Statistics
| Branch: | Revision:

root / vl.c @ a412ac57

History | View | Annotate | Download (78 kB)

1
/*
2
 * QEMU PC System Emulator
3
 * 
4
 * Copyright (c) 2003 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <string.h>
28
#include <getopt.h>
29
#include <inttypes.h>
30
#include <unistd.h>
31
#include <sys/mman.h>
32
#include <fcntl.h>
33
#include <signal.h>
34
#include <time.h>
35
#include <sys/time.h>
36
#include <malloc.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <errno.h>
40
#include <sys/wait.h>
41

    
42
#include <sys/ioctl.h>
43
#include <sys/socket.h>
44
#include <linux/if.h>
45
#include <linux/if_tun.h>
46

    
47
#include "cpu-i386.h"
48
#include "disas.h"
49
#include "thunk.h"
50

    
51
#include "vl.h"
52

    
53
#define DEBUG_LOGFILE "/tmp/vl.log"
54
#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
55

    
56
//#define DEBUG_UNUSED_IOPORT
57
//#define DEBUG_IRQ_LATENCY
58

    
59
#define PHYS_RAM_BASE     0xac000000
60
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
61

    
62
#define KERNEL_LOAD_ADDR   0x00100000
63
#define INITRD_LOAD_ADDR   0x00400000
64
#define KERNEL_PARAMS_ADDR 0x00090000
65

    
66
#define MAX_DISKS 2
67

    
68
/* from plex86 (BSD license) */
69
struct  __attribute__ ((packed)) linux_params {
70
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
71
  // I just padded out the VESA parts, rather than define them.
72

    
73
  /* 0x000 */ uint8_t   orig_x;
74
  /* 0x001 */ uint8_t   orig_y;
75
  /* 0x002 */ uint16_t  ext_mem_k;
76
  /* 0x004 */ uint16_t  orig_video_page;
77
  /* 0x006 */ uint8_t   orig_video_mode;
78
  /* 0x007 */ uint8_t   orig_video_cols;
79
  /* 0x008 */ uint16_t  unused1;
80
  /* 0x00a */ uint16_t  orig_video_ega_bx;
81
  /* 0x00c */ uint16_t  unused2;
82
  /* 0x00e */ uint8_t   orig_video_lines;
83
  /* 0x00f */ uint8_t   orig_video_isVGA;
84
  /* 0x010 */ uint16_t  orig_video_points;
85
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
86
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
87
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
88
                                 // is calculated as 0x90000 + cl_offset, bu
89
                                 // only if cl_magic == 0xA33F.
90
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.
91

    
92
  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
93
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];
94

    
95
  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
96
  // Might be truncated?
97
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
98
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46
99

    
100
  // System description table truncated to 16 bytes
101
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
102
  /* 0x0a0 */ uint16_t  sys_description_len;
103
  /* 0x0a2 */ uint8_t   sys_description_table[14];
104
                        // [0] machine id
105
                        // [1] machine submodel id
106
                        // [2] BIOS revision
107
                        // [3] bit1: MCA bus
108

    
109
  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
110
  /* 0x1e0 */ uint32_t  alt_mem_k;
111
  /* 0x1e4 */ uint8_t   pad4[4];
112
  /* 0x1e8 */ uint8_t   e820map_entries;
113
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
114
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
115
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
116
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
117
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
118
                                // (b)zImage-file (in 16 byte units, rounded up)
119
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
120
  /* 0x1f8 */ uint16_t  ramdisk_flags;
121
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
122
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
123
  /* 0x1fe */ uint8_t   pad6[1];
124
  /* 0x1ff */ uint8_t   aux_device_info;
125
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
126
                                  // aka "reserved" field.
127
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
128
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
129
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
130
                                        // boot loaders, look there.
131
  /* 0x210 */ uint8_t   loader_type;
132
                        // 0 for old one.
133
                        // else 0xTV:
134
                        //   T=0: LILO
135
                        //   T=1: Loadlin
136
                        //   T=2: bootsect-loader
137
                        //   T=3: SYSLINUX
138
                        //   T=4: ETHERBOOT
139
                        //   V=version
140
  /* 0x211 */ uint8_t   loadflags;
141
                        // bit0 = 1: kernel is loaded high (bzImage)
142
                        // bit7 = 1: Heap and pointer (see below) set by boot
143
                        //   loader.
144
  /* 0x212 */ uint16_t  setup_S_temp1;
145
  /* 0x214 */ uint32_t  kernel_start;
146
  /* 0x218 */ uint32_t  initrd_start;
147
  /* 0x21c */ uint32_t  initrd_size;
148
  /* 0x220 */ uint8_t   setup_S_temp2[4];
149
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
150
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];
151

    
152
  /* 0x2d0 : Int 15, ax=e820 memory map. */
153
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
154
#define E820MAX  32
155
#define E820_RAM  1
156
#define E820_RESERVED 2
157
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
158
#define E820_NVS  4
159
  struct {
160
    uint64_t addr;
161
    uint64_t size;
162
    uint32_t type;
163
    } e820map[E820MAX];
164

    
165
  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];
166

    
167
  // BIOS Enhanced Disk Drive Services.
168
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
169
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
170
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];
171

    
172
  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
173
  /* 0x800 */ uint8_t   commandline[0x800];
174

    
175
  /* 0x1000 */
176
  uint64_t gdt_table[256];
177
  uint64_t idt_table[48];
178
};
179

    
180
#define KERNEL_CS     0x10
181
#define KERNEL_DS     0x18
182

    
183
typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
184
typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
185

    
186
#define MAX_IOPORTS 4096
187

    
188
char phys_ram_file[1024];
189
CPUX86State *global_env;
190
CPUX86State *cpu_single_env;
191
FILE *logfile = NULL;
192
int loglevel;
193
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
194
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
195
BlockDriverState *bs_table[MAX_DISKS];
196

    
197
/***********************************************************/
198
/* x86 io ports */
199

    
200
uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
201
{
202
#ifdef DEBUG_UNUSED_IOPORT
203
    fprintf(stderr, "inb: port=0x%04x\n", address);
204
#endif
205
    return 0xff;
206
}
207

    
208
void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
209
{
210
#ifdef DEBUG_UNUSED_IOPORT
211
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
212
#endif
213
}
214

    
215
/* default is to make two byte accesses */
216
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
217
{
218
    uint32_t data;
219
    data = ioport_read_table[0][address](env, address);
220
    data |= ioport_read_table[0][address + 1](env, address + 1) << 8;
221
    return data;
222
}
223

    
224
void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
225
{
226
    ioport_write_table[0][address](env, address, data & 0xff);
227
    ioport_write_table[0][address + 1](env, address + 1, (data >> 8) & 0xff);
228
}
229

    
230
uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
231
{
232
#ifdef DEBUG_UNUSED_IOPORT
233
    fprintf(stderr, "inl: port=0x%04x\n", address);
234
#endif
235
    return 0xffffffff;
236
}
237

    
238
void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
239
{
240
#ifdef DEBUG_UNUSED_IOPORT
241
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
242
#endif
243
}
244

    
245
void init_ioports(void)
246
{
247
    int i;
248

    
249
    for(i = 0; i < MAX_IOPORTS; i++) {
250
        ioport_read_table[0][i] = default_ioport_readb;
251
        ioport_write_table[0][i] = default_ioport_writeb;
252
        ioport_read_table[1][i] = default_ioport_readw;
253
        ioport_write_table[1][i] = default_ioport_writew;
254
        ioport_read_table[2][i] = default_ioport_readl;
255
        ioport_write_table[2][i] = default_ioport_writel;
256
    }
257
}
258

    
259
/* size is the word size in byte */
260
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
261
{
262
    int i, bsize;
263

    
264
    if (size == 1)
265
        bsize = 0;
266
    else if (size == 2)
267
        bsize = 1;
268
    else if (size == 4)
269
        bsize = 2;
270
    else
271
        return -1;
272
    for(i = start; i < start + length; i += size)
273
        ioport_read_table[bsize][i] = func;
274
    return 0;
275
}
276

    
277
/* size is the word size in byte */
278
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
279
{
280
    int i, bsize;
281

    
282
    if (size == 1)
283
        bsize = 0;
284
    else if (size == 2)
285
        bsize = 1;
286
    else if (size == 4)
287
        bsize = 2;
288
    else
289
        return -1;
290
    for(i = start; i < start + length; i += size)
291
        ioport_write_table[bsize][i] = func;
292
    return 0;
293
}
294

    
295
void pstrcpy(char *buf, int buf_size, const char *str)
296
{
297
    int c;
298
    char *q = buf;
299

    
300
    if (buf_size <= 0)
301
        return;
302

    
303
    for(;;) {
304
        c = *str++;
305
        if (c == 0 || q >= buf + buf_size - 1)
306
            break;
307
        *q++ = c;
308
    }
309
    *q = '\0';
310
}
311

    
312
/* strcat and truncate. */
313
char *pstrcat(char *buf, int buf_size, const char *s)
314
{
315
    int len;
316
    len = strlen(buf);
317
    if (len < buf_size) 
318
        pstrcpy(buf + len, buf_size - len, s);
319
    return buf;
320
}
321

    
322
int load_kernel(const char *filename, uint8_t *addr)
323
{
324
    int fd, size, setup_sects;
325
    uint8_t bootsect[512];
326

    
327
    fd = open(filename, O_RDONLY);
328
    if (fd < 0)
329
        return -1;
330
    if (read(fd, bootsect, 512) != 512)
331
        goto fail;
332
    setup_sects = bootsect[0x1F1];
333
    if (!setup_sects)
334
        setup_sects = 4;
335
    /* skip 16 bit setup code */
336
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
337
    size = read(fd, addr, 16 * 1024 * 1024);
338
    if (size < 0)
339
        goto fail;
340
    close(fd);
341
    return size;
342
 fail:
343
    close(fd);
344
    return -1;
345
}
346

    
347
/* return the size or -1 if error */
348
int load_image(const char *filename, uint8_t *addr)
349
{
350
    int fd, size;
351
    fd = open(filename, O_RDONLY);
352
    if (fd < 0)
353
        return -1;
354
    size = lseek(fd, 0, SEEK_END);
355
    lseek(fd, 0, SEEK_SET);
356
    if (read(fd, addr, size) != size) {
357
        close(fd);
358
        return -1;
359
    }
360
    close(fd);
361
    return size;
362
}
363

    
364
void cpu_x86_outb(CPUX86State *env, int addr, int val)
365
{
366
    ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
367
}
368

    
369
void cpu_x86_outw(CPUX86State *env, int addr, int val)
370
{
371
    ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
372
}
373

    
374
void cpu_x86_outl(CPUX86State *env, int addr, int val)
375
{
376
    ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
377
}
378

    
379
int cpu_x86_inb(CPUX86State *env, int addr)
380
{
381
    return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
382
}
383

    
384
int cpu_x86_inw(CPUX86State *env, int addr)
385
{
386
    return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
387
}
388

    
389
int cpu_x86_inl(CPUX86State *env, int addr)
390
{
391
    return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
392
}
393

    
394
/***********************************************************/
395
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
396
{
397
}
398

    
399
void hw_error(const char *fmt, ...)
400
{
401
    va_list ap;
402

    
403
    va_start(ap, fmt);
404
    fprintf(stderr, "qemu: hardware error: ");
405
    vfprintf(stderr, fmt, ap);
406
    fprintf(stderr, "\n");
407
#ifdef TARGET_I386
408
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
409
#endif
410
    va_end(ap);
411
    abort();
412
}
413

    
414
/***********************************************************/
415
/* vga emulation */
416
static uint8_t vga_index;
417
static uint8_t vga_regs[256];
418
static int last_cursor_pos;
419

    
420
void update_console_messages(void)
421
{
422
    int c, i, cursor_pos, eol;
423

    
424
    cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
425
    eol = 0;
426
    for(i = last_cursor_pos; i < cursor_pos; i++) {
427
        c = phys_ram_base[0xb8000 + (i) * 2];
428
        if (c >= ' ') {
429
            putchar(c);
430
            eol = 0;
431
        } else {
432
            if (!eol)
433
                putchar('\n');
434
            eol = 1;
435
        }
436
    }
437
    fflush(stdout);
438
    last_cursor_pos = cursor_pos;
439
}
440

