Statistics
| Branch: | Revision:

root / exec-all.h @ 90cb786c

History | View | Annotate | Download (17.3 kB)

1
/*
2
 * internal execution defines for qemu
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22
#define DEBUG_DISAS
23

    
24
/* is_jmp field values */
25
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29

    
30
struct TranslationBlock;
31

    
32
/* XXX: make safe guess about sizes */
33
#define MAX_OP_PER_INSTR 64
34
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35
#define MAX_OPC_PARAM 10
36
#define OPC_BUF_SIZE 512
37
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38

    
39
/* Maximum size a TCG op can expand to.  This is complicated because a
40
   single op may require several host instructions and regirster reloads.
41
   For now take a wild guess at 128 bytes, which should allow at least
42
   a couple of fixup instructions per argument.  */
43
#define TCG_MAX_OP_SIZE 128
44

    
45
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46

    
47
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51
extern target_ulong gen_opc_jump_pc[2];
52
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
53

    
54
typedef void (GenOpFunc)(void);
55
typedef void (GenOpFunc1)(long);
56
typedef void (GenOpFunc2)(long, long);
57
typedef void (GenOpFunc3)(long, long, long);
58

    
59
extern FILE *logfile;
60
extern int loglevel;
61

    
62
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
65
                 unsigned long searched_pc, int pc_pos, void *puc);
66

    
67
unsigned long code_gen_max_block_size(void);
68
void cpu_gen_init(void);
69
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
70
                 int *gen_code_size_ptr);
71
int cpu_restore_state(struct TranslationBlock *tb,
72
                      CPUState *env, unsigned long searched_pc,
73
                      void *puc);
74
int cpu_restore_state_copy(struct TranslationBlock *tb,
75
                           CPUState *env, unsigned long searched_pc,
76
                           void *puc);
77
void cpu_resume_from_signal(CPUState *env1, void *puc);
78
void cpu_exec_init(CPUState *env);
79
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
80
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
81
                                   int is_cpu_write_access);
82
void tb_invalidate_page_range(target_ulong start, target_ulong end);
83
void tlb_flush_page(CPUState *env, target_ulong addr);
84
void tlb_flush(CPUState *env, int flush_global);
85
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
86
                      target_phys_addr_t paddr, int prot,
87
                      int mmu_idx, int is_softmmu);
88
static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
89
                               target_phys_addr_t paddr, int prot,
90
                               int mmu_idx, int is_softmmu)
91
{
92
    if (prot & PAGE_READ)
93
        prot |= PAGE_EXEC;
94
    return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
95
}
96

    
97
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
98

    
99
#define CODE_GEN_PHYS_HASH_BITS     15
100
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
101

    
102
#define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
103

    
104
/* estimated block size for TB allocation */
105
/* XXX: use a per code average code fragment size and modulate it
106
   according to the host CPU */
107
#if defined(CONFIG_SOFTMMU)
108
#define CODE_GEN_AVG_BLOCK_SIZE 128
109
#else
110
#define CODE_GEN_AVG_BLOCK_SIZE 64
111
#endif
112

    
113
#if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
114
#define USE_DIRECT_JUMP
115
#endif
116
#if defined(__i386__) && !defined(_WIN32)
117
#define USE_DIRECT_JUMP
118
#endif
119

    
120
typedef struct TranslationBlock {
121
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
122
    target_ulong cs_base; /* CS base for this block */
123
    uint64_t flags; /* flags defining in which context the code was generated */
124
    uint16_t size;      /* size of target code for this block (1 <=
125
                           size <= TARGET_PAGE_SIZE) */
126
    uint16_t cflags;    /* compile flags */
127
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
128
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
129
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
130

    
131
    uint8_t *tc_ptr;    /* pointer to the translated code */
132
    /* next matching tb for physical address. */
133
    struct TranslationBlock *phys_hash_next;
134
    /* first and second physical page containing code. The lower bit
135
       of the pointer tells the index in page_next[] */
136
    struct TranslationBlock *page_next[2];
137
    target_ulong page_addr[2];
138

