Statistics
| Branch: | Revision:

root / target-xtensa / helper.c @ a8170e5e

History | View | Annotate | Download (19.1 kB)

1
/*
2
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions are met:
7
 *     * Redistributions of source code must retain the above copyright
8
 *       notice, this list of conditions and the following disclaimer.
9
 *     * Redistributions in binary form must reproduce the above copyright
10
 *       notice, this list of conditions and the following disclaimer in the
11
 *       documentation and/or other materials provided with the distribution.
12
 *     * Neither the name of the Open Source and Linux Lab nor the
13
 *       names of its contributors may be used to endorse or promote products
14
 *       derived from this software without specific prior written permission.
15
 *
16
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 */
27

    
28
#include "cpu.h"
29
#include "exec-all.h"
30
#include "gdbstub.h"
31
#include "host-utils.h"
32
#if !defined(CONFIG_USER_ONLY)
33
#include "hw/loader.h"
34
#endif
35

    
36
static struct XtensaConfigList *xtensa_cores;
37

    
38
void xtensa_register_core(XtensaConfigList *node)
39
{
40
    node->next = xtensa_cores;
41
    xtensa_cores = node;
42
}
43

    
44
static uint32_t check_hw_breakpoints(CPUXtensaState *env)
45
{
46
    unsigned i;
47

    
48
    for (i = 0; i < env->config->ndbreak; ++i) {
49
        if (env->cpu_watchpoint[i] &&
50
                env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
51
            return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
52
        }
53
    }
54
    return 0;
55
}
56

    
57
static void breakpoint_handler(CPUXtensaState *env)
58
{
59
    if (env->watchpoint_hit) {
60
        if (env->watchpoint_hit->flags & BP_CPU) {
61
            uint32_t cause;
62

    
63
            env->watchpoint_hit = NULL;
64
            cause = check_hw_breakpoints(env);
65
            if (cause) {
66
                debug_exception_env(env, cause);
67
            }
68
            cpu_resume_from_signal(env, NULL);
69
        }
70
    }
71
}
72

    
73
XtensaCPU *cpu_xtensa_init(const char *cpu_model)
74
{
75
    static int tcg_inited;
76
    static int debug_handler_inited;
77
    XtensaCPU *cpu;
78
    CPUXtensaState *env;
79
    const XtensaConfig *config = NULL;
80
    XtensaConfigList *core = xtensa_cores;
81

    
82
    for (; core; core = core->next)
83
        if (strcmp(core->config->name, cpu_model) == 0) {
84
            config = core->config;
85
            break;
86
        }
87

    
88
    if (config == NULL) {
89
        return NULL;
90
    }
91

    
92
    cpu = XTENSA_CPU(object_new(TYPE_XTENSA_CPU));
93
    env = &cpu->env;
94
    env->config = config;
95

    
96
    if (!tcg_inited) {
97
        tcg_inited = 1;
98
        xtensa_translate_init();
99
    }
100

    
101
    if (!debug_handler_inited && tcg_enabled()) {
102
        debug_handler_inited = 1;
103
        cpu_set_debug_excp_handler(breakpoint_handler);
104
    }
105

    
106
    xtensa_irq_init(env);
107
    qemu_init_vcpu(env);
108
    return cpu;
109
}
110

    
111

    
112
void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
113
{
114
    XtensaConfigList *core = xtensa_cores;
115
    cpu_fprintf(f, "Available CPUs:\n");
116
    for (; core; core = core->next) {
117
        cpu_fprintf(f, "  %s\n", core->config->name);
118
    }
119
}
120

    
121
hwaddr cpu_get_phys_page_debug(CPUXtensaState *env, target_ulong addr)
122
{
123
    uint32_t paddr;
124
    uint32_t page_size;
125
    unsigned access;
126

    
127
    if (xtensa_get_physical_addr(env, false, addr, 0, 0,
128
                &paddr, &page_size, &access) == 0) {
129
        return paddr;
130
    }
131
    if (xtensa_get_physical_addr(env, false, addr, 2, 0,
132
                &paddr, &page_size, &access) == 0) {
133
        return paddr;
134
    }
135
    return ~0;
136
}
137

