e8164f bellard
 * Lesser General Public License for more details.
15 d4e8164f bellard
 *
16 d4e8164f bellard
 * You should have received a copy of the GNU Lesser General Public
17 d4e8164f bellard
 * License along with this library; if not, write to the Free Software
18 d4e8164f bellard
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 d4e8164f bellard
 */
20 d4e8164f bellard
21 b346ff46 bellard
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22 cb7cca1a aurel32
#define DEBUG_DISAS
23 b346ff46 bellard
24 b346ff46 bellard
/* is_jmp field values */
25 b346ff46 bellard
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26 b346ff46 bellard
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27 b346ff46 bellard
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28 b346ff46 bellard
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29 b346ff46 bellard
30 b346ff46 bellard
struct TranslationBlock;
31 b346ff46 bellard
32 b346ff46 bellard
/* XXX: make safe guess about sizes */
33 e83a8673 edgar_igl
#define MAX_OP_PER_INSTR 64
34 0115be31 pbrook
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35 0115be31 pbrook
#define MAX_OPC_PARAM 10
36 b346ff46 bellard
#define OPC_BUF_SIZE 512
37 b346ff46 bellard
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38 b346ff46 bellard
39 a208e54a pbrook
/* Maximum size a TCG op can expand to.  This is complicated because a
40 a208e54a pbrook
   single op may require several host instructions and regirster reloads.
41 a208e54a pbrook
   For now take a wild guess at 128 bytes, which should allow at least
42 a208e54a pbrook
   a couple of fixup instructions per argument.  */
43 a208e54a pbrook
#define TCG_MAX_OP_SIZE 128
44 a208e54a pbrook
45 0115be31 pbrook
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46 b346ff46 bellard
47 c27004ec bellard
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48 c27004ec bellard
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49 66e85a21 bellard
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50 b346ff46 bellard
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51 c3278b7b bellard
extern target_ulong gen_opc_jump_pc[2];
52 30d6cb84 bellard
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
53 b346ff46 bellard
54 9886cc16 bellard
typedef void (GenOpFunc)(void);
55 9886cc16 bellard
typedef void (GenOpFunc1)(long);
56 9886cc16 bellard
typedef void (GenOpFunc2)(long, long);
57 9886cc16 bellard
typedef void (GenOpFunc3)(long, long, long);
58 3b46e624 ths
59 b346ff46 bellard
extern FILE *logfile;
60 b346ff46 bellard
extern int loglevel;
61 b346ff46 bellard
62 4c3a88a2 bellard
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63 4c3a88a2 bellard
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64 d2856f1a aurel32
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
65 d2856f1a aurel32
                 unsigned long searched_pc, int pc_pos, void *puc);
66 d2856f1a aurel32
67 d07bde88 blueswir1
unsigned long code_gen_max_block_size(void);
68 57fec1fe bellard
void cpu_gen_init(void);
69 4c3a88a2 bellard
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
70 d07bde88 blueswir1
                 int *gen_code_size_ptr);
71 5fafdf24 ths
int cpu_restore_state(struct TranslationBlock *tb,
72 58fe2f10 bellard
                      CPUState *env, unsigned long searched_pc,
73 58fe2f10 bellard
                      void *puc);
74 5fafdf24 ths
int cpu_restore_state_copy(struct TranslationBlock *tb,
75 58fe2f10 bellard
                           CPUState *env, unsigned long searched_pc,
76 58fe2f10 bellard
                           void *puc);