    
139
    /* the following data are used to directly call another TB from
140
       the code of this one. */
141
    uint16_t tb_next_offset[2]; /* offset of original jump target */
142
#ifdef USE_DIRECT_JUMP
143
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
144
#else
145
    unsigned long tb_next[2]; /* address of jump generated code */
146
#endif
147
    /* list of TBs jumping to this one. This is a circular list using
148
       the two least significant bits of the pointers to tell what is
149
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
150
       jmp_first */
151
    struct TranslationBlock *jmp_next[2];
152
    struct TranslationBlock *jmp_first;
153
} TranslationBlock;
154

    
155
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
156
{
157
    target_ulong tmp;
158
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
159
    return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
160
}
161

    
162
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
163
{
164
    target_ulong tmp;
165
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
166
    return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
167
            | (tmp & TB_JMP_ADDR_MASK));
168
}
169

    
170
static inline unsigned int tb_phys_hash_func(unsigned long pc)
171
{
172
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
173
}
174

    
175
TranslationBlock *tb_alloc(target_ulong pc);
176
void tb_flush(CPUState *env);
177
void tb_link_phys(TranslationBlock *tb,
178
                  target_ulong phys_pc, target_ulong phys_page2);
179

    
180
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
181
extern uint8_t *code_gen_ptr;
182
extern int code_gen_max_blocks;
183

    
184
#if defined(USE_DIRECT_JUMP)
185

    
186
#if defined(__powerpc__)
187
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
188
{
189
    uint32_t val, *ptr;
190

    
191
    /* patch the branch destination */
192
    ptr = (uint32_t *)jmp_addr;
193
    val = *ptr;
194
    val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
195
    *ptr = val;
196
    /* flush icache */
197
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
198
    asm volatile ("sync" : : : "memory");
199
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
200
    asm volatile ("sync" : : : "memory");
201
    asm volatile ("isync" : : : "memory");
202
}
203
#elif defined(__i386__) || defined(__x86_64__)
204
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
205
{
206
    /* patch the branch destination */
207
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
208
    /* no need to flush icache explicitely */
209
}
210
#elif defined(__arm__)
211
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
212
{
213
    register unsigned long _beg __asm ("a1");
214
    register unsigned long _end __asm ("a2");
215
    register unsigned long _flg __asm ("a3");
216

    
217
    /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
218
    *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
219

    
220
    /* flush icache */
221
    _beg = jmp_addr;
222
    _end = jmp_addr + 4;
223
    _flg = 0;
224
    __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
225
}
226
#endif
227

    
228
static inline void tb_set_jmp_target(TranslationBlock *tb,
229
                                     int n, unsigned long addr)
230
{
231
    unsigned long offset;
232

    
233
    offset = tb->tb_jmp_offset[n];
234
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
235
    offset = tb->tb_jmp_offset[n + 2];
236
    if (offset != 0xffff)
237
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
238
}
239

    
240
#else
241

    
242
/* set the jump target */
243
static inline void tb_set_jmp_target(TranslationBlock *tb,
244
                                     int n, unsigned long addr)
245
{
246
    tb->tb_next[n] = addr;
247
}
248

    
249
#endif
250

    
251
static inline void tb_add_jump(TranslationBlock *tb, int n,
252
                               TranslationBlock *tb_next)
253
{
254
    /* NOTE: this test is only needed for thread safety */
255
    if (!tb->jmp_next[n]) {
256
        /* patch the native jump address */
257
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
258

    
259
        /* add in TB jmp circular list */
260
        tb->jmp_next[n] = tb_next->jmp_first;
261
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
262
    }
263
}
264

    
265
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
266

    
267
#ifndef offsetof
268
#define offsetof(type, field) ((size_t) &((type *)0)->field)
269
#endif
270

    
271
#if defined(_WIN32)
272
#define ASM_DATA_SECTION ".section \".data\"\n"
273
#define ASM_PREVIOUS_SECTION ".section .text\n"
274
#elif defined(__APPLE__)
275
#define ASM_DATA_SECTION ".data\n"
276
#define ASM_PREVIOUS_SECTION ".text\n"
277
#else
278
#define ASM_DATA_SECTION ".section \".data\"\n"
279
#define ASM_PREVIOUS_SECTION ".previous\n"
280
#endif
281

    
282
#define ASM_OP_LABEL_NAME(n, opname) \
283
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
284

    
285
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
286
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
287
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
288

    
289
#if defined(__hppa__)
290

    
291
typedef int spinlock_t[4];
292

    
293
#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
294

    
295
static inline void resetlock (spinlock_t *p)
296
{
297
    (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
298
}
299