    
138
static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
139
{
140
    if (xtensa_option_enabled(env->config,
141
                XTENSA_OPTION_RELOCATABLE_VECTOR)) {
142
        return vector - env->config->vecbase + env->sregs[VECBASE];
143
    } else {
144
        return vector;
145
    }
146
}
147

    
148
/*!
149
 * Handle penging IRQ.
150
 * For the high priority interrupt jump to the corresponding interrupt vector.
151
 * For the level-1 interrupt convert it to either user, kernel or double
152
 * exception with the 'level-1 interrupt' exception cause.
153
 */
154
static void handle_interrupt(CPUXtensaState *env)
155
{
156
    int level = env->pending_irq_level;
157

    
158
    if (level > xtensa_get_cintlevel(env) &&
159
            level <= env->config->nlevel &&
160
            (env->config->level_mask[level] &
161
             env->sregs[INTSET] &
162
             env->sregs[INTENABLE])) {
163
        if (level > 1) {
164
            env->sregs[EPC1 + level - 1] = env->pc;
165
            env->sregs[EPS2 + level - 2] = env->sregs[PS];
166
            env->sregs[PS] =
167
                (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
168
            env->pc = relocated_vector(env,
169
                    env->config->interrupt_vector[level]);
170
        } else {
171
            env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
172

    
173
            if (env->sregs[PS] & PS_EXCM) {
174
                if (env->config->ndepc) {
175
                    env->sregs[DEPC] = env->pc;
176
                } else {
177
                    env->sregs[EPC1] = env->pc;
178
                }
179
                env->exception_index = EXC_DOUBLE;
180
            } else {
181
                env->sregs[EPC1] = env->pc;
182
                env->exception_index =
183
                    (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
184
            }
185
            env->sregs[PS] |= PS_EXCM;
186
        }
187
        env->exception_taken = 1;
188
    }
189
}
190

    
191
void do_interrupt(CPUXtensaState *env)
192
{
193
    if (env->exception_index == EXC_IRQ) {
194
        qemu_log_mask(CPU_LOG_INT,
195
                "%s(EXC_IRQ) level = %d, cintlevel = %d, "
196
                "pc = %08x, a0 = %08x, ps = %08x, "
197
                "intset = %08x, intenable = %08x, "
198
                "ccount = %08x\n",
199
                __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
200
                env->pc, env->regs[0], env->sregs[PS],
201
                env->sregs[INTSET], env->sregs[INTENABLE],
202
                env->sregs[CCOUNT]);
203
        handle_interrupt(env);
204
    }
205

    
206
    switch (env->exception_index) {
207
    case EXC_WINDOW_OVERFLOW4:
208
    case EXC_WINDOW_UNDERFLOW4:
209
    case EXC_WINDOW_OVERFLOW8:
210
    case EXC_WINDOW_UNDERFLOW8:
211
    case EXC_WINDOW_OVERFLOW12:
212
    case EXC_WINDOW_UNDERFLOW12:
213
    case EXC_KERNEL:
214
    case EXC_USER:
215
    case EXC_DOUBLE:
216
    case EXC_DEBUG:
217
        qemu_log_mask(CPU_LOG_INT, "%s(%d) "
218
                "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
219
                __func__, env->exception_index,
220
                env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
221
        if (env->config->exception_vector[env->exception_index]) {
222
            env->pc = relocated_vector(env,
223
                    env->config->exception_vector[env->exception_index]);
224
            env->exception_taken = 1;
225
        } else {
226
            qemu_log("%s(pc = %08x) bad exception_index: %d\n",
227
                    __func__, env->pc, env->exception_index);
228
        }
229
        break;
230

    
231
    case EXC_IRQ:
232
        break;
233

    
234
    default:
235
        qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
236
                __func__, env->pc, env->exception_index);
237
        break;
238
    }
239
    check_interrupts(env);
240
}
241

    
242
static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
243
        const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
244
{
245
    unsigned wi, ei;
246