    
441
/* just to see first Linux console messages, we intercept cursor position */
442
void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
443
{
444
    switch(addr) {
445
    case 0x3d4:
446
        vga_index = data;
447
        break;
448
    case 0x3d5:
449
        vga_regs[vga_index] = data;
450
        if (vga_index == 0x0f)
451
            update_console_messages();
452
        break;
453
    }
454
            
455
}
456

    
457
/***********************************************************/
458
/* cmos emulation */
459

    
460
#define RTC_SECONDS             0
461
#define RTC_SECONDS_ALARM       1
462
#define RTC_MINUTES             2
463
#define RTC_MINUTES_ALARM       3
464
#define RTC_HOURS               4
465
#define RTC_HOURS_ALARM         5
466
#define RTC_ALARM_DONT_CARE    0xC0
467

    
468
#define RTC_DAY_OF_WEEK         6
469
#define RTC_DAY_OF_MONTH        7
470
#define RTC_MONTH               8
471
#define RTC_YEAR                9
472

    
473
#define RTC_REG_A               10
474
#define RTC_REG_B               11
475
#define RTC_REG_C               12
476
#define RTC_REG_D               13
477

    
478
/* PC cmos mappings */
479
#define REG_EQUIPMENT_BYTE          0x14
480

    
481
uint8_t cmos_data[128];
482
uint8_t cmos_index;
483

    
484
void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
485
{
486
    if (addr == 0x70) {
487
        cmos_index = data & 0x7f;
488
    }
489
}
490

    
491
uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
492
{
493
    int ret;
494

    
495
    if (addr == 0x70) {
496
        return 0xff;
497
    } else {
498
        /* toggle update-in-progress bit for Linux (same hack as
499
           plex86) */
500
        ret = cmos_data[cmos_index];
501
        if (cmos_index == RTC_REG_A)
502
            cmos_data[RTC_REG_A] ^= 0x80; 
503
        else if (cmos_index == RTC_REG_C)
504
            cmos_data[RTC_REG_C] = 0x00; 
505
        return ret;
506
    }
507
}
508

    
509

    
510
static inline int to_bcd(int a)
511
{
512
    return ((a / 10) << 4) | (a % 10);
513
}
514

    
515
void cmos_init(void)
516
{
517
    struct tm *tm;
518
    time_t ti;
519

    
520
    ti = time(NULL);
521
    tm = gmtime(&ti);
522
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
523
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
524
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
525
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
526
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
527
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
528
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
529

    
530
    cmos_data[RTC_REG_A] = 0x26;
531
    cmos_data[RTC_REG_B] = 0x02;
532
    cmos_data[RTC_REG_C] = 0x00;
533
    cmos_data[RTC_REG_D] = 0x80;
534

    
535
    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
536

    
537
    register_ioport_write(0x70, 2, cmos_ioport_write, 1);
538
    register_ioport_read(0x70, 2, cmos_ioport_read, 1);
539
}
540

    
541
/***********************************************************/
542
/* 8259 pic emulation */
543

    
544
//#define DEBUG_PIC
545

    
546
typedef struct PicState {
547
    uint8_t last_irr; /* edge detection */
548
    uint8_t irr; /* interrupt request register */
549
    uint8_t imr; /* interrupt mask register */
550
    uint8_t isr; /* interrupt service register */
551
    uint8_t priority_add; /* used to compute irq priority */
552
    uint8_t irq_base;
553
    uint8_t read_reg_select;
554
    uint8_t special_mask;
555
    uint8_t init_state;
556
    uint8_t auto_eoi;
557
    uint8_t rotate_on_autoeoi;
558
    uint8_t init4; /* true if 4 byte init */
559
} PicState;
560

    
561
/* 0 is master pic, 1 is slave pic */
562
PicState pics[2];
563
int pic_irq_requested;
564

    
565
/* set irq level. If an edge is detected, then the IRR is set to 1 */
566
static inline void pic_set_irq1(PicState *s, int irq, int level)
567
{
568
    int mask;
569
    mask = 1 << irq;
570
    if (level) {
571
        if ((s->last_irr & mask) == 0)
572
            s->irr |= mask;
573
        s->last_irr |= mask;
574
    } else {
575
        s->last_irr &= ~mask;
576
    }
577
}
578

    
579
static inline int get_priority(PicState *s, int mask)
580
{
581
    int priority;
582
    if (mask == 0)
583
        return -1;
584
    priority = 7;
585
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
586
        priority--;
587
    return priority;
588
}
589

    
590
/* return the pic wanted interrupt. return -1 if none */
591
static int pic_get_irq(PicState *s)
592
{
593
    int mask, cur_priority, priority;
594

    
595
    mask = s->irr & ~s->imr;
596
    priority = get_priority(s, mask);
597
    if (priority < 0)
598
        return -1;
599
    /* compute current priority */
600
    cur_priority = get_priority(s, s->isr);
601
    if (priority > cur_priority) {
602
        /* higher priority found: an irq should be generated */
603
        return priority;
604
    } else {
605
        return -1;
606
    }
607
}
608

    
609
/* raise irq to CPU if necessary. must be called every time the active
610
   irq may change */
611
static void pic_update_irq(void)
612
{
613
    int irq2, irq;
614

    
615
    /* first look at slave pic */
616
    irq2 = pic_get_irq(&pics[1]);
617
    if (irq2 >= 0) {
618
        /* if irq request by slave pic, signal master PIC */
619
        pic_set_irq1(&pics[0], 2, 1);
620
        pic_set_irq1(&pics[0], 2, 0);
621
    }
622
    /* look at requested irq */
623
    irq = pic_get_irq(&pics[0]);
624
    if (irq >= 0) {
625
        if (irq == 2) {
626
            /* from slave pic */
627
            pic_irq_requested = 8 + irq2;
628
        } else {
629
            /* from master pic */
630
            pic_irq_requested = irq;
631
        }
632
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
633
    }
634
}
635

    
636
#ifdef DEBUG_IRQ_LATENCY
637
int64_t irq_time[16];
638
int64_t cpu_get_ticks(void);
639
#endif
640
#ifdef DEBUG_PIC
641
int irq_level[16];
642
#endif
643

    
644
void pic_set_irq(int irq, int level)
645
{
646
#ifdef DEBUG_PIC
647
    if (level != irq_level[irq]) {
648
        printf("pic_set_irq: irq=%d level=%d\n", irq, level);
649
        irq_level[irq] = level;
650
    }
651
#endif
652
#ifdef DEBUG_IRQ_LATENCY
653
    if (level) {
654
        irq_time[irq] = cpu_get_ticks();
655
    }
656
#endif
657
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
658
    pic_update_irq();
659
}
660

    
661
int cpu_x86_get_pic_interrupt(CPUX86State *env)
662
{
663
    int irq, irq2, intno;
664

    
665
    /* signal the pic that the irq was acked by the CPU */
666
    irq = pic_irq_requested;
667
#ifdef DEBUG_IRQ_LATENCY
668
    printf("IRQ%d latency=%Ld\n", irq, cpu_get_ticks() - irq_time[irq]);
669
#endif
670
#ifdef DEBUG_PIC
671
    printf("pic_interrupt: irq=%d\n", irq);
672
#endif
673

    
674
    if (irq >= 8) {
675
        irq2 = irq & 7;
676
        pics[1].isr |= (1 << irq2);
677
        pics[1].irr &= ~(1 << irq2);
678
        irq = 2;
679
        intno = pics[1].irq_base + irq2;
680
    } else {
681
        intno = pics[0].irq_base + irq;
682
    }
683
    pics[0].isr |= (1 << irq);
684
    pics[0].irr &= ~(1 << irq);
685
    return intno;
686
}
687

    
688
void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
689
{
690
    PicState *s;
691
    int priority;
692

    
693
#ifdef DEBUG_PIC
694
    printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
695
#endif
696
    s = &pics[addr >> 7];
697
    addr &= 1;
698
    if (addr == 0) {
699
        if (val & 0x10) {
700
            /* init */
701
            memset(s, 0, sizeof(PicState));
702
            s->init_state = 1;
703
            s->init4 = val & 1;
704
            if (val & 0x02)
705
                hw_error("single mode not supported");
706
            if (val & 0x08)
707
                hw_error("level sensitive irq not supported");
708
        } else if (val & 0x08) {
709
            if (val & 0x02)
710
                s->read_reg_select = val & 1;
711
            if (val & 0x40)
712
                s->special_mask = (val >> 5) & 1;
713
        } else {
714
            switch(val) {
715
            case 0x00:
716
            case 0x80:
717
                s->rotate_on_autoeoi = val >> 7;
718
                break;
719
            case 0x20: /* end of interrupt */
720
            case 0xa0:
721
                priority = get_priority(s, s->isr);
722
                if (priority >= 0) {
723
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
724
                }
725
                if (val == 0xa0)
726
                    s->priority_add = (s->priority_add + 1) & 7;
727
                break;
728
            case 0x60 ... 0x67:
729
                priority = val & 7;
730
                s->isr &= ~(1 << priority);
731
                break;
732
            case 0xc0 ... 0xc7:
733
                s->priority_add = (val + 1) & 7;
734
                break;
735
            case 0xe0 ... 0xe7:
736
                priority = val & 7;
737
                s->isr &= ~(1 << priority);
738
                s->priority_add = (priority + 1) & 7;
739
                break;
740
            }
741
        }
742
    } else {
743
        switch(s->init_state) {
744
        case 0:
745
            /* normal mode */
746
            s->imr = val;
747
            pic_update_irq();
748
            break;
749
        case 1:
750
            s->irq_base = val & 0xf8;
751
            s->init_state = 2;
752
            break;
753
        case 2:
754
            if (s->init4) {
755
                s->init_state = 3;
756
            } else {
757
                s->init_state = 0;
758
            }
759
            break;
760
        case 3:
761
            s->auto_eoi = (val >> 1) & 1;
762
            s->init_state = 0;
763
            break;
764
        }
765
    }
766
}
767

    
768
uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
769
{
770
    PicState *s;
771
    unsigned int addr;
772
    int ret;
773

    
774
    addr = addr1;
775
    s = &pics[addr >> 7];
776
    addr &= 1;
777
    if (addr == 0) {
778
        if (s->read_reg_select)
779
            ret = s->isr;
780
        else
781
            ret = s->irr;
782
    } else {
783
        ret = s->imr;
784
    }
785
#ifdef DEBUG_PIC
786
    printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
787
#endif
788
    return ret;
789
}
790

    
791
void pic_init(void)
792
{
793
    register_ioport_write(0x20, 2, pic_ioport_write, 1);
794
    register_ioport_read(0x20, 2, pic_ioport_read, 1);
795
    register_ioport_write(0xa0, 2, pic_ioport_write, 1);
796
    register_ioport_read(0xa0, 2, pic_ioport_read, 1);
797
}
798

    
799
/***********************************************************/
800
/* 8253 PIT emulation */
801

    
802
#define PIT_FREQ 1193182
803

    
804
#define RW_STATE_LSB 0
805
#define RW_STATE_MSB 1
806
#define RW_STATE_WORD0 2
807
#define RW_STATE_WORD1 3
808
#define RW_STATE_LATCHED_WORD0 4
809
#define RW_STATE_LATCHED_WORD1 5
810

    
811
typedef struct PITChannelState {
812
    int count; /* can be 65536 */
813
    uint16_t latched_count;
814
    uint8_t rw_state;
815
    uint8_t mode;
816
    uint8_t bcd; /* not supported */
817
    uint8_t gate; /* timer start */
818
    int64_t count_load_time;
819
    int64_t count_last_edge_check_time;
820
} PITChannelState;
821