77 2e12669a bellard
void cpu_resume_from_signal(CPUState *env1, void *puc);
78 6a00d601 bellard
void cpu_exec_init(CPUState *env);
79 53a5960a pbrook
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
80 00f82b8a aurel32
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
81 2e12669a bellard
                                   int is_cpu_write_access);
82 4390df51 bellard
void tb_invalidate_page_range(target_ulong start, target_ulong end);
83 2e12669a bellard
void tlb_flush_page(CPUState *env, target_ulong addr);
84 ee8b7021 bellard
void tlb_flush(CPUState *env, int flush_global);
85 5fafdf24 ths
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
86 5fafdf24 ths
                      target_phys_addr_t paddr, int prot,
87 6ebbf390 j_mayer
                      int mmu_idx, int is_softmmu);
88 4d7a0880 blueswir1
static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
89 5fafdf24 ths
                               target_phys_addr_t paddr, int prot,
90 6ebbf390 j_mayer
                               int mmu_idx, int is_softmmu)
91 84b7b8e7 bellard
{
92 84b7b8e7 bellard
    if (prot & PAGE_READ)
93 84b7b8e7 bellard
        prot |= PAGE_EXEC;
94 4d7a0880 blueswir1
    return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
95 84b7b8e7 bellard
}
96 d4e8164f bellard
97 d4e8164f bellard
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
98 d4e8164f bellard
99 4390df51 bellard
#define CODE_GEN_PHYS_HASH_BITS     15
100 4390df51 bellard
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
101 4390df51 bellard
102 26a5f13b bellard
#define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
103 d4e8164f bellard
104 4390df51 bellard
/* estimated block size for TB allocation */
105 4390df51 bellard
/* XXX: use a per code average code fragment size and modulate it
106 4390df51 bellard
   according to the host CPU */
107 4390df51 bellard
#if defined(CONFIG_SOFTMMU)
108 4390df51 bellard
#define CODE_GEN_AVG_BLOCK_SIZE 128
109 4390df51 bellard
#else
110 4390df51 bellard
#define CODE_GEN_AVG_BLOCK_SIZE 64
111 4390df51 bellard
#endif
112 4390df51 bellard
113 811d4cf4 balrog
#if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
114 4390df51 bellard
#define USE_DIRECT_JUMP
115 4390df51 bellard
#endif
116 67b915a5 bellard
#if defined(__i386__) && !defined(_WIN32)
117 d4e8164f bellard
#define USE_DIRECT_JUMP
118 d4e8164f bellard
#endif
119 d4e8164f bellard
120 d4e8164f bellard
typedef struct TranslationBlock {
121 2e12669a bellard
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
122 2e12669a bellard
    target_ulong cs_base; /* CS base for this block */
123 c068688b j_mayer
    uint64_t flags; /* flags defining in which context the code was generated */
124 d4e8164f bellard
    uint16_t size;      /* size of target code for this block (1 <=
125 d4e8164f bellard
                           size <= TARGET_PAGE_SIZE) */
126 58fe2f10 bellard
    uint16_t cflags;    /* compile flags */
127 bf088061 bellard
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
128 bf088061 bellard
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
129 2e12669a bellard
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
130 58fe2f10 bellard
131 d4e8164f bellard
    uint8_t *tc_ptr;    /* pointer to the translated code */
132 4390df51 bellard
    /* next matching tb for physical address. */
133 5fafdf24 ths
    struct TranslationBlock *phys_hash_next;
134 4390df51 bellard
    /* first and second physical page containing code. The lower bit
135 4390df51 bellard
       of the pointer tells the index in page_next[] */