    
247
    for (wi = 0; wi < tlb->nways; ++wi) {
248
        for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
249
            entry[wi][ei].asid = 0;
250
            entry[wi][ei].variable = true;
251
        }
252
    }
253
}
254

    
255
static void reset_tlb_mmu_ways56(CPUXtensaState *env,
256
        const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
257
{
258
    if (!tlb->varway56) {
259
        static const xtensa_tlb_entry way5[] = {
260
            {
261
                .vaddr = 0xd0000000,
262
                .paddr = 0,
263
                .asid = 1,
264
                .attr = 7,
265
                .variable = false,
266
            }, {
267
                .vaddr = 0xd8000000,
268
                .paddr = 0,
269
                .asid = 1,
270
                .attr = 3,
271
                .variable = false,
272
            }
273
        };
274
        static const xtensa_tlb_entry way6[] = {
275
            {
276
                .vaddr = 0xe0000000,
277
                .paddr = 0xf0000000,
278
                .asid = 1,
279
                .attr = 7,
280
                .variable = false,
281
            }, {
282
                .vaddr = 0xf0000000,
283
                .paddr = 0xf0000000,
284
                .asid = 1,
285
                .attr = 3,
286
                .variable = false,
287
            }
288
        };
289
        memcpy(entry[5], way5, sizeof(way5));
290
        memcpy(entry[6], way6, sizeof(way6));
291
    } else {
292
        uint32_t ei;
293
        for (ei = 0; ei < 8; ++ei) {
294
            entry[6][ei].vaddr = ei << 29;
295
            entry[6][ei].paddr = ei << 29;
296
            entry[6][ei].asid = 1;
297
            entry[6][ei].attr = 3;
298
        }
299
    }
300
}
301

    
302
static void reset_tlb_region_way0(CPUXtensaState *env,
303
        xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
304
{
305
    unsigned ei;
306

    
307
    for (ei = 0; ei < 8; ++ei) {
308
        entry[0][ei].vaddr = ei << 29;
309
        entry[0][ei].paddr = ei << 29;
310
        entry[0][ei].asid = 1;
311
        entry[0][ei].attr = 2;
312
        entry[0][ei].variable = true;
313
    }
314
}
315

    
316
void reset_mmu(CPUXtensaState *env)
317
{
318
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
319
        env->sregs[RASID] = 0x04030201;
320
        env->sregs[ITLBCFG] = 0;
321
        env->sregs[DTLBCFG] = 0;
322
        env->autorefill_idx = 0;
323
        reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
324
        reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
325
        reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
326
        reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
327
    } else {
328
        reset_tlb_region_way0(env, env->itlb);
329
        reset_tlb_region_way0(env, env->dtlb);
330
    }
331
}
332

    
333
static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
334
{
335
    unsigned i;
336
    for (i = 0; i < 4; ++i) {
337
        if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
338
            return i;
339
        }
340
    }
341
    return 0xff;
342
}
343

    
344
/*!
345
 * Lookup xtensa TLB for the given virtual address.
346
 * See ISA, 4.6.2.2
347
 *
348
 * \param pwi: [out] way index
349
 * \param pei: [out] entry index
350
 * \param pring: [out] access ring
351
 * \return 0 if ok, exception cause code otherwise
352
 */
353
int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
354
        uint32_t *pwi, uint32_t *pei, uint8_t *pring)
355
{
356
    const xtensa_tlb *tlb = dtlb ?
357
        &env->config->dtlb : &env->config->itlb;
358
    const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
359
        env->dtlb : env->itlb;
360

    
361
    int nhits = 0;
362
    unsigned wi;
363

    
364
    for (wi = 0; wi < tlb->nways; ++wi) {
365
        uint32_t vpn;
366
        uint32_t ei;
367
        split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
368
        if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
369
            unsigned ring = get_ring(env, entry[wi][ei].asid);
370
            if (ring < 4) {
371
                if (++nhits > 1) {
372
                    return dtlb ?
373
                        LOAD_STORE_TLB_MULTI_HIT_CAUSE :
374
                        INST_TLB_MULTI_HIT_CAUSE;
375
                }
376
                *pwi = wi;
377
                *pei = ei;
378
                *pring = ring;
379
            }
380
        }
381
    }
382
    return nhits ? 0 :
383
        (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
384
}
385