    
822
PITChannelState pit_channels[3];
823
int speaker_data_on;
824
int pit_min_timer_count = 0;
825

    
826
int64_t ticks_per_sec;
827

    
828
int64_t get_clock(void)
829
{
830
    struct timeval tv;
831
    gettimeofday(&tv, NULL);
832
    return tv.tv_sec * 1000000LL + tv.tv_usec;
833
}
834

    
835
int64_t cpu_get_ticks(void)
836
{
837
    int64_t val;
838
    asm("rdtsc" : "=A" (val));
839
    return val;
840
}
841

    
842
void cpu_calibrate_ticks(void)
843
{
844
    int64_t usec, ticks;
845

    
846
    usec = get_clock();
847
    ticks = cpu_get_ticks();
848
    usleep(50 * 1000);
849
    usec = get_clock() - usec;
850
    ticks = cpu_get_ticks() - ticks;
851
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
852
}
853

    
854
/* compute with 96 bit intermediate result: (a*b)/c */
855
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
856
{
857
    union {
858
        uint64_t ll;
859
        struct {
860
#ifdef WORDS_BIGENDIAN
861
            uint32_t high, low;
862
#else
863
            uint32_t low, high;
864
#endif            
865
        } l;
866
    } u, res;
867
    uint64_t rl, rh;
868

    
869
    u.ll = a;
870
    rl = (uint64_t)u.l.low * (uint64_t)b;
871
    rh = (uint64_t)u.l.high * (uint64_t)b;
872
    rh += (rl >> 32);
873
    res.l.high = rh / c;
874
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
875
    return res.ll;
876
}
877

    
878
static int pit_get_count(PITChannelState *s)
879
{
880
    uint64_t d;
881
    int counter;
882

    
883
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
884
    switch(s->mode) {
885
    case 0:
886
    case 1:
887
    case 4:
888
    case 5:
889
        counter = (s->count - d) & 0xffff;
890
        break;
891
    default:
892
        counter = s->count - (d % s->count);
893
        break;
894
    }
895
    return counter;
896
}
897

    
898
/* get pit output bit */
899
static int pit_get_out(PITChannelState *s)
900
{
901
    uint64_t d;
902
    int out;
903

    
904
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
905
    switch(s->mode) {
906
    default:
907
    case 0:
908
        out = (d >= s->count);
909
        break;
910
    case 1:
911
        out = (d < s->count);
912
        break;
913
    case 2:
914
        if ((d % s->count) == 0 && d != 0)
915
            out = 1;
916
        else
917
            out = 0;
918
        break;
919
    case 3:
920
        out = (d % s->count) < (s->count >> 1);
921
        break;
922
    case 4:
923
    case 5:
924
        out = (d == s->count);
925
        break;
926
    }
927
    return out;
928
}
929

    
930
/* get the number of 0 to 1 transitions we had since we call this
931
   function */
932
/* XXX: maybe better to use ticks precision to avoid getting edges
933
   twice if checks are done at very small intervals */
934
static int pit_get_out_edges(PITChannelState *s)
935
{
936
    uint64_t d1, d2;
937
    int64_t ticks;
938
    int ret, v;
939

    
940
    ticks = cpu_get_ticks();
941
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
942
                 PIT_FREQ, ticks_per_sec);
943
    d2 = muldiv64(ticks - s->count_load_time, 
944
                  PIT_FREQ, ticks_per_sec);
945
    s->count_last_edge_check_time = ticks;
946
    switch(s->mode) {
947
    default:
948
    case 0:
949
        if (d1 < s->count && d2 >= s->count)
950
            ret = 1;
951
        else
952
            ret = 0;
953
        break;
954
    case 1:
955
        ret = 0;
956
        break;
957
    case 2:
958
        d1 /= s->count;
959
        d2 /= s->count;
960
        ret = d2 - d1;
961
        break;
962
    case 3:
963
        v = s->count - (s->count >> 1);
964
        d1 = (d1 + v) / s->count;
965
        d2 = (d2 + v) / s->count;
966
        ret = d2 - d1;
967
        break;
968
    case 4:
969
    case 5:
970
        if (d1 < s->count && d2 >= s->count)
971
            ret = 1;
972
        else
973
            ret = 0;
974
        break;
975
    }
976
    return ret;
977
}
978

    
979
static inline void pit_load_count(PITChannelState *s, int val)
980
{
981
    if (val == 0)
982
        val = 0x10000;
983
    s->count_load_time = cpu_get_ticks();
984
    s->count_last_edge_check_time = s->count_load_time;
985
    s->count = val;
986
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
987
        fprintf(stderr, 
988
                "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
989
                PIT_FREQ / pit_min_timer_count);
990
    }
991
}
992

    
993
void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
994
{
995
    int channel, access;
996
    PITChannelState *s;
997

    
998
    addr &= 3;
999
    if (addr == 3) {
1000
        channel = val >> 6;
1001
        if (channel == 3)
1002
            return;
1003
        s = &pit_channels[channel];
1004
        access = (val >> 4) & 3;
1005
        switch(access) {
1006
        case 0:
1007
            s->latched_count = pit_get_count(s);
1008
            s->rw_state = RW_STATE_LATCHED_WORD0;
1009
            break;
1010
        default:
1011
            s->mode = (val >> 1) & 7;
1012
            s->bcd = val & 1;
1013
            s->rw_state = access - 1 +  RW_STATE_LSB;
1014
            break;
1015
        }
1016
    } else {
1017
        s = &pit_channels[addr];
1018
        switch(s->rw_state) {
1019
        case RW_STATE_LSB:
1020
            pit_load_count(s, val);
1021
            break;
1022
        case RW_STATE_MSB:
1023
            pit_load_count(s, val << 8);
1024
            break;
1025
        case RW_STATE_WORD0:
1026
        case RW_STATE_WORD1:
1027
            if (s->rw_state & 1) {
1028
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1029
            } else {
1030
                s->latched_count = val;
1031
            }
1032
            s->rw_state ^= 1;
1033
            break;
1034
        }
1035
    }
1036
}
1037

    
1038
uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1039
{
1040
    int ret, count;
1041
    PITChannelState *s;
1042
    
1043
    addr &= 3;
1044
    s = &pit_channels[addr];
1045
    switch(s->rw_state) {
1046
    case RW_STATE_LSB:
1047
    case RW_STATE_MSB:
1048
    case RW_STATE_WORD0:
1049
    case RW_STATE_WORD1:
1050
        count = pit_get_count(s);
1051
        if (s->rw_state & 1)
1052
            ret = (count >> 8) & 0xff;
1053
        else
1054
            ret = count & 0xff;
1055
        if (s->rw_state & 2)
1056
            s->rw_state ^= 1;
1057
        break;
1058
    default:
1059
    case RW_STATE_LATCHED_WORD0:
1060
    case RW_STATE_LATCHED_WORD1:
1061
        if (s->rw_state & 1)
1062
            ret = s->latched_count >> 8;
1063
        else
1064
            ret = s->latched_count & 0xff;
1065
        s->rw_state ^= 1;
1066
        break;
1067
    }
1068
    return ret;
1069
}
1070

    
1071
void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1072
{
1073
    speaker_data_on = (val >> 1) & 1;
1074
    pit_channels[2].gate = val & 1;
1075
}
1076

    
1077
uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1078
{
1079
    int out;
1080
    out = pit_get_out(&pit_channels[2]);
1081
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
1082
}
1083

    
1084
void pit_init(void)
1085
{
1086
    PITChannelState *s;
1087
    int i;
1088

    
1089
    cpu_calibrate_ticks();
1090

    
1091
    for(i = 0;i < 3; i++) {
1092
        s = &pit_channels[i];
1093
        s->mode = 3;
1094
        s->gate = (i != 2);
1095
        pit_load_count(s, 0);
1096
    }
1097

    
1098
    register_ioport_write(0x40, 4, pit_ioport_write, 1);
1099
    register_ioport_read(0x40, 3, pit_ioport_read, 1);
1100

    
1101
    register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1102
    register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1103
}
1104

    
1105
/***********************************************************/
1106
/* serial port emulation */
1107

    
1108
#define UART_IRQ        4
1109

    
1110
#define UART_LCR_DLAB        0x80        /* Divisor latch access bit */
1111

    
1112
#define UART_IER_MSI        0x08        /* Enable Modem status interrupt */
1113
#define UART_IER_RLSI        0x04        /* Enable receiver line status interrupt */
1114
#define UART_IER_THRI        0x02        /* Enable Transmitter holding register int. */
1115
#define UART_IER_RDI        0x01        /* Enable receiver data interrupt */
1116

    
1117
#define UART_IIR_NO_INT        0x01        /* No interrupts pending */
1118
#define UART_IIR_ID        0x06        /* Mask for the interrupt ID */
1119

    
1120
#define UART_IIR_MSI        0x00        /* Modem status interrupt */
1121
#define UART_IIR_THRI        0x02        /* Transmitter holding register empty */
1122
#define UART_IIR_RDI        0x04        /* Receiver data interrupt */
1123
#define UART_IIR_RLSI        0x06        /* Receiver line status interrupt */
1124

    
1125
#define UART_LSR_TEMT        0x40        /* Transmitter empty */
1126
#define UART_LSR_THRE        0x20        /* Transmit-hold-register empty */
1127
#define UART_LSR_BI        0x10        /* Break interrupt indicator */
1128
#define UART_LSR_FE        0x08        /* Frame error indicator */
1129
#define UART_LSR_PE        0x04        /* Parity error indicator */
1130
#define UART_LSR_OE        0x02        /* Overrun error indicator */
1131
#define UART_LSR_DR        0x01        /* Receiver data ready */
1132

    
1133
typedef struct SerialState {
1134
    uint8_t divider;
1135
    uint8_t rbr; /* receive register */
1136
    uint8_t ier;
1137
    uint8_t iir; /* read only */
1138
    uint8_t lcr;
1139
    uint8_t mcr;
1140
    uint8_t lsr; /* read only */
1141
    uint8_t msr;
1142
    uint8_t scr;
1143
} SerialState;
1144

    
1145
SerialState serial_ports[1];
1146

    
1147
void serial_update_irq(void)
1148
{
1149
    SerialState *s = &serial_ports[0];
1150

    
1151
    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1152
        s->iir = UART_IIR_RDI;
1153
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1154
        s->iir = UART_IIR_THRI;
1155
    } else {
1156
        s->iir = UART_IIR_NO_INT;
1157
    }
1158
    if (s->iir != UART_IIR_NO_INT) {
1159
        pic_set_irq(UART_IRQ, 1);
1160
    } else {
1161
        pic_set_irq(UART_IRQ, 0);
1162
    }
1163
}
1164

    
1165
void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1166
{
1167
    SerialState *s = &serial_ports[0];
1168
    unsigned char ch;
1169
    int ret;
1170
    
1171
    addr &= 7;
1172
    switch(addr) {
1173
    default:
1174
    case 0:
1175
        if (s->lcr & UART_LCR_DLAB) {
1176
            s->divider = (s->divider & 0xff00) | val;
1177
        } else {
1178
            s->lsr &= ~UART_LSR_THRE;
1179
            serial_update_irq();
1180

    
1181
            ch = val;
1182
            do {
1183
                ret = write(1, &ch, 1);
1184
            } while (ret != 1);
1185
            s->lsr |= UART_LSR_THRE;
1186
            s->lsr |= UART_LSR_TEMT;
1187
            serial_update_irq();
1188
        }
1189
        break;
1190
    case 1:
1191
        if (s->lcr & UART_LCR_DLAB) {
1192
            s->divider = (s->divider & 0x00ff) | (val << 8);
1193
        } else {
1194
            s->ier = val;
1195
            serial_update_irq();
1196
        }
1197
        break;
1198
    case 2:
1199
        break;
1200
    case 3:
1201
        s->lcr = val;
1202
        break;
1203
    case 4:
1204
        s->mcr = val;
1205
        break;
1206
    case 5:
1207
        break;
1208
    case 6:
1209
        s->msr = val;
1210
        break;
1211
    case 7:
1212
        s->scr = val;
1213
        break;
1214
    }
1215
}
1216

    
1217
uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1218
{
1219
    SerialState *s = &serial_ports[0];
1220
    uint32_t ret;
1221