136 5fafdf24 ths
    struct TranslationBlock *page_next[2];
137 5fafdf24 ths
    target_ulong page_addr[2];
138 4390df51 bellard
139 d4e8164f bellard
    /* the following data are used to directly call another TB from
140 d4e8164f bellard
       the code of this one. */
141 d4e8164f bellard
    uint16_t tb_next_offset[2]; /* offset of original jump target */
142 d4e8164f bellard
#ifdef USE_DIRECT_JUMP
143 4cbb86e1 bellard
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
144 d4e8164f bellard
#else
145 57fec1fe bellard
    unsigned long tb_next[2]; /* address of jump generated code */
146 d4e8164f bellard
#endif
147 d4e8164f bellard
    /* list of TBs jumping to this one. This is a circular list using
148 d4e8164f bellard
       the two least significant bits of the pointers to tell what is
149 d4e8164f bellard
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
150 d4e8164f bellard
       jmp_first */
151 5fafdf24 ths
    struct TranslationBlock *jmp_next[2];
152 d4e8164f bellard
    struct TranslationBlock *jmp_first;
153 d4e8164f bellard
} TranslationBlock;
154 d4e8164f bellard
155 b362e5e0 pbrook
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
156 b362e5e0 pbrook
{
157 b362e5e0 pbrook
    target_ulong tmp;
158 b362e5e0 pbrook
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
159 b5e19d4c edgar_igl
    return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
160 b362e5e0 pbrook
}
161 b362e5e0 pbrook
162 8a40a180 bellard
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
163 d4e8164f bellard
{
164 b362e5e0 pbrook
    target_ulong tmp;
165 b362e5e0 pbrook
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
166 b5e19d4c edgar_igl
    return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
167 b5e19d4c edgar_igl
            | (tmp & TB_JMP_ADDR_MASK));
168 d4e8164f bellard
}
169 d4e8164f bellard
170 4390df51 bellard
static inline unsigned int tb_phys_hash_func(unsigned long pc)
171 4390df51 bellard
{
172 4390df51 bellard
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
173 4390df51 bellard
}
174 4390df51 bellard
175 c27004ec bellard
TranslationBlock *tb_alloc(target_ulong pc);
176 0124311e bellard
void tb_flush(CPUState *env);
177 5fafdf24 ths
void tb_link_phys(TranslationBlock *tb,
178 4390df51 bellard
                  target_ulong phys_pc, target_ulong phys_page2);
179 d4e8164f bellard
180 4390df51 bellard
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
181 d4e8164f bellard
extern uint8_t *code_gen_ptr;
182 26a5f13b bellard
extern int code_gen_max_blocks;
183 d4e8164f bellard
184 4390df51 bellard
#if defined(USE_DIRECT_JUMP)
185 4390df51 bellard
186 4390df51 bellard
#if defined(__powerpc__)
187 4cbb86e1 bellard
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
188 d4e8164f bellard
{
189 d4e8164f bellard
    uint32_t val, *ptr;
190 d4e8164f bellard
191 d4e8164f bellard
    /* patch the branch destination */
192 4cbb86e1 bellard
    ptr = (uint32_t *)jmp_addr;
193 d4e8164f bellard
    val = *ptr;
194 4cbb86e1 bellard
    val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
195 d4e8164f bellard
    *ptr = val;
196 d4e8164f bellard
    /* flush icache */
197 d4e8164f bellard
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
198 d4e8164f bellard
    asm volatile ("sync" : : : "memory");
199 d4e8164f bellard
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
200 d4e8164f bellard
    asm volatile ("sync" : : : "memory");
201 d4e8164f bellard
    asm volatile ("isync" : : : "memory");
202 d4e8164f bellard
}
203 57fec1fe bellard
#elif defined(__i386__) || defined(__x86_64__)