    
386
/*!
387
 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
388
 * See ISA, 4.6.5.10
389
 */
390
static unsigned mmu_attr_to_access(uint32_t attr)
391
{
392
    unsigned access = 0;
393
    if (attr < 12) {
394
        access |= PAGE_READ;
395
        if (attr & 0x1) {
396
            access |= PAGE_EXEC;
397
        }
398
        if (attr & 0x2) {
399
            access |= PAGE_WRITE;
400
        }
401
    } else if (attr == 13) {
402
        access |= PAGE_READ | PAGE_WRITE;
403
    }
404
    return access;
405
}
406

    
407
/*!
408
 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
409
 * See ISA, 4.6.3.3
410
 */
411
static unsigned region_attr_to_access(uint32_t attr)
412
{
413
    unsigned access = 0;
414
    if ((attr < 6 && attr != 3) || attr == 14) {
415
        access |= PAGE_READ | PAGE_WRITE;
416
    }
417
    if (attr > 0 && attr < 6) {
418
        access |= PAGE_EXEC;
419
    }
420
    return access;
421
}
422

    
423
static bool is_access_granted(unsigned access, int is_write)
424
{
425
    switch (is_write) {
426
    case 0:
427
        return access & PAGE_READ;
428

    
429
    case 1:
430
        return access & PAGE_WRITE;
431

    
432
    case 2:
433
        return access & PAGE_EXEC;
434

    
435
    default:
436
        return 0;
437
    }
438
}
439

    
440
static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
441

    
442
static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
443
        uint32_t vaddr, int is_write, int mmu_idx,
444
        uint32_t *paddr, uint32_t *page_size, unsigned *access,
445
        bool may_lookup_pt)
446
{
447
    bool dtlb = is_write != 2;
448
    uint32_t wi;
449
    uint32_t ei;
450
    uint8_t ring;
451
    uint32_t vpn;
452
    uint32_t pte;
453
    const xtensa_tlb_entry *entry = NULL;
454
    xtensa_tlb_entry tmp_entry;
455
    int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
456

    
457
    if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
458
            may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
459
        ring = (pte >> 4) & 0x3;
460
        wi = 0;
461
        split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
462

    
463
        if (update_tlb) {
464
            wi = ++env->autorefill_idx & 0x3;
465
            xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
466
            env->sregs[EXCVADDR] = vaddr;
467
            qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
468
                    __func__, vaddr, vpn, pte);
469
        } else {
470
            xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
471
            entry = &tmp_entry;
472
        }
473
        ret = 0;
474
    }
475
    if (ret != 0) {
476
        return ret;
477
    }
478

    
479
    if (entry == NULL) {
480
        entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
481
    }
482

    
483
    if (ring < mmu_idx) {
484
        return dtlb ?
485
            LOAD_STORE_PRIVILEGE_CAUSE :
486
            INST_FETCH_PRIVILEGE_CAUSE;
487
    }
488

    
489
    *access = mmu_attr_to_access(entry->attr);
490
    if (!is_access_granted(*access, is_write)) {
491
        return dtlb ?
492
            (is_write ?
493
             STORE_PROHIBITED_CAUSE :
494
             LOAD_PROHIBITED_CAUSE) :
495
            INST_FETCH_PROHIBITED_CAUSE;
496
    }
497

    
498
    *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
499
    *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
500

    
501
    return 0;
502
}
503

    
504
static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
505
{
506
    uint32_t paddr;
507
    uint32_t page_size;
508
    unsigned access;
509
    uint32_t pt_vaddr =
510
        (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
511
    int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
512
            &paddr, &page_size, &access, false);
513

    
514
    qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
515
            vaddr, ret ? ~0 : paddr);
516

    
517
    if (ret == 0) {
518
        *pte = ldl_phys(paddr);
519
    }
520
    return ret;
521
}
522

