Statistics
| Branch: | Revision:

root / qemu-doc.texi @ b42ec42d

History | View | Annotate | Download (103.8 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
94 52c00a5f bellard
@end itemize
95 386405f7 bellard
96 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97 0806e3f6 bellard
98 debc7065 bellard
@node Installation
99 5b9f457a bellard
@chapter Installation
100 5b9f457a bellard
101 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
102 15a34c63 bellard
103 debc7065 bellard
@menu
104 debc7065 bellard
* install_linux::   Linux
105 debc7065 bellard
* install_windows:: Windows
106 debc7065 bellard
* install_mac::     Macintosh
107 debc7065 bellard
@end menu
108 debc7065 bellard
109 debc7065 bellard
@node install_linux
110 1f673135 bellard
@section Linux
111 1f673135 bellard
112 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
113 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
114 5b9f457a bellard
115 debc7065 bellard
@node install_windows
116 1f673135 bellard
@section Windows
117 8cd0ac2f bellard
118 15a34c63 bellard
Download the experimental binary installer at
119 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
120 d691f669 bellard
121 debc7065 bellard
@node install_mac
122 1f673135 bellard
@section Mac OS X
123 d691f669 bellard
124 15a34c63 bellard
Download the experimental binary installer at
125 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
126 df0f11a0 bellard
127 debc7065 bellard
@node QEMU PC System emulator
128 3f9f3aa1 bellard
@chapter QEMU PC System emulator
129 1eb20527 bellard
130 debc7065 bellard
@menu
131 debc7065 bellard
* pcsys_introduction:: Introduction
132 debc7065 bellard
* pcsys_quickstart::   Quick Start
133 debc7065 bellard
* sec_invocation::     Invocation
134 debc7065 bellard
* pcsys_keys::         Keys
135 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
136 debc7065 bellard
* disk_images::        Disk Images
137 debc7065 bellard
* pcsys_network::      Network emulation
138 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
139 debc7065 bellard
* pcsys_usb::          USB emulation
140 f858dcae ths
* vnc_security::       VNC security
141 debc7065 bellard
* gdb_usage::          GDB usage
142 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
143 debc7065 bellard
@end menu
144 debc7065 bellard
145 debc7065 bellard
@node pcsys_introduction
146 0806e3f6 bellard
@section Introduction
147 0806e3f6 bellard
148 0806e3f6 bellard
@c man begin DESCRIPTION
149 0806e3f6 bellard
150 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
151 3f9f3aa1 bellard
following peripherals:
152 0806e3f6 bellard
153 0806e3f6 bellard
@itemize @minus
154 5fafdf24 ths
@item
155 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156 0806e3f6 bellard
@item
157 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158 15a34c63 bellard
extensions (hardware level, including all non standard modes).
159 0806e3f6 bellard
@item
160 0806e3f6 bellard
PS/2 mouse and keyboard
161 5fafdf24 ths
@item
162 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
163 1f673135 bellard
@item
164 1f673135 bellard
Floppy disk
165 5fafdf24 ths
@item
166 c4a7060c blueswir1
PCI/ISA PCI network adapters
167 0806e3f6 bellard
@item
168 05d5818c bellard
Serial ports
169 05d5818c bellard
@item
170 c0fe3827 bellard
Creative SoundBlaster 16 sound card
171 c0fe3827 bellard
@item
172 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
173 c0fe3827 bellard
@item
174 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
175 e5c9a13e balrog
@item
176 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
177 b389dbfb bellard
@item
178 26463dbc balrog
Gravis Ultrasound GF1 sound card
179 26463dbc balrog
@item
180 cc53d26d malc
CS4231A compatible sound card
181 cc53d26d malc
@item
182 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
183 0806e3f6 bellard
@end itemize
184 0806e3f6 bellard
185 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
186 3f9f3aa1 bellard
187 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
188 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
189 e5178e8d malc
required card(s).
190 c0fe3827 bellard
191 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192 15a34c63 bellard
VGA BIOS.
193 15a34c63 bellard
194 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195 c0fe3827 bellard
196 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197 26463dbc balrog
by Tibor "TS" Sch?tz.
198 423d65f4 balrog
199 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
200 cc53d26d malc
201 0806e3f6 bellard
@c man end
202 0806e3f6 bellard
203 debc7065 bellard
@node pcsys_quickstart
204 1eb20527 bellard
@section Quick Start
205 1eb20527 bellard
206 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
207 0806e3f6 bellard
208 0806e3f6 bellard
@example
209 285dc330 bellard
qemu linux.img
210 0806e3f6 bellard
@end example
211 0806e3f6 bellard
212 0806e3f6 bellard
Linux should boot and give you a prompt.
213 0806e3f6 bellard
214 6cc721cf bellard
@node sec_invocation
215 ec410fc9 bellard
@section Invocation
216 ec410fc9 bellard
217 ec410fc9 bellard
@example
218 0806e3f6 bellard
@c man begin SYNOPSIS
219 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
220 0806e3f6 bellard
@c man end
221 ec410fc9 bellard
@end example
222 ec410fc9 bellard
223 0806e3f6 bellard
@c man begin OPTIONS
224 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225 d2c639d6 blueswir1
targets do not need a disk image.