204 4390df51 bellard
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
205 4390df51 bellard
{
206 4390df51 bellard
    /* patch the branch destination */
207 4390df51 bellard
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
208 4390df51 bellard
    /* no need to flush icache explicitely */
209 4390df51 bellard
}
210 811d4cf4 balrog
#elif defined(__arm__)
211 811d4cf4 balrog
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
212 811d4cf4 balrog
{
213 811d4cf4 balrog
    register unsigned long _beg __asm ("a1");
214 811d4cf4 balrog
    register unsigned long _end __asm ("a2");
215 811d4cf4 balrog
    register unsigned long _flg __asm ("a3");
216 811d4cf4 balrog
217 811d4cf4 balrog
    /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
218 811d4cf4 balrog
    *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
219 811d4cf4 balrog
220 811d4cf4 balrog
    /* flush icache */
221 811d4cf4 balrog
    _beg = jmp_addr;
222 811d4cf4 balrog
    _end = jmp_addr + 4;
223 811d4cf4 balrog
    _flg = 0;
224 811d4cf4 balrog
    __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
225 811d4cf4 balrog
}
226 4390df51 bellard
#endif
227 d4e8164f bellard
228 5fafdf24 ths
static inline void tb_set_jmp_target(TranslationBlock *tb,
229 4cbb86e1 bellard
                                     int n, unsigned long addr)
230 4cbb86e1 bellard
{
231 4cbb86e1 bellard
    unsigned long offset;
232 4cbb86e1 bellard
233 4cbb86e1 bellard
    offset = tb->tb_jmp_offset[n];
234 4cbb86e1 bellard
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
235 4cbb86e1 bellard
    offset = tb->tb_jmp_offset[n + 2];
236 4cbb86e1 bellard
    if (offset != 0xffff)
237 4cbb86e1 bellard
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
238 4cbb86e1 bellard
}
239 4cbb86e1 bellard
240 d4e8164f bellard
#else
241 d4e8164f bellard
242 d4e8164f bellard
/* set the jump target */
243 5fafdf24 ths
static inline void tb_set_jmp_target(TranslationBlock *tb,
244 d4e8164f bellard
                                     int n, unsigned long addr)
245 d4e8164f bellard
{
246 95f7652d bellard
    tb->tb_next[n] = addr;
247 d4e8164f bellard
}
248 d4e8164f bellard
249 d4e8164f bellard
#endif
250 d4e8164f bellard
251 5fafdf24 ths
static inline void tb_add_jump(TranslationBlock *tb, int n,
252 d4e8164f bellard
                               TranslationBlock *tb_next)
253 d4e8164f bellard
{
254 cf25629d bellard
    /* NOTE: this test is only needed for thread safety */
255 cf25629d bellard
    if (!tb->jmp_next[n]) {
256 cf25629d bellard
        /* patch the native jump address */
257 cf25629d bellard
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
258 3b46e624 ths
259 cf25629d bellard
        /* add in TB jmp circular list */
260 cf25629d bellard
        tb->jmp_next[n] = tb_next->jmp_first;
261 cf25629d bellard
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
262 cf25629d bellard
    }
263 d4e8164f bellard
}
264 d4e8164f bellard
265 a513fe19 bellard
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
266 a513fe19 bellard
267 d4e8164f bellard
#ifndef offsetof
268 d4e8164f bellard
#define offsetof(type, field) ((size_t) &((type *)0)->field)
269 d4e8164f bellard
#endif
270 d4e8164f bellard
271 d549f7d9 bellard
#if defined(_WIN32)
272 d549f7d9 bellard
#define ASM_DATA_SECTION ".section \".data\"\n"
273 d549f7d9 bellard
#define ASM_PREVIOUS_SECTION ".section .text\n"
274 d549f7d9 bellard
#elif defined(__APPLE__)
275 d549f7d9 bellard
#define ASM_DATA_SECTION ".data\n"
276 d549f7d9 bellard
#define ASM_PREVIOUS_SECTION ".text\n"
277 d549f7d9 bellard
#else