    
300
#else
301

    
302
typedef int spinlock_t;
303

    
304
#define SPIN_LOCK_UNLOCKED 0
305

    
306
static inline void resetlock (spinlock_t *p)
307
{
308
    *p = SPIN_LOCK_UNLOCKED;
309
}
310

    
311
#endif
312

    
313
#if defined(__powerpc__)
314
static inline int testandset (int *p)
315
{
316
    int ret;
317
    __asm__ __volatile__ (
318
                          "0:    lwarx %0,0,%1\n"
319
                          "      xor. %0,%3,%0\n"
320
                          "      bne 1f\n"
321
                          "      stwcx. %2,0,%1\n"
322
                          "      bne- 0b\n"
323
                          "1:    "
324
                          : "=&r" (ret)
325
                          : "r" (p), "r" (1), "r" (0)
326
                          : "cr0", "memory");
327
    return ret;
328
}
329
#elif defined(__i386__)
330
static inline int testandset (int *p)
331
{
332
    long int readval = 0;
333

    
334
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
335
                          : "+m" (*p), "+a" (readval)
336
                          : "r" (1)
337
                          : "cc");
338
    return readval;
339
}
340
#elif defined(__x86_64__)
341
static inline int testandset (int *p)
342
{
343
    long int readval = 0;
344

    
345
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
346
                          : "+m" (*p), "+a" (readval)
347
                          : "r" (1)
348
                          : "cc");
349
    return readval;
350
}
351
#elif defined(__s390__)
352
static inline int testandset (int *p)
353
{
354
    int ret;
355

    
356
    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
357
                          "   jl    0b"
358
                          : "=&d" (ret)
359
                          : "r" (1), "a" (p), "0" (*p)
360
                          : "cc", "memory" );
361
    return ret;
362
}
363
#elif defined(__alpha__)
364
static inline int testandset (int *p)
365
{
366
    int ret;
367
    unsigned long one;
368

    
369
    __asm__ __volatile__ ("0:        mov 1,%2\n"
370
                          "        ldl_l %0,%1\n"
371
                          "        stl_c %2,%1\n"
372
                          "        beq %2,1f\n"
373
                          ".subsection 2\n"
374
                          "1:        br 0b\n"
375
                          ".previous"
376
                          : "=r" (ret), "=m" (*p), "=r" (one)
377
                          : "m" (*p));
378
    return ret;
379
}
380
#elif defined(__sparc__)
381
static inline int testandset (int *p)
382
{
383
        int ret;
384

    
385
        __asm__ __volatile__("ldstub        [%1], %0"
386
                             : "=r" (ret)
387
                             : "r" (p)
388
                             : "memory");
389

    
390
        return (ret ? 1 : 0);
391
}
392
#elif defined(__arm__)
393
static inline int testandset (int *spinlock)
394
{
395
    register unsigned int ret;
396
    __asm__ __volatile__("swp %0, %1, [%2]"
397
                         : "=r"(ret)
398
                         : "0"(1), "r"(spinlock));
399

    
400
    return ret;
401
}
402
#elif defined(__mc68000)
403
static inline int testandset (int *p)
404
{
405
    char ret;
406
    __asm__ __volatile__("tas %1; sne %0"
407
                         : "=r" (ret)
408
                         : "m" (p)
409
                         : "cc","memory");
410
    return ret;
411
}
412
#elif defined(__hppa__)
413

    
414
/* Because malloc only guarantees 8-byte alignment for malloc'd data,
415
   and GCC only guarantees 8-byte alignment for stack locals, we can't
416
   be assured of 16-byte alignment for atomic lock data even if we
417
   specify "__attribute ((aligned(16)))" in the type declaration.  So,
418
   we use a struct containing an array of four ints for the atomic lock
419
   type and dynamically select the 16-byte aligned int from the array
420
   for the semaphore.  */
421
#define __PA_LDCW_ALIGNMENT 16
422
static inline void *ldcw_align (void *p) {
423
    unsigned long a = (unsigned long)p;
424
    a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
425
    return (void *)a;
426
}
427

    
428
static inline int testandset (spinlock_t *p)
429
{
430
    unsigned int ret;
431
    p = ldcw_align(p);
432
    __asm__ __volatile__("ldcw 0(%1),%0"
433
                         : "=r" (ret)
434
                         : "r" (p)
435
                         : "memory" );
436
    return !ret;
437
}
438

