Statistics
| Branch: | Revision:

root / hw / sun4m.c @ afc7df11

History | View | Annotate | Download (6.6 kB)

1
/*
2
 * QEMU Sun4m System Emulator
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
#include "m48t08.h"
26

    
27
#define KERNEL_LOAD_ADDR     0x00004000
28
#define INITRD_LOAD_ADDR     0x00800000
29
#define PROM_ADDR             0xffd00000
30
#define PROM_FILENAMEB             "proll.bin"
31
#define PROM_FILENAMEE             "proll.elf"
32
#define PHYS_JJ_EEPROM        0x71200000        /* m48t08 */
33
#define PHYS_JJ_IDPROM_OFF        0x1FD8
34
#define PHYS_JJ_EEPROM_SIZE        0x2000
35
// IRQs are not PIL ones, but master interrupt controller register
36
// bits
37
#define PHYS_JJ_IOMMU        0x10000000        /* I/O MMU */
38
#define PHYS_JJ_TCX_FB        0x50800000        /* Start address, frame buffer body */
39
#define PHYS_JJ_LEDMA   0x78400010      /* Lance DMA controller */
40
#define PHYS_JJ_LE      0x78C00000      /* Lance ethernet */
41
#define PHYS_JJ_LE_IRQ     16
42
#define PHYS_JJ_CLOCK        0x71D00000      /* Per-CPU timer/counter, L14 */
43
#define PHYS_JJ_CLOCK_IRQ  7
44
#define PHYS_JJ_CLOCK1        0x71D10000      /* System timer/counter, L10 */
45
#define PHYS_JJ_CLOCK1_IRQ 19
46
#define PHYS_JJ_INTR0        0x71E00000        /* Per-CPU interrupt control registers */
47
#define PHYS_JJ_INTR_G        0x71E10000        /* Master interrupt control registers */
48
#define PHYS_JJ_MS_KBD        0x71000000        /* Mouse and keyboard */
49
#define PHYS_JJ_MS_KBD_IRQ    14
50
#define PHYS_JJ_SER        0x71100000        /* Serial */
51
#define PHYS_JJ_SER_IRQ    15
52
#define PHYS_JJ_SCSI_IRQ   18
53
#define PHYS_JJ_FDC        0x71400000        /* Floppy */
54
#define PHYS_JJ_FLOPPY_IRQ 22
55

    
56
/* TSC handling */
57

    
58
uint64_t cpu_get_tsc()
59
{
60
    return qemu_get_clock(vm_clock);
61
}
62

    
63
void DMA_run() {}
64

    
65
static m48t08_t *nvram;
66

    
67
static void nvram_init(m48t08_t *nvram, uint8_t *macaddr)
68
{
69
    unsigned char tmp = 0;
70
    int i, j;
71

    
72
    i = 0x1fd8;
73
    m48t08_write(nvram, i++, 0x01);
74
    m48t08_write(nvram, i++, 0x80); /* Sun4m OBP */
75
    j = 0;
76
    m48t08_write(nvram, i++, macaddr[j++]);
77
    m48t08_write(nvram, i++, macaddr[j++]);
78
    m48t08_write(nvram, i++, macaddr[j++]);
79
    m48t08_write(nvram, i++, macaddr[j++]);
80
    m48t08_write(nvram, i++, macaddr[j++]);
81
    m48t08_write(nvram, i, macaddr[j]);
82

    
83
    /* Calculate checksum */
84
    for (i = 0x1fd8; i < 0x1fe7; i++) {
85
        tmp ^= m48t08_read(nvram, i);
86
    }
87
    m48t08_write(nvram, 0x1fe7, tmp);
88
}
89

    
90
static void *slavio_intctl;
91

    
92
void pic_info()
93
{
94
    slavio_pic_info(slavio_intctl);
95
}
96

    
97
void irq_info()
98
{
99
    slavio_irq_info(slavio_intctl);
100
}
101

    
102
void pic_set_irq(int irq, int level)
103
{
104
    slavio_pic_set_irq(slavio_intctl, irq, level);
105
}
106

    
107
static void *tcx;
108

    
109
void vga_update_display()
110
{
111
    tcx_update_display(tcx);
112
}
113

    
114
void vga_invalidate_display()
115
{
116
    tcx_invalidate_display(tcx);
117
}
118

    
119
void vga_screen_dump(const char *filename)
120
{
121
    tcx_screen_dump(tcx, filename);
122
}
123

    
124
static void *iommu;
125

    
126
uint32_t iommu_translate(uint32_t addr)
127
{
128
    return iommu_translate_local(iommu, addr);
129
}
130

    
131
/* Sun4m hardware initialisation */
132
void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
133
             DisplayState *ds, const char **fd_filename, int snapshot,
134
             const char *kernel_filename, const char *kernel_cmdline,
135
             const char *initrd_filename)
136
{
137
    char buf[1024];
138
    int ret, linux_boot;
139
    unsigned int i;
140
    unsigned long vram_size = 0x100000, prom_offset, initrd_size;
141

    
142
    linux_boot = (kernel_filename != NULL);
143

    
144
    /* allocate RAM */
145
    cpu_register_physical_memory(0, ram_size, 0);
146

    
147
    iommu = iommu_init(PHYS_JJ_IOMMU);
148
    slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
149
    tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size);
150
    lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
151
    nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
152
    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr);
153
    slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
154
    slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
155
    slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[0], serial_hds[1]);
156
    fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
157

    
158
    prom_offset = ram_size + vram_size;
159

    
160
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
161
    ret = load_elf(buf, phys_ram_base + prom_offset);
162
    if (ret < 0) {
163
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
164
        ret = load_image(buf, phys_ram_base + prom_offset);
165
    }
166
    if (ret < 0) {
167
        fprintf(stderr, "qemu: could not load prom '%s'\n", 
168
                buf);
169
        exit(1);
170
    }
171
    cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK, 
172
                                 prom_offset | IO_MEM_ROM);
173

    
174
    if (linux_boot) {
175
        ret = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
176
        if (ret < 0)
177
            ret = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
178
        if (ret < 0)
179
            ret = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
180
        if (ret < 0) {
181
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
182
                    kernel_filename);
183
            exit(1);
184
        }
185

    
186
        /* load initrd */
187
        initrd_size = 0;
188
        if (initrd_filename) {
189
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
190
            if (initrd_size < 0) {
191
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 
192
                        initrd_filename);
193
                exit(1);
194
            }
195
        }
196
        if (initrd_size > 0) {
197
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
198
                if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
199
                    == 0x48647253) { // HdrS
200
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
201
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
202
                    break;
203
                }
204
            }
205
        }
206
    }
207
}