278 d549f7d9 bellard
#define ASM_DATA_SECTION ".section \".data\"\n"
279 d549f7d9 bellard
#define ASM_PREVIOUS_SECTION ".previous\n"
280 d549f7d9 bellard
#endif
281 d549f7d9 bellard
282 75913b72 bellard
#define ASM_OP_LABEL_NAME(n, opname) \
283 75913b72 bellard
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
284 75913b72 bellard
285 33417e70 bellard
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
286 33417e70 bellard
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
287 a4193c8a bellard
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
288 33417e70 bellard
289 15a51156 aurel32
#if defined(__hppa__)
290 15a51156 aurel32
291 15a51156 aurel32
typedef int spinlock_t[4];
292 15a51156 aurel32
293 15a51156 aurel32
#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
294 15a51156 aurel32
295 15a51156 aurel32
static inline void resetlock (spinlock_t *p)
296 15a51156 aurel32
{
297 15a51156 aurel32
    (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
298 15a51156 aurel32
}
299 15a51156 aurel32
300 15a51156 aurel32
#else
301 15a51156 aurel32
302 15a51156 aurel32
typedef int spinlock_t;
303 15a51156 aurel32
304 15a51156 aurel32
#define SPIN_LOCK_UNLOCKED 0
305 15a51156 aurel32
306 15a51156 aurel32
static inline void resetlock (spinlock_t *p)
307 15a51156 aurel32
{
308 15a51156 aurel32
    *p = SPIN_LOCK_UNLOCKED;
309 15a51156 aurel32
}
310 15a51156 aurel32
311 15a51156 aurel32
#endif
312 15a51156 aurel32
313 204a1b8d ths
#if defined(__powerpc__)
314 d4e8164f bellard
static inline int testandset (int *p)
315 d4e8164f bellard
{
316 d4e8164f bellard
    int ret;
317 d4e8164f bellard
    __asm__ __volatile__ (
318 02e1ec9b bellard
                          "0:    lwarx %0,0,%1\n"
319 02e1ec9b bellard
                          "      xor. %0,%3,%0\n"
320 02e1ec9b bellard
                          "      bne 1f\n"
321 02e1ec9b bellard
                          "      stwcx. %2,0,%1\n"
322 02e1ec9b bellard
                          "      bne- 0b\n"
323 d4e8164f bellard
                          "1:    "
324 d4e8164f bellard
                          : "=&r" (ret)
325 d4e8164f bellard
                          : "r" (p), "r" (1), "r" (0)
326 d4e8164f bellard
                          : "cr0", "memory");
327 d4e8164f bellard
    return ret;
328 d4e8164f bellard
}
329 204a1b8d ths
#elif defined(__i386__)
330 d4e8164f bellard
static inline int testandset (int *p)
331 d4e8164f bellard
{
332 4955a2cd bellard
    long int readval = 0;
333 3b46e624 ths
334 4955a2cd bellard
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
335 4955a2cd bellard
                          : "+m" (*p), "+a" (readval)
336 4955a2cd bellard
                          : "r" (1)
337 4955a2cd bellard
                          : "cc");
338 4955a2cd bellard
    return readval;
339 d4e8164f bellard
}
340 204a1b8d ths
#elif defined(__x86_64__)
341 bc51c5c9 bellard
static inline int testandset (int *p)
342 bc51c5c9 bellard
{
343 4955a2cd bellard
    long int readval = 0;
344 3b46e624 ths
345 4955a2cd bellard
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
346 4955a2cd bellard
                          : "+m" (*p), "+a" (readval)
347 4955a2cd bellard
                          : "r" (1)
348 4955a2cd bellard
                          : "cc");
349 4955a2cd bellard
    return readval;
350 bc51c5c9 bellard
}
351 204a1b8d ths
#elif defined(__s390__)
352 d4e8164f bellard
static inline int testandset (int *p)
353 d4e8164f bellard
{
354 d4e8164f bellard
    int ret;
355 d4e8164f bellard
356 d4e8164f bellard
    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