    
1222
    addr &= 7;
1223
    switch(addr) {
1224
    default:
1225
    case 0:
1226
        if (s->lcr & UART_LCR_DLAB) {
1227
            ret = s->divider & 0xff; 
1228
        } else {
1229
            ret = s->rbr;
1230
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1231
            serial_update_irq();
1232
        }
1233
        break;
1234
    case 1:
1235
        if (s->lcr & UART_LCR_DLAB) {
1236
            ret = (s->divider >> 8) & 0xff;
1237
        } else {
1238
            ret = s->ier;
1239
        }
1240
        break;
1241
    case 2:
1242
        ret = s->iir;
1243
        break;
1244
    case 3:
1245
        ret = s->lcr;
1246
        break;
1247
    case 4:
1248
        ret = s->mcr;
1249
        break;
1250
    case 5:
1251
        ret = s->lsr;
1252
        break;
1253
    case 6:
1254
        ret = s->msr;
1255
        break;
1256
    case 7:
1257
        ret = s->scr;
1258
        break;
1259
    }
1260
    return ret;
1261
}
1262

    
1263
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1264
static int term_got_escape;
1265

    
1266
void term_print_help(void)
1267
{
1268
    printf("\n"
1269
           "C-a h    print this help\n"
1270
           "C-a x    exit emulatior\n"
1271
           "C-a s    save disk data back to file (if -snapshot)\n"
1272
           "C-a b    send break (magic sysrq)\n"
1273
           "C-a C-a  send C-a\n"
1274
           );
1275
}
1276

    
1277
/* called when a char is received */
1278
void serial_received_byte(SerialState *s, int ch)
1279
{
1280
    if (term_got_escape) {
1281
        term_got_escape = 0;
1282
        switch(ch) {
1283
        case 'h':
1284
            term_print_help();
1285
            break;
1286
        case 'x':
1287
            exit(0);
1288
            break;
1289
        case 's': 
1290
            {
1291
                int i;
1292
                for (i = 0; i < MAX_DISKS; i++) {
1293
                    if (bs_table[i])
1294
                        bdrv_commit(bs_table[i]);
1295
                }
1296
            }
1297
            break;
1298
        case 'b':
1299
            /* send break */
1300
            s->rbr = 0;
1301
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
1302
            serial_update_irq();
1303
            break;
1304
        case TERM_ESCAPE:
1305
            goto send_char;
1306
        }
1307
    } else if (ch == TERM_ESCAPE) {
1308
        term_got_escape = 1;
1309
    } else {
1310
    send_char:
1311
        s->rbr = ch;
1312
        s->lsr |= UART_LSR_DR;
1313
        serial_update_irq();
1314
    }
1315
}
1316

    
1317
/* init terminal so that we can grab keys */
1318
static struct termios oldtty;
1319

    
1320
static void term_exit(void)
1321
{
1322
    tcsetattr (0, TCSANOW, &oldtty);
1323
}
1324

    
1325
static void term_init(void)
1326
{
1327
    struct termios tty;
1328

    
1329
    tcgetattr (0, &tty);
1330
    oldtty = tty;
1331

    
1332
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1333
                          |INLCR|IGNCR|ICRNL|IXON);
1334
    tty.c_oflag |= OPOST;
1335
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1336
    tty.c_cflag &= ~(CSIZE|PARENB);
1337
    tty.c_cflag |= CS8;
1338
    tty.c_cc[VMIN] = 1;
1339
    tty.c_cc[VTIME] = 0;
1340
    
1341
    tcsetattr (0, TCSANOW, &tty);
1342

    
1343
    atexit(term_exit);
1344

    
1345
    fcntl(0, F_SETFL, O_NONBLOCK);
1346
}
1347

    
1348
void serial_init(void)
1349
{
1350
    SerialState *s = &serial_ports[0];
1351

    
1352
    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1353

    
1354
    register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1355
    register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1356

    
1357
    term_init();
1358
}
1359

    
1360
/***********************************************************/
1361
/* ne2000 emulation */
1362

    
1363
//#define DEBUG_NE2000
1364

    
1365
#define NE2000_IOPORT   0x300
1366
#define NE2000_IRQ      9
1367

    
1368
#define MAX_ETH_FRAME_SIZE 1514
1369

    
1370
#define E8390_CMD        0x00  /* The command register (for all pages) */
1371
/* Page 0 register offsets. */
1372
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
1373
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
1374
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
1375
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
1376
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
1377
#define EN0_TSR                0x04        /* Transmit status reg RD */
1378
#define EN0_TPSR        0x04        /* Transmit starting page WR */
1379
#define EN0_NCR                0x05        /* Number of collision reg RD */
1380
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
1381
#define EN0_FIFO        0x06        /* FIFO RD */
1382
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
1383
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
1384
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
1385
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
1386
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
1387
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
1388
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
1389
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
1390
#define EN0_RSR                0x0c        /* rx status reg RD */
1391
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
1392
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
1393
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
1394
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
1395
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
1396
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
1397
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
1398

    
1399
#define EN1_PHYS        0x11
1400
#define EN1_CURPAG      0x17
1401
#define EN1_MULT        0x18
1402

    
1403
/*  Register accessed at EN_CMD, the 8390 base addr.  */
1404
#define E8390_STOP        0x01        /* Stop and reset the chip */
1405
#define E8390_START        0x02        /* Start the chip, clear reset */
1406
#define E8390_TRANS        0x04        /* Transmit a frame */
1407
#define E8390_RREAD        0x08        /* Remote read */
1408
#define E8390_RWRITE        0x10        /* Remote write  */
1409
#define E8390_NODMA        0x20        /* Remote DMA */
1410
#define E8390_PAGE0        0x00        /* Select page chip registers */
1411
#define E8390_PAGE1        0x40        /* using the two high-order bits */
1412
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
1413

    
1414
/* Bits in EN0_ISR - Interrupt status register */
1415
#define ENISR_RX        0x01        /* Receiver, no error */
1416
#define ENISR_TX        0x02        /* Transmitter, no error */
1417
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
1418
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
1419
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
1420
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
1421
#define ENISR_RDC        0x40        /* remote dma complete */
1422
#define ENISR_RESET        0x80        /* Reset completed */
1423
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
1424

    
1425
/* Bits in received packet status byte and EN0_RSR*/
1426
#define ENRSR_RXOK        0x01        /* Received a good packet */
1427
#define ENRSR_CRC        0x02        /* CRC error */
1428
#define ENRSR_FAE        0x04        /* frame alignment error */
1429
#define ENRSR_FO        0x08        /* FIFO overrun */
1430
#define ENRSR_MPA        0x10        /* missed pkt */
1431
#define ENRSR_PHY        0x20        /* physical/multicast address */
1432
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
1433
#define ENRSR_DEF        0x80        /* deferring */
1434

    
1435
/* Transmitted packet status, EN0_TSR. */
1436
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
1437
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
1438
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
1439
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
1440
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
1441
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
1442
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
1443
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
1444

    
1445
#define NE2000_MEM_SIZE 32768
1446

    
1447
typedef struct NE2000State {
1448
    uint8_t cmd;
1449
    uint32_t start;
1450
    uint32_t stop;
1451
    uint8_t boundary;
1452
    uint8_t tsr;
1453
    uint8_t tpsr;
1454
    uint16_t tcnt;
1455
    uint16_t rcnt;
1456
    uint32_t rsar;
1457
    uint8_t isr;
1458
    uint8_t dcfg;
1459
    uint8_t imr;
1460
    uint8_t phys[6]; /* mac address */
1461
    uint8_t curpag;
1462
    uint8_t mult[8]; /* multicast mask array */
1463
    uint8_t mem[NE2000_MEM_SIZE];
1464
} NE2000State;
1465

    
1466
NE2000State ne2000_state;
1467
int net_fd = -1;
1468
char network_script[1024];
1469

    
1470
void ne2000_reset(void)
1471
{
1472
    NE2000State *s = &ne2000_state;
1473
    int i;
1474

    
1475
    s->isr = ENISR_RESET;
1476
    s->mem[0] = 0x52;
1477
    s->mem[1] = 0x54;
1478
    s->mem[2] = 0x00;
1479
    s->mem[3] = 0x12;
1480
    s->mem[4] = 0x34;
1481
    s->mem[5] = 0x56;
1482
    s->mem[14] = 0x57;
1483
    s->mem[15] = 0x57;
1484

    
1485
    /* duplicate prom data */
1486
    for(i = 15;i >= 0; i--) {
1487
        s->mem[2 * i] = s->mem[i];
1488
        s->mem[2 * i + 1] = s->mem[i];
1489
    }
1490
}
1491

    
1492
void ne2000_update_irq(NE2000State *s)
1493
{
1494
    int isr;
1495
    isr = s->isr & s->imr;
1496
    if (isr)
1497
        pic_set_irq(NE2000_IRQ, 1);
1498
    else
1499
        pic_set_irq(NE2000_IRQ, 0);
1500
}
1501

    
1502
int net_init(void)
1503
{
1504
    struct ifreq ifr;
1505
    int fd, ret, pid, status;
1506
    
1507
    fd = open("/dev/net/tun", O_RDWR);
1508
    if (fd < 0) {
1509
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1510
        return -1;
1511
    }
1512
    memset(&ifr, 0, sizeof(ifr));
1513
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1514
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1515
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1516
    if (ret != 0) {
1517
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1518
        close(fd);
1519
        return -1;
1520
    }
1521
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
1522
    fcntl(fd, F_SETFL, O_NONBLOCK);
1523
    net_fd = fd;
1524

    
1525
    /* try to launch network init script */
1526
    pid = fork();
1527
    if (pid >= 0) {
1528
        if (pid == 0) {
1529
            execl(network_script, network_script, ifr.ifr_name, NULL);
1530
            exit(1);
1531
        }
1532
        while (waitpid(pid, &status, 0) != pid);
1533
        if (!WIFEXITED(status) ||
1534
            WEXITSTATUS(status) != 0) {
1535
            fprintf(stderr, "%s: could not launch network script for '%s'\n",
1536
                    network_script, ifr.ifr_name);
1537
        }
1538
    }
1539
    return 0;
1540
}
1541

    
1542
void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1543
{
1544
#ifdef DEBUG_NE2000
1545
    printf("NE2000: sending packet size=%d\n", size);
1546
#endif
1547
    write(net_fd, buf, size);
1548
}
1549

    
1550
/* return true if the NE2000 can receive more data */
1551
int ne2000_can_receive(NE2000State *s)
1552
{
1553
    int avail, index, boundary;
1554
    
1555
    if (s->cmd & E8390_STOP)
1556
        return 0;
1557
    index = s->curpag << 8;
1558
    boundary = s->boundary << 8;
1559
    if (index < boundary)
1560
        avail = boundary - index;
1561
    else
1562
        avail = (s->stop - s->start) - (index - boundary);
1563
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
1564
        return 0;
1565
    return 1;
1566
}
1567

    
1568
void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1569
{
1570
    uint8_t *p;
1571
    int total_len, next, avail, len, index;
1572

    
1573
#if defined(DEBUG_NE2000)
1574
    printf("NE2000: received len=%d\n", size);
1575
#endif
1576

    
1577
    index = s->curpag << 8;
1578
    /* 4 bytes for header */
1579
    total_len = size + 4;
1580
    /* address for next packet (4 bytes for CRC) */
1581
    next = index + ((total_len + 4 + 255) & ~0xff);
1582
    if (next >= s->stop)
1583
        next -= (s->stop - s->start);
1584
    /* prepare packet header */
1585
    p = s->mem + index;
1586
    p[0] = ENRSR_RXOK; /* receive status */
1587
    p[1] = next >> 8;
1588
    p[2] = total_len;
1589
    p[3] = total_len >> 8;
1590
    index += 4;
1591

    
1592
    /* write packet data */
1593
    while (size > 0) {
1594
        avail = s->stop - index;
1595
        len = size;
1596
        if (len > avail)
1597
            len = avail;
1598
        memcpy(s->mem + index, buf, len);
1599
        buf += len;
1600
        index += len;
1601
        if (index == s->stop)
1602
            index = s->start;
1603
        size -= len;
1604
    }
1605
    s->curpag = next >> 8;
1606
    