    
523
static int get_physical_addr_region(CPUXtensaState *env,
524
        uint32_t vaddr, int is_write, int mmu_idx,
525
        uint32_t *paddr, uint32_t *page_size, unsigned *access)
526
{
527
    bool dtlb = is_write != 2;
528
    uint32_t wi = 0;
529
    uint32_t ei = (vaddr >> 29) & 0x7;
530
    const xtensa_tlb_entry *entry =
531
        xtensa_tlb_get_entry(env, dtlb, wi, ei);
532

    
533
    *access = region_attr_to_access(entry->attr);
534
    if (!is_access_granted(*access, is_write)) {
535
        return dtlb ?
536
            (is_write ?
537
             STORE_PROHIBITED_CAUSE :
538
             LOAD_PROHIBITED_CAUSE) :
539
            INST_FETCH_PROHIBITED_CAUSE;
540
    }
541

    
542
    *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
543
    *page_size = ~REGION_PAGE_MASK + 1;
544

    
545
    return 0;
546
}
547

    
548
/*!
549
 * Convert virtual address to physical addr.
550
 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
551
 *
552
 * \return 0 if ok, exception cause code otherwise
553
 */
554
int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
555
        uint32_t vaddr, int is_write, int mmu_idx,
556
        uint32_t *paddr, uint32_t *page_size, unsigned *access)
557
{
558
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
559
        return get_physical_addr_mmu(env, update_tlb,
560
                vaddr, is_write, mmu_idx, paddr, page_size, access, true);
561
    } else if (xtensa_option_bits_enabled(env->config,
562
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
563
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
564
        return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
565
                paddr, page_size, access);
566
    } else {
567
        *paddr = vaddr;
568
        *page_size = TARGET_PAGE_SIZE;
569
        *access = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
570
        return 0;
571
    }
572
}
573

    
574
static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
575
        CPUXtensaState *env, bool dtlb)
576
{
577
    unsigned wi, ei;
578
    const xtensa_tlb *conf =
579
        dtlb ? &env->config->dtlb : &env->config->itlb;
580
    unsigned (*attr_to_access)(uint32_t) =
581
        xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
582
        mmu_attr_to_access : region_attr_to_access;
583

    
584
    for (wi = 0; wi < conf->nways; ++wi) {
585
        uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
586
        const char *sz_text;
587
        bool print_header = true;
588

    
589
        if (sz >= 0x100000) {
590
            sz >>= 20;
591
            sz_text = "MB";
592
        } else {
593
            sz >>= 10;
594
            sz_text = "KB";
595
        }
596

    
597
        for (ei = 0; ei < conf->way_size[wi]; ++ei) {
598
            const xtensa_tlb_entry *entry =
599
                xtensa_tlb_get_entry(env, dtlb, wi, ei);
600

    
601
            if (entry->asid) {
602
                unsigned access = attr_to_access(entry->attr);
603

    
604
                if (print_header) {
605
                    print_header = false;
606
                    cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
607
                    cpu_fprintf(f,
608
                            "\tVaddr       Paddr       ASID  Attr RWX\n"
609
                            "\t----------  ----------  ----  ---- ---\n");
610
                }
611
                cpu_fprintf(f,
612
                        "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c\n",
613
                        entry->vaddr,
614
                        entry->paddr,
615
                        entry->asid,
616
                        entry->attr,
617
                        (access & PAGE_READ) ? 'R' : '-',
618
                        (access & PAGE_WRITE) ? 'W' : '-',
619
                        (access & PAGE_EXEC) ? 'X' : '-');
620
            }
621
        }
622
    }
623
}
624

    
625
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
626
{
627
    if (xtensa_option_bits_enabled(env->config,
628
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
629
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
630
                XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
631

    
632
        cpu_fprintf(f, "ITLB:\n");
633
        dump_tlb(f, cpu_fprintf, env, false);
634
        cpu_fprintf(f, "\nDTLB:\n");
635
        dump_tlb(f, cpu_fprintf, env, true);
636
    } else {
637
        cpu_fprintf(f, "No TLB for this CPU core\n");
638
    }
639
}