357 d4e8164f bellard
                          "   jl    0b"
358 d4e8164f bellard
                          : "=&d" (ret)
359 5fafdf24 ths
                          : "r" (1), "a" (p), "0" (*p)
360 d4e8164f bellard
                          : "cc", "memory" );
361 d4e8164f bellard
    return ret;
362 d4e8164f bellard
}
363 204a1b8d ths
#elif defined(__alpha__)
364 2f87c607 bellard
static inline int testandset (int *p)
365 d4e8164f bellard
{
366 d4e8164f bellard
    int ret;
367 d4e8164f bellard
    unsigned long one;
368 d4e8164f bellard
369 d4e8164f bellard
    __asm__ __volatile__ ("0:        mov 1,%2\n"
370 d4e8164f bellard
                          "        ldl_l %0,%1\n"
371 d4e8164f bellard
                          "        stl_c %2,%1\n"
372 d4e8164f bellard
                          "        beq %2,1f\n"
373 d4e8164f bellard
                          ".subsection 2\n"
374 d4e8164f bellard
                          "1:        br 0b\n"
375 d4e8164f bellard
                          ".previous"
376 d4e8164f bellard
                          : "=r" (ret), "=m" (*p), "=r" (one)
377 d4e8164f bellard
                          : "m" (*p));
378 d4e8164f bellard
    return ret;
379 d4e8164f bellard
}
380 204a1b8d ths
#elif defined(__sparc__)
381 d4e8164f bellard
static inline int testandset (int *p)
382 d4e8164f bellard
{
383 d4e8164f bellard
        int ret;
384 d4e8164f bellard
385 d4e8164f bellard
        __asm__ __volatile__("ldstub        [%1], %0"
386 d4e8164f bellard
                             : "=r" (ret)
387 d4e8164f bellard
                             : "r" (p)
388 d4e8164f bellard
                             : "memory");
389 d4e8164f bellard
390 d4e8164f bellard
        return (ret ? 1 : 0);
391 d4e8164f bellard
}
392 204a1b8d ths
#elif defined(__arm__)
393 a95c6790 bellard
static inline int testandset (int *spinlock)
394 a95c6790 bellard
{
395 a95c6790 bellard
    register unsigned int ret;
396 a95c6790 bellard
    __asm__ __volatile__("swp %0, %1, [%2]"
397 a95c6790 bellard
                         : "=r"(ret)
398 a95c6790 bellard
                         : "0"(1), "r"(spinlock));
399 3b46e624 ths
400 a95c6790 bellard
    return ret;
401 a95c6790 bellard
}
402 204a1b8d ths
#elif defined(__mc68000)
403 38e584a0 bellard
static inline int testandset (int *p)
404 38e584a0 bellard
{
405 38e584a0 bellard
    char ret;
406 38e584a0 bellard
    __asm__ __volatile__("tas %1; sne %0"
407 38e584a0 bellard
                         : "=r" (ret)
408 38e584a0 bellard
                         : "m" (p)
409 38e584a0 bellard
                         : "cc","memory");
410 4955a2cd bellard
    return ret;
411 38e584a0 bellard
}
412 15a51156 aurel32
#elif defined(__hppa__)
413 15a51156 aurel32
414 15a51156 aurel32
/* Because malloc only guarantees 8-byte alignment for malloc'd data,
415 15a51156 aurel32
   and GCC only guarantees 8-byte alignment for stack locals, we can't
416 15a51156 aurel32
   be assured of 16-byte alignment for atomic lock data even if we
417 15a51156 aurel32
   specify "__attribute ((aligned(16)))" in the type declaration.  So,
418 15a51156 aurel32
   we use a struct containing an array of four ints for the atomic lock
419 15a51156 aurel32
   type and dynamically select the 16-byte aligned int from the array
420 15a51156 aurel32
   for the semaphore.  */
421 15a51156 aurel32
#define __PA_LDCW_ALIGNMENT 16
422 15a51156 aurel32
static inline void *ldcw_align (void *p) {
423 15a51156 aurel32
    unsigned long a = (unsigned long)p;
424 15a51156 aurel32
    a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