1607
    /* now we can signal we have receive something */
1608
    s->isr |= ENISR_RX;
1609
    ne2000_update_irq(s);
1610
}
1611

    
1612
void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1613
{
1614
    NE2000State *s = &ne2000_state;
1615
    int offset, page;
1616

    
1617
    addr &= 0xf;
1618
#ifdef DEBUG_NE2000
1619
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1620
#endif
1621
    if (addr == E8390_CMD) {
1622
        /* control register */
1623
        s->cmd = val;
1624
        if (val & E8390_START) {
1625
            /* test specific case: zero length transfert */
1626
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1627
                s->rcnt == 0) {
1628
                s->isr |= ENISR_RDC;
1629
                ne2000_update_irq(s);
1630
            }
1631
            if (val & E8390_TRANS) {
1632
                net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1633
                /* signal end of transfert */
1634
                s->tsr = ENTSR_PTX;
1635
                s->isr |= ENISR_TX;
1636
                ne2000_update_irq(s);
1637
            }
1638
        }
1639
    } else {
1640
        page = s->cmd >> 6;
1641
        offset = addr | (page << 4);
1642
        switch(offset) {
1643
        case EN0_STARTPG:
1644
            s->start = val << 8;
1645
            break;
1646
        case EN0_STOPPG:
1647
            s->stop = val << 8;
1648
            break;
1649
        case EN0_BOUNDARY:
1650
            s->boundary = val;
1651
            break;
1652
        case EN0_IMR:
1653
            s->imr = val;
1654
            ne2000_update_irq(s);
1655
            break;
1656
        case EN0_TPSR:
1657
            s->tpsr = val;
1658
            break;
1659
        case EN0_TCNTLO:
1660
            s->tcnt = (s->tcnt & 0xff00) | val;
1661
            break;
1662
        case EN0_TCNTHI:
1663
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1664
            break;
1665
        case EN0_RSARLO:
1666
            s->rsar = (s->rsar & 0xff00) | val;
1667
            break;
1668
        case EN0_RSARHI:
1669
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
1670
            break;
1671
        case EN0_RCNTLO:
1672
            s->rcnt = (s->rcnt & 0xff00) | val;
1673
            break;
1674
        case EN0_RCNTHI:
1675
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1676
            break;
1677
        case EN0_DCFG:
1678
            s->dcfg = val;
1679
            break;
1680
        case EN0_ISR:
1681
            s->isr &= ~val;
1682
            ne2000_update_irq(s);
1683
            break;
1684
        case EN1_PHYS ... EN1_PHYS + 5:
1685
            s->phys[offset - EN1_PHYS] = val;
1686
            break;
1687
        case EN1_CURPAG:
1688
            s->curpag = val;
1689
            break;
1690
        case EN1_MULT ... EN1_MULT + 7:
1691
            s->mult[offset - EN1_MULT] = val;
1692
            break;
1693
        }
1694
    }
1695
}
1696

    
1697
uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1698
{
1699
    NE2000State *s = &ne2000_state;
1700
    int offset, page, ret;
1701

    
1702
    addr &= 0xf;
1703
    if (addr == E8390_CMD) {
1704
        ret = s->cmd;
1705
    } else {
1706
        page = s->cmd >> 6;
1707
        offset = addr | (page << 4);
1708
        switch(offset) {
1709
        case EN0_TSR:
1710
            ret = s->tsr;
1711
            break;
1712
        case EN0_BOUNDARY:
1713
            ret = s->boundary;
1714
            break;
1715
        case EN0_ISR:
1716
            ret = s->isr;
1717
            break;
1718
        case EN1_PHYS ... EN1_PHYS + 5:
1719
            ret = s->phys[offset - EN1_PHYS];
1720
            break;
1721
        case EN1_CURPAG:
1722
            ret = s->curpag;
1723
            break;
1724
        case EN1_MULT ... EN1_MULT + 7:
1725
            ret = s->mult[offset - EN1_MULT];
1726
            break;
1727
        default:
1728
            ret = 0x00;
1729
            break;
1730
        }
1731
    }
1732
#ifdef DEBUG_NE2000
1733
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1734
#endif
1735
    return ret;
1736
}
1737

    
1738
void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1739
{
1740
    NE2000State *s = &ne2000_state;
1741
    uint8_t *p;
1742

    
1743
#ifdef DEBUG_NE2000
1744
    printf("NE2000: asic write val=0x%04x\n", val);
1745
#endif
1746
    p = s->mem + s->rsar;
1747
    if (s->dcfg & 0x01) {
1748
        /* 16 bit access */
1749
        p[0] = val;
1750
        p[1] = val >> 8;
1751
        s->rsar += 2;
1752
        s->rcnt -= 2;
1753
    } else {
1754
        /* 8 bit access */
1755
        p[0] = val;
1756
        s->rsar++;
1757
        s->rcnt--;
1758
    }
1759
    /* wrap */
1760
    if (s->rsar == s->stop)
1761
        s->rsar = s->start;
1762
    if (s->rcnt == 0) {
1763
        /* signal end of transfert */
1764
        s->isr |= ENISR_RDC;
1765
        ne2000_update_irq(s);
1766
    }
1767
}
1768

    
1769
uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1770
{
1771
    NE2000State *s = &ne2000_state;
1772
    uint8_t *p;
1773
    int ret;
1774

    
1775
    p = s->mem + s->rsar;
1776
    if (s->dcfg & 0x01) {
1777
        /* 16 bit access */
1778
        ret = p[0] | (p[1] << 8);
1779
        s->rsar += 2;
1780
        s->rcnt -= 2;
1781
    } else {
1782
        /* 8 bit access */
1783
        ret = p[0];
1784
        s->rsar++;
1785
        s->rcnt--;
1786
    }
1787
    /* wrap */
1788
    if (s->rsar == s->stop)
1789
        s->rsar = s->start;
1790
    if (s->rcnt == 0) {
1791
        /* signal end of transfert */
1792
        s->isr |= ENISR_RDC;
1793
        ne2000_update_irq(s);
1794
    }
1795
#ifdef DEBUG_NE2000
1796
    printf("NE2000: asic read val=0x%04x\n", ret);
1797
#endif
1798
    return ret;
1799
}
1800

    
1801
void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1802
{
1803
    /* nothing to do (end of reset pulse) */
1804
}
1805

    
1806
uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1807
{
1808
    ne2000_reset();
1809
    return 0;
1810
}
1811

    
1812
void ne2000_init(void)
1813
{
1814
    register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1815
    register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1816

    
1817
    register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1818
    register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1819
    register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1820
    register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1821

    
1822
    register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1823
    register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1824
    ne2000_reset();
1825
}
1826

    
1827
/***********************************************************/
1828
/* ide emulation */
1829

    
1830
//#define DEBUG_IDE
1831

    
1832
/* Bits of HD_STATUS */
1833
#define ERR_STAT                0x01
1834
#define INDEX_STAT                0x02
1835
#define ECC_STAT                0x04        /* Corrected error */
1836
#define DRQ_STAT                0x08
1837
#define SEEK_STAT                0x10
1838
#define SRV_STAT                0x10
1839
#define WRERR_STAT                0x20
1840
#define READY_STAT                0x40
1841
#define BUSY_STAT                0x80
1842

    
1843
/* Bits for HD_ERROR */
1844
#define MARK_ERR                0x01        /* Bad address mark */
1845
#define TRK0_ERR                0x02        /* couldn't find track 0 */
1846
#define ABRT_ERR                0x04        /* Command aborted */
1847
#define MCR_ERR                        0x08        /* media change request */
1848
#define ID_ERR                        0x10        /* ID field not found */
1849
#define MC_ERR                        0x20        /* media changed */
1850
#define ECC_ERR                        0x40        /* Uncorrectable ECC error */
1851
#define BBD_ERR                        0x80        /* pre-EIDE meaning:  block marked bad */
1852
#define ICRC_ERR                0x80        /* new meaning:  CRC error during transfer */
1853

    
1854
/* Bits of HD_NSECTOR */
1855
#define CD                        0x01
1856
#define IO                        0x02
1857
#define REL                        0x04
1858
#define TAG_MASK                0xf8
1859

    
1860
#define IDE_CMD_RESET           0x04
1861
#define IDE_CMD_DISABLE_IRQ     0x02
1862