    
439
#elif defined(__ia64)
440

    
441
#include <ia64intrin.h>
442

    
443
static inline int testandset (int *p)
444
{
445
    return __sync_lock_test_and_set (p, 1);
446
}
447
#elif defined(__mips__)
448
static inline int testandset (int *p)
449
{
450
    int ret;
451

    
452
    __asm__ __volatile__ (
453
        "        .set push                \n"
454
        "        .set noat                \n"
455
        "        .set mips2                \n"
456
        "1:        li        $1, 1                \n"
457
        "        ll        %0, %1                \n"
458
        "        sc        $1, %1                \n"
459
        "        beqz        $1, 1b                \n"
460
        "        .set pop                "
461
        : "=r" (ret), "+R" (*p)
462
        :
463
        : "memory");
464

    
465
    return ret;
466
}
467
#else
468
#error unimplemented CPU support
469
#endif
470

    
471
#if defined(CONFIG_USER_ONLY)
472
static inline void spin_lock(spinlock_t *lock)
473
{
474
    while (testandset(lock));
475
}
476

    
477
static inline void spin_unlock(spinlock_t *lock)
478
{
479
    resetlock(lock);
480
}
481

    
482
static inline int spin_trylock(spinlock_t *lock)
483
{
484
    return !testandset(lock);
485
}
486
#else
487
static inline void spin_lock(spinlock_t *lock)
488
{
489
}
490

    
491
static inline void spin_unlock(spinlock_t *lock)
492
{
493
}
494

    
495
static inline int spin_trylock(spinlock_t *lock)
496
{
497
    return 1;
498
}
499
#endif
500

    
501
extern spinlock_t tb_lock;
502

    
503
extern int tb_invalidated_flag;
504

    
505
#if !defined(CONFIG_USER_ONLY)
506

    
507
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
508
              void *retaddr);
509

    
510
#define ACCESS_TYPE (NB_MMU_MODES + 1)
511
#define MEMSUFFIX _code
512
#define env cpu_single_env
513

    
514
#define DATA_SIZE 1
515
#include "softmmu_header.h"
516

    
517
#define DATA_SIZE 2
518
#include "softmmu_header.h"
519

    
520
#define DATA_SIZE 4
521
#include "softmmu_header.h"
522

    
523
#define DATA_SIZE 8
524
#include "softmmu_header.h"
525

    
526
#undef ACCESS_TYPE
527
#undef MEMSUFFIX
528
#undef env
529

    
530
#endif
531

    
532
#if defined(CONFIG_USER_ONLY)
533
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
534
{
535
    return addr;
536
}
537
#else
538
/* NOTE: this function can trigger an exception */
539
/* NOTE2: the returned address is not exactly the physical address: it
540
   is the offset relative to phys_ram_base */
541
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
542
{
543
    int mmu_idx, page_index, pd;
544

    
545
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
546
    mmu_idx = cpu_mmu_index(env1);
547
    if (__builtin_expect(env1->tlb_table[mmu_idx][page_index].addr_code !=
548
                         (addr & TARGET_PAGE_MASK), 0)) {
549
        ldub_code(addr);
550
    }
551
    pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
552
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
553
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
554
        do_unassigned_access(addr, 0, 1, 0);
555
#else
556
        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
557
#endif
558
    }
559
    return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
560
}
561
#endif
562

    
563
#ifdef USE_KQEMU
564
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
565

    
566
int kqemu_init(CPUState *env);
567
int kqemu_cpu_exec(CPUState *env);
568
void kqemu_flush_page(CPUState *env, target_ulong addr);
569
void kqemu_flush(CPUState *env, int global);
570
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
571
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
572
void kqemu_cpu_interrupt(CPUState *env);
573
void kqemu_record_dump(void);
574

    
575
static inline int kqemu_is_ok(CPUState *env)
576
{
577
    return(env->kqemu_enabled &&
578
           (env->cr[0] & CR0_PE_MASK) &&
579
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
580
           (env->eflags & IF_MASK) &&
581
           !(env->eflags & VM_MASK) &&
582
           (env->kqemu_enabled == 2 ||
583
            ((env->hflags & HF_CPL_MASK) == 3 &&
584
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
585
}
586

    
587
#endif