425 15a51156 aurel32
    return (void *)a;
426 15a51156 aurel32
}
427 15a51156 aurel32
428 15a51156 aurel32
static inline int testandset (spinlock_t *p)
429 15a51156 aurel32
{
430 15a51156 aurel32
    unsigned int ret;
431 15a51156 aurel32
    p = ldcw_align(p);
432 15a51156 aurel32
    __asm__ __volatile__("ldcw 0(%1),%0"
433 15a51156 aurel32
                         : "=r" (ret)
434 15a51156 aurel32
                         : "r" (p)
435 15a51156 aurel32
                         : "memory" );
436 15a51156 aurel32
    return !ret;
437 15a51156 aurel32
}
438 15a51156 aurel32
439 204a1b8d ths
#elif defined(__ia64)
440 38e584a0 bellard
441 b8076a74 bellard
#include <ia64intrin.h>
442 b8076a74 bellard
443 b8076a74 bellard
static inline int testandset (int *p)
444 b8076a74 bellard
{
445 b8076a74 bellard
    return __sync_lock_test_and_set (p, 1);
446 b8076a74 bellard
}
447 204a1b8d ths
#elif defined(__mips__)
448 c4b89d18 ths
static inline int testandset (int *p)
449 c4b89d18 ths
{
450 c4b89d18 ths
    int ret;
451 c4b89d18 ths
452 c4b89d18 ths
    __asm__ __volatile__ (
453 c4b89d18 ths
        "        .set push                \n"
454 c4b89d18 ths
        "        .set noat                \n"
455 c4b89d18 ths
        "        .set mips2                \n"
456 c4b89d18 ths
        "1:        li        $1, 1                \n"
457 c4b89d18 ths
        "        ll        %0, %1                \n"
458 c4b89d18 ths
        "        sc        $1, %1                \n"
459 976a0d0d ths
        "        beqz        $1, 1b                \n"
460 c4b89d18 ths
        "        .set pop                "
461 c4b89d18 ths
        : "=r" (ret), "+R" (*p)
462 c4b89d18 ths
        :
463 c4b89d18 ths
        : "memory");
464 c4b89d18 ths
465 c4b89d18 ths
    return ret;
466 c4b89d18 ths
}
467 204a1b8d ths
#else
468 204a1b8d ths
#error unimplemented CPU support
469 c4b89d18 ths
#endif
470 c4b89d18 ths
471 aebcb60e bellard
#if defined(CONFIG_USER_ONLY)
472 d4e8164f bellard
static inline void spin_lock(spinlock_t *lock)
473 d4e8164f bellard
{
474 d4e8164f bellard
    while (testandset(lock));
475 d4e8164f bellard
}
476 d4e8164f bellard
477 d4e8164f bellard
static inline void spin_unlock(spinlock_t *lock)
478 d4e8164f bellard
{
479 15a51156 aurel32
    resetlock(lock);
480 d4e8164f bellard
}
481 d4e8164f bellard
482 d4e8164f bellard
static inline int spin_trylock(spinlock_t *lock)
483 d4e8164f bellard
{
484 d4e8164f bellard
    return !testandset(lock);
485 d4e8164f bellard
}
486 3c1cf9fa bellard
#else
487 3c1cf9fa bellard
static inline void spin_lock(spinlock_t *lock)
488 3c1cf9fa bellard
{
489 3c1cf9fa bellard
}
490 3c1cf9fa bellard
491 3c1cf9fa bellard
static inline void spin_unlock(spinlock_t *lock)
492 3c1cf9fa bellard
{
493 3c1cf9fa bellard
}
494 3c1cf9fa bellard
495 3c1cf9fa bellard
static inline int spin_trylock(spinlock_t *lock)
496 3c1cf9fa bellard
{
497 3c1cf9fa bellard
    return 1;
498 3c1cf9fa bellard
}
499 3c1cf9fa bellard
#endif
500 d4e8164f bellard
501 d4e8164f bellard
extern spinlock_t tb_lock;
502 d4e8164f bellard
503 36bdbe54 bellard
extern int tb_invalidated_flag;
504 6e59c1db bellard
505 e95c8d51 bellard
#if !defined(CONFIG_USER_ONLY)
506 6e59c1db bellard
507 6ebbf390 j_mayer
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
508 6e59c1db bellard
              void *retaddr);
509 6e59c1db bellard
510 6ebbf390 j_mayer
#define ACCESS_TYPE (NB_MMU_MODES + 1)
511 6e59c1db bellard
#define MEMSUFFIX _code
512 6e59c1db bellard
#define env cpu_single_env
513 6e59c1db bellard
514 6e59c1db bellard
#define DATA_SIZE 1