    
1863
/* ATA/ATAPI Commands pre T13 Spec */
1864
#define WIN_NOP                                0x00
1865
/*
1866
 *        0x01->0x02 Reserved
1867
 */
1868
#define CFA_REQ_EXT_ERROR_CODE                0x03 /* CFA Request Extended Error Code */
1869
/*
1870
 *        0x04->0x07 Reserved
1871
 */
1872
#define WIN_SRST                        0x08 /* ATAPI soft reset command */
1873
#define WIN_DEVICE_RESET                0x08
1874
/*
1875
 *        0x09->0x0F Reserved
1876
 */
1877
#define WIN_RECAL                        0x10
1878
#define WIN_RESTORE                        WIN_RECAL
1879
/*
1880
 *        0x10->0x1F Reserved
1881
 */
1882
#define WIN_READ                        0x20 /* 28-Bit */
1883
#define WIN_READ_ONCE                        0x21 /* 28-Bit without retries */
1884
#define WIN_READ_LONG                        0x22 /* 28-Bit */
1885
#define WIN_READ_LONG_ONCE                0x23 /* 28-Bit without retries */
1886
#define WIN_READ_EXT                        0x24 /* 48-Bit */
1887
#define WIN_READDMA_EXT                        0x25 /* 48-Bit */
1888
#define WIN_READDMA_QUEUED_EXT                0x26 /* 48-Bit */
1889
#define WIN_READ_NATIVE_MAX_EXT                0x27 /* 48-Bit */
1890
/*
1891
 *        0x28
1892
 */
1893
#define WIN_MULTREAD_EXT                0x29 /* 48-Bit */
1894
/*
1895
 *        0x2A->0x2F Reserved
1896
 */
1897
#define WIN_WRITE                        0x30 /* 28-Bit */
1898
#define WIN_WRITE_ONCE                        0x31 /* 28-Bit without retries */
1899
#define WIN_WRITE_LONG                        0x32 /* 28-Bit */
1900
#define WIN_WRITE_LONG_ONCE                0x33 /* 28-Bit without retries */
1901
#define WIN_WRITE_EXT                        0x34 /* 48-Bit */
1902
#define WIN_WRITEDMA_EXT                0x35 /* 48-Bit */
1903
#define WIN_WRITEDMA_QUEUED_EXT                0x36 /* 48-Bit */
1904
#define WIN_SET_MAX_EXT                        0x37 /* 48-Bit */
1905
#define CFA_WRITE_SECT_WO_ERASE                0x38 /* CFA Write Sectors without erase */
1906
#define WIN_MULTWRITE_EXT                0x39 /* 48-Bit */
1907
/*
1908
 *        0x3A->0x3B Reserved
1909
 */
1910
#define WIN_WRITE_VERIFY                0x3C /* 28-Bit */
1911
/*
1912
 *        0x3D->0x3F Reserved
1913
 */
1914
#define WIN_VERIFY                        0x40 /* 28-Bit - Read Verify Sectors */
1915
#define WIN_VERIFY_ONCE                        0x41 /* 28-Bit - without retries */
1916
#define WIN_VERIFY_EXT                        0x42 /* 48-Bit */
1917
/*
1918
 *        0x43->0x4F Reserved
1919
 */
1920
#define WIN_FORMAT                        0x50
1921
/*
1922
 *        0x51->0x5F Reserved
1923
 */
1924
#define WIN_INIT                        0x60
1925
/*
1926
 *        0x61->0x5F Reserved
1927
 */
1928
#define WIN_SEEK                        0x70 /* 0x70-0x7F Reserved */
1929
#define CFA_TRANSLATE_SECTOR                0x87 /* CFA Translate Sector */
1930
#define WIN_DIAGNOSE                        0x90
1931
#define WIN_SPECIFY                        0x91 /* set drive geometry translation */
1932
#define WIN_DOWNLOAD_MICROCODE                0x92
1933
#define WIN_STANDBYNOW2                        0x94
1934
#define WIN_STANDBY2                        0x96
1935
#define WIN_SETIDLE2                        0x97
1936
#define WIN_CHECKPOWERMODE2                0x98
1937
#define WIN_SLEEPNOW2                        0x99
1938
/*
1939
 *        0x9A VENDOR
1940
 */
1941
#define WIN_PACKETCMD                        0xA0 /* Send a packet command. */
1942
#define WIN_PIDENTIFY                        0xA1 /* identify ATAPI device        */
1943
#define WIN_QUEUED_SERVICE                0xA2
1944
#define WIN_SMART                        0xB0 /* self-monitoring and reporting */
1945
#define CFA_ERASE_SECTORS               0xC0
1946
#define WIN_MULTREAD                        0xC4 /* read sectors using multiple mode*/
1947
#define WIN_MULTWRITE                        0xC5 /* write sectors using multiple mode */
1948
#define WIN_SETMULT                        0xC6 /* enable/disable multiple mode */
1949
#define WIN_READDMA_QUEUED                0xC7 /* read sectors using Queued DMA transfers */
1950
#define WIN_READDMA                        0xC8 /* read sectors using DMA transfers */
1951
#define WIN_READDMA_ONCE                0xC9 /* 28-Bit - without retries */
1952
#define WIN_WRITEDMA                        0xCA /* write sectors using DMA transfers */
1953
#define WIN_WRITEDMA_ONCE                0xCB /* 28-Bit - without retries */
1954
#define WIN_WRITEDMA_QUEUED                0xCC /* write sectors using Queued DMA transfers */
1955
#define CFA_WRITE_MULTI_WO_ERASE        0xCD /* CFA Write multiple without erase */
1956
#define WIN_GETMEDIASTATUS                0xDA        
1957
#define WIN_ACKMEDIACHANGE                0xDB /* ATA-1, ATA-2 vendor */
1958
#define WIN_POSTBOOT                        0xDC
1959
#define WIN_PREBOOT                        0xDD
1960
#define WIN_DOORLOCK                        0xDE /* lock door on removable drives */
1961
#define WIN_DOORUNLOCK                        0xDF /* unlock door on removable drives */
1962
#define WIN_STANDBYNOW1                        0xE0
1963
#define WIN_IDLEIMMEDIATE                0xE1 /* force drive to become "ready" */
1964
#define WIN_STANDBY                     0xE2 /* Set device in Standby Mode */
1965
#define WIN_SETIDLE1                        0xE3
1966
#define WIN_READ_BUFFER                        0xE4 /* force read only 1 sector */
1967
#define WIN_CHECKPOWERMODE1                0xE5
1968
#define WIN_SLEEPNOW1                        0xE6
1969
#define WIN_FLUSH_CACHE                        0xE7
1970
#define WIN_WRITE_BUFFER                0xE8 /* force write only 1 sector */
1971
#define WIN_WRITE_SAME                        0xE9 /* read ata-2 to use */
1972
        /* SET_FEATURES 0x22 or 0xDD */
1973
#define WIN_FLUSH_CACHE_EXT                0xEA /* 48-Bit */
1974
#define WIN_IDENTIFY                        0xEC /* ask drive to identify itself        */
1975
#define WIN_MEDIAEJECT                        0xED
1976
#define WIN_IDENTIFY_DMA                0xEE /* same as WIN_IDENTIFY, but DMA */
1977
#define WIN_SETFEATURES                        0xEF /* set special drive features */
1978
#define EXABYTE_ENABLE_NEST                0xF0
1979
#define WIN_SECURITY_SET_PASS                0xF1
1980
#define WIN_SECURITY_UNLOCK                0xF2
1981
#define WIN_SECURITY_ERASE_PREPARE        0xF3
1982
#define WIN_SECURITY_ERASE_UNIT                0xF4
1983
#define WIN_SECURITY_FREEZE_LOCK        0xF5
1984
#define WIN_SECURITY_DISABLE                0xF6
1985
#define WIN_READ_NATIVE_MAX                0xF8 /* return the native maximum address */
1986
#define WIN_SET_MAX                        0xF9
1987
#define DISABLE_SEAGATE                        0xFB
1988

    
1989
/* set to 1 set disable mult support */
1990
#define MAX_MULT_SECTORS 8
1991

    
1992
struct IDEState;
1993

    
1994
typedef void EndTransferFunc(struct IDEState *);
1995

    
1996
typedef struct IDEState {
1997
    /* ide config */
1998
    int cylinders, heads, sectors;
1999
    int64_t nb_sectors;
2000
    int mult_sectors;
2001
    int irq;
2002
    /* ide regs */
2003
    uint8_t feature;
2004
    uint8_t error;
2005
    uint16_t nsector; /* 0 is 256 to ease computations */
2006
    uint8_t sector;
2007
    uint8_t lcyl;
2008
    uint8_t hcyl;
2009
    uint8_t select;
2010
    uint8_t status;
2011
    /* 0x3f6 command, only meaningful for drive 0 */
2012
    uint8_t cmd;
2013
    /* depends on bit 4 in select, only meaningful for drive 0 */
2014
    struct IDEState *cur_drive; 
2015
    BlockDriverState *bs;
2016
    int req_nb_sectors; /* number of sectors per interrupt */
2017
    EndTransferFunc *end_transfer_func;
2018
    uint8_t *data_ptr;
2019
    uint8_t *data_end;
2020
    uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
2021
} IDEState;
2022

    
2023
IDEState ide_state[MAX_DISKS];
2024

    
2025
static void padstr(char *str, const char *src, int len)
2026
{
2027
    int i, v;
2028
    for(i = 0; i < len; i++) {
2029
        if (*src)
2030
            v = *src++;
2031
        else
2032
            v = ' ';
2033
        *(char *)((long)str ^ 1) = v;
2034
        str++;
2035
    }
2036
}
2037

    
2038
static void ide_identify(IDEState *s)
2039
{
2040
    uint16_t *p;
2041
    unsigned int oldsize;
2042

    
2043
    memset(s->io_buffer, 0, 512);
2044
    p = (uint16_t *)s->io_buffer;
2045
    stw(p + 0, 0x0040);
2046
    stw(p + 1, s->cylinders); 
2047
    stw(p + 3, s->heads);
2048
    stw(p + 4, 512 * s->sectors); /* sectors */
2049
    stw(p + 5, 512); /* sector size */
2050
    stw(p + 6, s->sectors); 
2051
    stw(p + 20, 3); /* buffer type */
2052
    stw(p + 21, 512); /* cache size in sectors */
2053
    stw(p + 22, 4); /* ecc bytes */
2054
    padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
2055
#if MAX_MULT_SECTORS > 1    
2056
    stw(p + 47, MAX_MULT_SECTORS);
2057
#endif
2058
    stw(p + 48, 1); /* dword I/O */
2059
    stw(p + 49, 1 << 9); /* LBA supported, no DMA */
2060
    stw(p + 51, 0x200); /* PIO transfer cycle */
2061
    stw(p + 52, 0x200); /* DMA transfer cycle */
2062
    stw(p + 54, s->cylinders);
2063
    stw(p + 55, s->heads);
2064
    stw(p + 56, s->sectors);
2065
    oldsize = s->cylinders * s->heads * s->sectors;
2066
    stw(p + 57, oldsize);
2067
    stw(p + 58, oldsize >> 16);
2068
    if (s->mult_sectors)
2069
        stw(p + 59, 0x100 | s->mult_sectors);
2070
    stw(p + 60, s->nb_sectors);
2071
    stw(p + 61, s->nb_sectors >> 16);
2072
    stw(p + 80, (1 << 1) | (1 << 2));
2073
    stw(p + 82, (1 << 14));
2074
    stw(p + 83, (1 << 14));
2075
    stw(p + 84, (1 << 14));
2076
    stw(p + 85, (1 << 14));
2077
    stw(p + 86, 0);
2078
    stw(p + 87, (1 << 14));
2079
}
2080

    
2081
static inline void ide_abort_command(IDEState *s)
2082
{
2083
    s->status = READY_STAT | ERR_STAT;
2084
    s->error = ABRT_ERR;
2085
}
2086

    
2087
static inline void ide_set_irq(IDEState *s)
2088
{
2089
    if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
2090
        pic_set_irq(s->irq, 1);
2091
    }
2092
}
2093

    
2094
/* prepare data transfer and tell what to do after */
2095
static void ide_transfer_start(IDEState *s, int size, 
2096
                               EndTransferFunc *end_transfer_func)
2097
{
2098
    s->end_transfer_func = end_transfer_func;
2099
    s->data_ptr = s->io_buffer;
2100
    s->data_end = s->io_buffer + size;
2101
    s->status |= DRQ_STAT;
2102
}
2103

    
2104
static void ide_transfer_stop(IDEState *s)
2105
{
2106
    s->end_transfer_func = ide_transfer_stop;
2107
    s->data_ptr = s->io_buffer;
2108
    s->data_end = s->io_buffer;
2109
    s->status &= ~DRQ_STAT;
2110
}
2111

    
2112
static int64_t ide_get_sector(IDEState *s)
2113
{
2114
    int64_t sector_num;
2115
    if (s->select & 0x40) {
2116
        /* lba */
2117
        sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) | 
2118
            (s->lcyl << 8) | s->sector;
2119
    } else {
2120
        sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
2121
            (s->select & 0x0f) * s->sectors + 
2122
            (s->sector - 1);
2123
    }
2124
    return sector_num;
2125
}
2126

    
2127
static void ide_set_sector(IDEState *s, int64_t sector_num)
2128
{
2129
    unsigned int cyl, r;
2130
    if (s->select & 0x40) {
2131
        s->select = (s->select & 0xf0) | (sector_num >> 24);
2132
        s->hcyl = (sector_num >> 16);
2133
        s->lcyl = (sector_num >> 8);
2134
        s->sector = (sector_num);
2135
    } else {
2136
        cyl = sector_num / (s->heads * s->sectors);
2137
        r = sector_num % (s->heads * s->sectors);
2138
        s->hcyl = cyl >> 8;
2139
        s->lcyl = cyl;
2140
        s->select = (s->select & 0xf0) | (r / s->sectors);
2141
        s->sector = (r % s->sectors) + 1;
2142
    }
2143
}
2144

    
2145
static void ide_sector_read(IDEState *s)
2146
{
2147
    int64_t sector_num;
2148
    int ret, n;
2149

    
2150
    s->status = READY_STAT | SEEK_STAT;
2151
    sector_num = ide_get_sector(s);
2152
    n = s->nsector;
2153
    if (n == 0) {
2154
        /* no more sector to read from disk */
2155
        ide_transfer_stop(s);
2156
    } else {
2157
#if defined(DEBUG_IDE)
2158
        printf("read sector=%Ld\n", sector_num);
2159
#endif
2160
        if (n > s->req_nb_sectors)
2161
            n = s->req_nb_sectors;
2162
        ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
2163
        ide_transfer_start(s, 512 * n, ide_sector_read);
2164
        ide_set_irq(s);
2165
        ide_set_sector(s, sector_num + n);
2166
        s->nsector -= n;
2167
    }
2168
}
2169

    
2170
static void ide_sector_write(IDEState *s)
2171
{
2172
    int64_t sector_num;
2173
    int ret, n, n1;
2174

    
2175
    s->status = READY_STAT | SEEK_STAT;
2176
    sector_num = ide_get_sector(s);
2177
#if defined(DEBUG_IDE)
2178
    printf("write sector=%Ld\n", sector_num);
2179
#endif
2180
    n = s->nsector;
2181
    if (n > s->req_nb_sectors)
2182
        n = s->req_nb_sectors;
2183
    ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
2184
    s->nsector -= n;
2185
    if (s->nsector == 0) {
2186
        /* no more sector to write */
2187
        ide_transfer_stop(s);
2188
    } else {
2189
        n1 = s->nsector;
2190
        if (n1 > s->req_nb_sectors)
2191
            n1 = s->req_nb_sectors;
2192
        ide_transfer_start(s, 512 * n1, ide_sector_write);
2193
    }
2194
    ide_set_sector(s, sector_num + n);
2195
    ide_set_irq(s);
2196
}
2197

    
2198
void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
2199
{
2200
    IDEState *s = ide_state[0].cur_drive;
2201
    int unit, n;
2202

    
2203
    addr &= 7;
2204
#ifdef DEBUG_IDE
2205
    printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
2206
#endif
2207
    switch(addr) {
2208
    case 0:
2209
        break;
2210
    case 1:
2211
        s->feature = val;
2212
        break;
2213
    case 2:
2214
        if (val == 0)
2215
            val = 256;
2216
        s->nsector = val;
2217
        break;
2218
    case 3:
2219
        s->sector = val;
2220
        break;
2221
    case 4:
2222
        s->lcyl = val;
2223
        break;
2224
    case 5:
2225
        s->hcyl = val;
2226
        break;
2227
    case 6:
2228
        /* select drive */
2229
        unit = (val >> 4) & 1;
2230
        s = &ide_state[unit];
2231
        ide_state[0].cur_drive = s;
2232
        s->select = val;
2233
        break;
2234
    default:
2235
    case 7:
2236
        /* command */
2237
#if defined(DEBUG_IDE)
2238
        printf("ide: CMD=%02x\n", val);
2239
#endif
2240
        switch(val) {
2241
        case WIN_PIDENTIFY:
2242
        case WIN_IDENTIFY:
2243
            if (s->bs) {
2244
                ide_identify(s);
2245
                s->status = READY_STAT;
2246
                ide_transfer_start(s, 512, ide_transfer_stop);
2247
            } else {
2248
                ide_abort_command(s);
2249
            }
2250
            ide_set_irq(s);
2251
            break;
2252
        case WIN_SPECIFY:
2253
        case WIN_RECAL:
2254
            s->status = READY_STAT;
2255
            ide_set_irq(s);
2256
            break;
2257
        case WIN_SETMULT:
2258
            if (s->nsector > MAX_MULT_SECTORS || 
2259
                s->nsector == 0 ||
2260
                (s->nsector & (s->nsector - 1)) != 0) {
2261
                ide_abort_command(s);
2262
            } else {
2263
                s->mult_sectors = s->nsector;
2264
                s->status = READY_STAT;
2265
            }
2266
            ide_set_irq(s);
2267
            break;
2268
        case WIN_READ:
2269
        case WIN_READ_ONCE:
2270
            s->req_nb_sectors = 1;
2271
            ide_sector_read(s);
2272
            break;
2273
        case WIN_WRITE:
2274
        case WIN_WRITE_ONCE:
2275
            s->status = SEEK_STAT;
2276
            s->req_nb_sectors = 1;
2277
            ide_transfer_start(s, 512, ide_sector_write);
2278
            break;
2279
        case WIN_MULTREAD:
2280
            if (!s->mult_sectors)
2281
                goto abort_cmd;
2282
            s->req_nb_sectors = s->mult_sectors;
2283
            ide_sector_read(s);
2284
            break;
2285
        case WIN_MULTWRITE:
2286
            if (!s->mult_sectors)
2287
                goto abort_cmd;
2288
            s->status = SEEK_STAT;
2289
            s->req_nb_sectors = s->mult_sectors;
2290
            n = s->nsector;
2291
            if (n > s->req_nb_sectors)
2292
                n = s->req_nb_sectors;
2293
            ide_transfer_start(s, 512 * n, ide_sector_write);
2294
            break;
2295
        case WIN_READ_NATIVE_MAX:
2296
            ide_set_sector(s, s->nb_sectors - 1);
2297
            s->status = READY_STAT;
2298
            ide_set_irq(s);
2299
            break;
2300
        default:
2301
        abort_cmd:
2302
            ide_abort_command(s);
2303
            ide_set_irq(s);
2304
            break;
2305
        }
2306
    }
2307
}
2308

    
2309
uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
2310
{
2311
    IDEState *s = ide_state[0].cur_drive;
2312
    int ret;
2313

    
2314
    addr &= 7;
2315
    switch(addr) {
2316
    case 0:
2317
        ret = 0xff;
2318
        break;
2319
    case 1:
2320
        ret = s->error;
2321
        break;
2322
    case 2:
2323
        ret = s->nsector & 0xff;
2324
        break;
2325
    case 3:
2326
        ret = s->sector;
2327
        break;
2328
    case 4:
2329
        ret = s->lcyl;
2330
        break;
2331
    case 5:
2332
        ret = s->hcyl;
2333
        break;
2334
    case 6:
2335
        ret = s->select;
2336
        break;
2337
    default:
2338
    case 7:
2339
        ret = s->status;
2340
        pic_set_irq(s->irq, 0);
2341
        break;
2342
    }
2343
#ifdef DEBUG_IDE
2344
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2345
#endif
2346
    return ret;
2347
}
2348

    
2349
uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
2350
{
2351
    IDEState *s = ide_state[0].cur_drive;
2352
    int ret;
2353
    ret = s->status;
2354
#ifdef DEBUG_IDE
2355
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2356
#endif
2357
    return ret;
2358
}
2359

    
2360
void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
2361
{
2362
    IDEState *s = &ide_state[0];
2363
    /* common for both drives */
2364
    s->cmd = val;
2365
}
2366

    
2367
void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
2368
{
2369
    IDEState *s = ide_state[0].cur_drive;
2370
    uint8_t *p;
2371

    
2372
    p = s->data_ptr;
2373
    *(uint16_t *)p = tswap16(val);
2374
    p += 2;
2375
    s->data_ptr = p;
2376
    if (p >= s->data_end)
2377
        s->end_transfer_func(s);
2378
}
2379

    
2380
uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
2381
{
2382
    IDEState *s = ide_state[0].cur_drive;
2383
    uint8_t *p;
2384
    int ret;
2385
    
2386
    p = s->data_ptr;
2387
    ret = tswap16(*(uint16_t *)p);
2388
    p += 2;
2389
    s->data_ptr = p;
2390
    if (p >= s->data_end)
2391
        s->end_transfer_func(s);
2392
    return ret;
2393
}
2394

    
2395
void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
2396
{
2397
    IDEState *s = ide_state[0].cur_drive;
2398
    uint8_t *p;
2399

    
2400
    p = s->data_ptr;
2401
    *(uint32_t *)p = tswap32(val);
2402
    p += 4;
2403
    s->data_ptr = p;
2404
    if (p >= s->data_end)
2405
        s->end_transfer_func(s);
2406
}
2407

    
2408
uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
2409
{
2410
    IDEState *s = ide_state[0].cur_drive;
2411
    uint8_t *p;
2412
    int ret;
2413
    
2414
    p = s->data_ptr;
2415
    ret = tswap32(*(uint32_t *)p);
2416
    p += 4;
2417
    s->data_ptr = p;
2418
    if (p >= s->data_end)
2419
        s->end_transfer_func(s);
2420
    return ret;
2421
}
2422

    
2423
void ide_reset(IDEState *s)
2424
{
2425
    s->mult_sectors = MAX_MULT_SECTORS;
2426
    s->status = READY_STAT;
2427
    s->cur_drive = s;
2428
    s->select = 0xa0;
2429
}
2430

    
2431
void ide_init(void)
2432
{
2433
    IDEState *s;
2434
    int i, cylinders;
2435
    int64_t nb_sectors;
2436

    
2437
    for(i = 0; i < MAX_DISKS; i++) {
2438
        s = &ide_state[i];
2439
        s->bs = bs_table[i];
2440
        if (s->bs) {
2441
            bdrv_get_geometry(s->bs, &nb_sectors);
2442
            cylinders = nb_sectors / (16 * 63);
2443
            if (cylinders > 16383)
2444
                cylinders = 16383;
2445
            else if (cylinders < 2)
2446
                cylinders = 2;
2447
            s->cylinders = cylinders;
2448
            s->heads = 16;
2449
            s->sectors = 63;
2450
            s->nb_sectors = nb_sectors;
2451
        }
2452
        s->irq = 14;
2453
        ide_reset(s);
2454
    }
2455
    register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
2456
    register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
2457
    register_ioport_read(0x3f6, 1, ide_status_read, 1);
2458
    register_ioport_write(0x3f6, 1, ide_cmd_write, 1);
2459

    
2460
    /* data ports */
2461
    register_ioport_write(0x1f0, 2, ide_data_writew, 2);
2462
    register_ioport_read(0x1f0, 2, ide_data_readw, 2);
2463
    register_ioport_write(0x1f0, 4, ide_data_writel, 4);
2464
    register_ioport_read(0x1f0, 4, ide_data_readl, 4);
2465
}
2466

    
2467
/***********************************************************/
2468
/* simulate reset (stop qemu) */
2469

    
2470
int reset_requested;
2471

    
2472
uint32_t kbd_read_status(CPUX86State *env, uint32_t addr)
2473
{
2474
    return 0;
2475
}
2476

    
2477
void kbd_write_command(CPUX86State *env, uint32_t addr, uint32_t val)
2478
{
2479
    switch(val) {
2480
    case 0xfe:
2481
        reset_requested = 1;
2482
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2483
        break;
2484
    default:
2485
        break;
2486
    }
2487
}
2488

    
2489
void kbd_init(void)
2490
{
2491
    register_ioport_read(0x64, 1, kbd_read_status, 1);
2492
    register_ioport_write(0x64, 1, kbd_write_command, 1);
2493
}
2494

    
2495
/***********************************************************/
2496
/* cpu signal handler */
2497
static void host_segv_handler(int host_signum, siginfo_t *info, 
2498
                              void *puc)
2499
{
2500
    if (cpu_signal_handler(host_signum, info, puc))
2501
        return;
2502
    term_exit();
2503
    abort();
2504
}
2505

    
2506
static int timer_irq_pending;
2507
static int timer_irq_count;
2508

    
2509
static void host_alarm_handler(int host_signum, siginfo_t *info, 
2510
                               void *puc)
2511
{
2512
    /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2513
       some drift between cpu_get_ticks() and the interrupt time. So
2514
       we queue some interrupts to avoid missing some */
2515
    timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2516
    if (timer_irq_count) {
2517
        if (timer_irq_count > 2)
2518
            timer_irq_count = 2;
2519
        timer_irq_count--;
2520
        /* just exit from the cpu to have a chance to handle timers */
2521
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2522
        timer_irq_pending = 1;
2523
    }
2524
}
2525

    
2526
unsigned long mmap_addr = PHYS_RAM_BASE;
2527

    
2528
void *get_mmap_addr(unsigned long size)
2529
{
2530
    unsigned long addr;
2531
    addr = mmap_addr;
2532
    mmap_addr += ((size + 4095) & ~4095) + 4096;
2533
    return (void *)addr;
2534
}
2535

    
2536
/* main execution loop */
2537

    
2538
CPUState *cpu_gdbstub_get_env(void *opaque)
2539
{
2540
    return global_env;
2541
}
2542

    
2543
int main_loop(void *opaque)
2544
{
2545
    struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2546
    int ret, n, timeout;
2547
    uint8_t ch;
2548
    CPUState *env = global_env;
2549

    
2550
    for(;;) {
2551

    
2552
        ret = cpu_x86_exec(env);
2553
        if (reset_requested)
2554
            break;
2555
        if (ret == EXCP_DEBUG)
2556
            return EXCP_DEBUG;
2557
        /* if hlt instruction, we wait until the next IRQ */
2558
        if (ret == EXCP_HLT) 
2559
            timeout = 10;
2560
        else
2561
            timeout = 0;
2562
        /* poll any events */
2563
        serial_ufd = NULL;
2564
        pf = ufds;
2565
        if (!(serial_ports[0].lsr & UART_LSR_DR)) {
2566
            serial_ufd = pf;
2567
            pf->fd = 0;
2568
            pf->events = POLLIN;
2569
            pf++;
2570
        }
2571
        net_ufd = NULL;
2572
        if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
2573
            net_ufd = pf;
2574
            pf->fd = net_fd;
2575
            pf->events = POLLIN;
2576
            pf++;
2577
        }
2578
        gdb_ufd = NULL;
2579
        if (gdbstub_fd > 0) {
2580
            gdb_ufd = pf;
2581
            pf->fd = gdbstub_fd;
2582
            pf->events = POLLIN;
2583
            pf++;
2584
        }
2585