515 6e59c1db bellard
#include "softmmu_header.h"
516 6e59c1db bellard
517 6e59c1db bellard
#define DATA_SIZE 2
518 6e59c1db bellard
#include "softmmu_header.h"
519 6e59c1db bellard
520 6e59c1db bellard
#define DATA_SIZE 4
521 6e59c1db bellard
#include "softmmu_header.h"
522 6e59c1db bellard
523 c27004ec bellard
#define DATA_SIZE 8
524 c27004ec bellard
#include "softmmu_header.h"
525 c27004ec bellard
526 6e59c1db bellard
#undef ACCESS_TYPE
527 6e59c1db bellard
#undef MEMSUFFIX
528 6e59c1db bellard
#undef env
529 6e59c1db bellard
530 6e59c1db bellard
#endif
531 4390df51 bellard
532 4390df51 bellard
#if defined(CONFIG_USER_ONLY)
533 4d7a0880 blueswir1
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
534 4390df51 bellard
{
535 4390df51 bellard
    return addr;
536 4390df51 bellard
}
537 4390df51 bellard
#else
538 4390df51 bellard
/* NOTE: this function can trigger an exception */
539 1ccde1cb bellard
/* NOTE2: the returned address is not exactly the physical address: it
540 1ccde1cb bellard
   is the offset relative to phys_ram_base */
541 4d7a0880 blueswir1
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
542 4390df51 bellard
{
543 4d7a0880 blueswir1
    int mmu_idx, page_index, pd;
544 4390df51 bellard
545 4d7a0880 blueswir1
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
546 4d7a0880 blueswir1
    mmu_idx = cpu_mmu_index(env1);
547 4d7a0880 blueswir1
    if (__builtin_expect(env1->tlb_table[mmu_idx][page_index].addr_code !=
548 4390df51 bellard
                         (addr & TARGET_PAGE_MASK), 0)) {
549 c27004ec bellard
        ldub_code(addr);
550 c27004ec bellard
    }
551 4d7a0880 blueswir1
    pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
552 2a4188a3 bellard
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
553 647de6ca ths
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
554 6c36d3fa blueswir1
        do_unassigned_access(addr, 0, 1, 0);
555 6c36d3fa blueswir1
#else
556 4d7a0880 blueswir1
        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
557 6c36d3fa blueswir1
#endif
558 4390df51 bellard
    }
559 4d7a0880 blueswir1
    return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
560 4390df51 bellard
}
561 4390df51 bellard
#endif
562 9df217a3 bellard
563 9df217a3 bellard
#ifdef USE_KQEMU
564 f32fc648 bellard
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
565 f32fc648 bellard
566 9df217a3 bellard
int kqemu_init(CPUState *env);
567 9df217a3 bellard
int kqemu_cpu_exec(CPUState *env);
568 9df217a3 bellard
void kqemu_flush_page(CPUState *env, target_ulong addr);
569 9df217a3 bellard
void kqemu_flush(CPUState *env, int global);
570 4b7df22f bellard
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
571 f32fc648 bellard
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
572 a332e112 bellard
void kqemu_cpu_interrupt(CPUState *env);
573 f32fc648 bellard
void kqemu_record_dump(void);
574 9df217a3 bellard
575 9df217a3 bellard
static inline int kqemu_is_ok(CPUState *env)
576 9df217a3 bellard
{
577 9df217a3 bellard
    return(env->kqemu_enabled &&
578 5fafdf24 ths
           (env->cr[0] & CR0_PE_MASK) &&
579 f32fc648 bellard
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
580 9df217a3 bellard
           (env->eflags & IF_MASK) &&
581 f32fc648 bellard
           !(env->eflags & VM_MASK) &&
582 5fafdf24 ths
           (env->kqemu_enabled == 2 ||
583 f32fc648 bellard
            ((env->hflags & HF_CPL_MASK) == 3 &&
584 f32fc648 bellard
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
585 9df217a3 bellard
}
586 9df217a3 bellard
587 9df217a3 bellard
#endif