    
2586
        ret = poll(ufds, pf - ufds, timeout);
2587
        if (ret > 0) {
2588
            if (serial_ufd && (serial_ufd->revents & POLLIN)) {
2589
                n = read(0, &ch, 1);
2590
                if (n == 1) {
2591
                    serial_received_byte(&serial_ports[0], ch);
2592
                }
2593
            }
2594
            if (net_ufd && (net_ufd->revents & POLLIN)) {
2595
                uint8_t buf[MAX_ETH_FRAME_SIZE];
2596

    
2597
                n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
2598
                if (n > 0) {
2599
                    if (n < 60) {
2600
                        memset(buf + n, 0, 60 - n);
2601
                        n = 60;
2602
                    }
2603
                    ne2000_receive(&ne2000_state, buf, n);
2604
                }
2605
            }
2606
            if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
2607
                uint8_t buf[1];
2608
                /* stop emulation if requested by gdb */
2609
                n = read(gdbstub_fd, buf, 1);
2610
                if (n == 1)
2611
                    break;
2612
            }
2613
        }
2614

    
2615
        /* timer IRQ */
2616
        if (timer_irq_pending) {
2617
            pic_set_irq(0, 1);
2618
            pic_set_irq(0, 0);
2619
            timer_irq_pending = 0;
2620
        }
2621
    }
2622
    return EXCP_INTERRUPT;
2623
}
2624

    
2625
void help(void)
2626
{
2627
    printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
2628
           "usage: vl [options] bzImage [kernel parameters...]\n"
2629
           "\n"
2630
           "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
2631
           "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
2632
           "\n"
2633
           "General options:\n"
2634
           "-initrd file   use 'file' as initial ram disk\n"
2635
           "-hda file      use 'file' as hard disk 0 image\n"
2636
           "-hdb file      use 'file' as hard disk 1 image\n"
2637
           "-snapshot      write to temporary files instead of disk image files\n"
2638
           "-m megs        set virtual RAM size to megs MB\n"
2639
           "-n script      set network init script [default=%s]\n"
2640
           "\n"
2641
           "Debug options:\n"
2642
           "-s             wait gdb connection to port %d\n"
2643
           "-p port        change gdb connection port\n"
2644
           "-d             output log in /tmp/vl.log\n"
2645
           "\n"
2646
           "During emulation, use C-a h to get terminal commands:\n",
2647
           DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
2648
    term_print_help();
2649
    exit(1);
2650
}
2651

    
2652
struct option long_options[] = {
2653
    { "initrd", 1, NULL, 0, },
2654
    { "hda", 1, NULL, 0, },
2655
    { "hdb", 1, NULL, 0, },
2656
    { "snapshot", 0, NULL, 0, },
2657
    { NULL, 0, NULL, 0 },
2658
};
2659

    
2660
int main(int argc, char **argv)
2661
{
2662
    int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
2663
    int snapshot;
2664
    struct linux_params *params;
2665
    struct sigaction act;
2666
    struct itimerval itv;
2667
    CPUX86State *env;
2668
    const char *tmpdir, *initrd_filename;
2669
    const char *hd_filename[MAX_DISKS];
2670
    
2671
    /* we never want that malloc() uses mmap() */
2672
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
2673
    initrd_filename = NULL;
2674
    for(i = 0; i < MAX_DISKS; i++)
2675
        hd_filename[i] = NULL;
2676
    phys_ram_size = 32 * 1024 * 1024;
2677
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
2678
    use_gdbstub = 0;
2679
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
2680
    snapshot = 0;
2681
    for(;;) {
2682
        c = getopt_long_only(argc, argv, "hm:dn:sp:", long_options, &long_index);
2683
        if (c == -1)
2684
            break;
2685
        switch(c) {
2686
        case 0:
2687
            switch(long_index) {
2688
            case 0:
2689
                initrd_filename = optarg;
2690
                break;
2691
            case 1:
2692
                hd_filename[0] = optarg;
2693
                break;
2694
            case 2:
2695
                hd_filename[1] = optarg;
2696
                break;
2697
            case 3:
2698
                snapshot = 1;
2699
                break;
2700
            }
2701
            break;
2702
        case 'h':
2703
            help();
2704
            break;
2705
        case 'm':
2706
            phys_ram_size = atoi(optarg) * 1024 * 1024;
2707
            if (phys_ram_size <= 0)
2708
                help();
2709
            if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
2710
                fprintf(stderr, "vl: at most %d MB RAM can be simulated\n",
2711
                        PHYS_RAM_MAX_SIZE / (1024 * 1024));
2712
                exit(1);
2713
            }
2714
            break;
2715
        case 'd':
2716
            loglevel = 1;
2717
            break;
2718
        case 'n':
2719
            pstrcpy(network_script, sizeof(network_script), optarg);
2720
            break;
2721
        case 's':
2722
            use_gdbstub = 1;
2723
            break;
2724
        case 'p':
2725
            gdbstub_port = atoi(optarg);
2726
            break;
2727
        }
2728
    }
2729
    if (optind >= argc)
2730
        help();
2731

    
2732
    /* init debug */
2733
    setvbuf(stdout, NULL, _IOLBF, 0);
2734
    if (loglevel) {
2735
        logfile = fopen(DEBUG_LOGFILE, "w");
2736
        if (!logfile) {
2737
            perror(DEBUG_LOGFILE);
2738
            _exit(1);
2739
        }
2740
        setvbuf(logfile, NULL, _IOLBF, 0);
2741
    }
2742

    
2743
    /* init network tun interface */
2744
    net_init();
2745

    
2746
    /* init the memory */
2747
    tmpdir = getenv("VLTMPDIR");
2748
    if (!tmpdir)
2749
        tmpdir = "/tmp";
2750
    snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
2751
    if (mkstemp(phys_ram_file) < 0) {
2752
        fprintf(stderr, "Could not create temporary memory file '%s'\n", 
2753
                phys_ram_file);
2754
        exit(1);
2755
    }
2756
    phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
2757
    if (phys_ram_fd < 0) {
2758
        fprintf(stderr, "Could not open temporary memory file '%s'\n", 
2759
                phys_ram_file);
2760
        exit(1);
2761
    }
2762
    ftruncate(phys_ram_fd, phys_ram_size);
2763
    unlink(phys_ram_file);
2764
    phys_ram_base = mmap(get_mmap_addr(phys_ram_size), phys_ram_size, 
2765
                         PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
2766
                         phys_ram_fd, 0);
2767
    if (phys_ram_base == MAP_FAILED) {
2768
        fprintf(stderr, "Could not map physical memory\n");
2769
        exit(1);
2770
    }
2771

    
2772
    /* open the virtual block devices */
2773
    for(i = 0; i < MAX_DISKS; i++) {
2774
        if (hd_filename[i]) {
2775
            bs_table[i] = bdrv_open(hd_filename[i], snapshot);
2776
            if (!bs_table[i]) {
2777
                fprintf(stderr, "vl: could not open hard disk image '%s\n",
2778
                        hd_filename[i]);
2779
                exit(1);
2780
            }
2781
        }
2782
    }
2783

    
2784
    /* now we can load the kernel */
2785
    ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
2786
    if (ret < 0) {
2787
        fprintf(stderr, "vl: could not load kernel '%s'\n", argv[optind]);
2788
        exit(1);
2789
    }
2790

    
2791
    /* load initrd */
2792
    initrd_size = 0;
2793
    if (initrd_filename) {
2794
        initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
2795
        if (initrd_size < 0) {
2796
            fprintf(stderr, "vl: could not load initial ram disk '%s'\n", 
2797
                    initrd_filename);
2798
            exit(1);
2799
        }
2800
    }
2801

    
2802
    /* init kernel params */
2803
    params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
2804
    memset(params, 0, sizeof(struct linux_params));
2805
    params->mount_root_rdonly = 0;
2806
    params->cl_magic = 0xA33F;
2807
    params->cl_offset = params->commandline - (uint8_t *)params;
2808
    params->alt_mem_k = (phys_ram_size / 1024) - 1024;
2809
    for(i = optind + 1; i < argc; i++) {
2810
        if (i != optind + 1)
2811
            pstrcat(params->commandline, sizeof(params->commandline), " ");
2812
        pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
2813
    }
2814
    params->loader_type = 0x01;
2815
    if (initrd_size > 0) {
2816
        params->initrd_start = INITRD_LOAD_ADDR;
2817
        params->initrd_size = initrd_size;
2818
    }
2819
    params->orig_video_lines = 25;
2820
    params->orig_video_cols = 80;
2821

    
2822
    /* init basic PC hardware */
2823
    init_ioports();
2824
    register_ioport_write(0x80, 1, ioport80_write, 1);
2825

    
2826
    register_ioport_write(0x3d4, 2, vga_ioport_write, 1);
2827

    
2828
    cmos_init();
2829
    pic_init();
2830
    pit_init();
2831
    serial_init();
2832
    ne2000_init();
2833
    ide_init();
2834
    kbd_init();
2835

    
2836
    /* setup cpu signal handlers for MMU / self modifying code handling */
2837
    sigfillset(&act.sa_mask);
2838
    act.sa_flags = SA_SIGINFO;
2839
    act.sa_sigaction = host_segv_handler;
2840
    sigaction(SIGSEGV, &act, NULL);
2841
    sigaction(SIGBUS, &act, NULL);
2842

    
2843
    act.sa_sigaction = host_alarm_handler;
2844
    sigaction(SIGALRM, &act, NULL);
2845

    
2846
    /* init CPU state */
2847
    env = cpu_init();
2848
    global_env = env;
2849
    cpu_single_env = env;
2850

    
2851
    /* setup basic memory access */
2852
    env->cr[0] = 0x00000033;
2853
    cpu_x86_init_mmu(env);
2854
    
2855
    memset(params->idt_table, 0, sizeof(params->idt_table));
2856

    
2857
    params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
2858
    params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
2859
    
2860
    env->idt.base = (void *)params->idt_table;
2861
    env->idt.limit = sizeof(params->idt_table) - 1;
2862
    env->gdt.base = (void *)params->gdt_table;
2863
    env->gdt.limit = sizeof(params->gdt_table) - 1;
2864

    
2865
    cpu_x86_load_seg(env, R_CS, KERNEL_CS);
2866
    cpu_x86_load_seg(env, R_DS, KERNEL_DS);
2867
    cpu_x86_load_seg(env, R_ES, KERNEL_DS);
2868
    cpu_x86_load_seg(env, R_SS, KERNEL_DS);
2869
    cpu_x86_load_seg(env, R_FS, KERNEL_DS);
2870
    cpu_x86_load_seg(env, R_GS, KERNEL_DS);
2871
    
2872
    env->eip = KERNEL_LOAD_ADDR;
2873
    env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
2874
    env->eflags = 0x2;
2875

    
2876
    itv.it_interval.tv_sec = 0;
2877
    itv.it_interval.tv_usec = 1000;
2878
    itv.it_value.tv_sec = 0;
2879
    itv.it_value.tv_usec = 10 * 1000;
2880
    setitimer(ITIMER_REAL, &itv, NULL);
2881
    /* we probe the tick duration of the kernel to inform the user if
2882
       the emulated kernel requested a too high timer frequency */
2883
    getitimer(ITIMER_REAL, &itv);
2884
    pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
2885
        1000000;
2886
    
2887
    if (use_gdbstub) {
2888
        cpu_gdbstub(NULL, main_loop, gdbstub_port);
2889
    } else {
2890
        main_loop(NULL);
2891
    }
2892
    return 0;
2893
}