226 ec410fc9 bellard
227 ec410fc9 bellard
General options:
228 ec410fc9 bellard
@table @option
229 d2c639d6 blueswir1
@item -h
230 d2c639d6 blueswir1
Display help and exit
231 d2c639d6 blueswir1
232 89dfe898 ths
@item -M @var{machine}
233 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
234 3dbbdc25 bellard
235 d2c639d6 blueswir1
@item -cpu @var{model}
236 d2c639d6 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
237 d2c639d6 blueswir1
238 d2c639d6 blueswir1
@item -smp @var{n}
239 d2c639d6 blueswir1
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 d2c639d6 blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241 d2c639d6 blueswir1
to 4.
242 d2c639d6 blueswir1
243 89dfe898 ths
@item -fda @var{file}
244 89dfe898 ths
@item -fdb @var{file}
245 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
246 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
247 2be3bc02 bellard
248 89dfe898 ths
@item -hda @var{file}
249 89dfe898 ths
@item -hdb @var{file}
250 89dfe898 ths
@item -hdc @var{file}
251 89dfe898 ths
@item -hdd @var{file}
252 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
253 1f47a922 bellard
254 89dfe898 ths
@item -cdrom @var{file}
255 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
256 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
257 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
258 181f1558 bellard
259 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
260 e0e7ada1 balrog
261 e0e7ada1 balrog
Define a new drive. Valid options are:
262 e0e7ada1 balrog
263 e0e7ada1 balrog
@table @code
264 e0e7ada1 balrog
@item file=@var{file}
265 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
266 609497ab balrog
this drive. If the filename contains comma, you must double it
267 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
268 e0e7ada1 balrog
@item if=@var{interface}
269 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
270 6e02c38d aliguori
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
271 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
272 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
273 e0e7ada1 balrog
the unit id.
274 e0e7ada1 balrog
@item index=@var{index}
275 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
276 e0e7ada1 balrog
of available connectors of a given interface type.
277 e0e7ada1 balrog
@item media=@var{media}
278 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
279 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
281 e0e7ada1 balrog
@item snapshot=@var{snapshot}
282 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
283 33f00271 balrog
@item cache=@var{cache}
284 9f7965c7 aliguori
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
285 1e72d3b7 aurel32
@item format=@var{format}
286 1e72d3b7 aurel32
Specify which disk @var{format} will be used rather than detecting
287 1e72d3b7 aurel32
the format.  Can be used to specifiy format=raw to avoid interpreting
288 1e72d3b7 aurel32
an untrusted format header.
289 fa879c64 aliguori
@item serial=@var{serial}
290 fa879c64 aliguori
This option specifies the serial number to assign to the device.
291 e0e7ada1 balrog
@end table
292 e0e7ada1 balrog
293 9f7965c7 aliguori
By default, writethrough caching is used for all block device.  This means that
294 9f7965c7 aliguori
the host page cache will be used to read and write data but write notification
295 9f7965c7 aliguori
will be sent to the guest only when the data has been reported as written by
296 9f7965c7 aliguori
the storage subsystem.
297 9f7965c7 aliguori
298 9f7965c7 aliguori
Writeback caching will report data writes as completed as soon as the data is
299 9f7965c7 aliguori
present in the host page cache.  This is safe as long as you trust your host.
300 9f7965c7 aliguori
If your host crashes or loses power, then the guest may experience data
301 9f7965c7 aliguori
corruption.  When using the @option{-snapshot} option, writeback caching is
302 9f7965c7 aliguori
used by default.
303 9f7965c7 aliguori
304 9f7965c7 aliguori
The host page can be avoided entirely with @option{cache=none}.  This will
305 9f7965c7 aliguori
attempt to do disk IO directly to the guests memory.  QEMU may still perform
306 9f7965c7 aliguori
an internal copy of the data.
307 9f7965c7 aliguori
308 4dc822d7 aliguori
Some block drivers perform badly with @option{cache=writethrough}, most notably,
309 4dc822d7 aliguori
qcow2.  If performance is more important than correctness,
310 4dc822d7 aliguori
@option{cache=writeback} should be used with qcow2.  By default, if no explicit
311 4dc822d7 aliguori
caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312 4dc822d7 aliguori
used.  For all other disk types, @option{cache=writethrough} is the default.
313 4dc822d7 aliguori
314 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
315 e0e7ada1 balrog
@example
316 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
317 e0e7ada1 balrog
@end example
318 e0e7ada1 balrog
319 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320 e0e7ada1 balrog
use:
321 e0e7ada1 balrog
@example
322 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
323 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
324 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
325 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
326 e0e7ada1 balrog
@end example
327 e0e7ada1 balrog
328 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
329 e0e7ada1 balrog
@example
330 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
331 e0e7ada1 balrog
@end example
332 e0e7ada1 balrog
333 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
334 e0e7ada1 balrog
@example
335 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
336 e0e7ada1 balrog
@end example
337 e0e7ada1 balrog
338 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
339 e0e7ada1 balrog
@example
340 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
341 e0e7ada1 balrog
@end example
342 e0e7ada1 balrog
343 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
344 e0e7ada1 balrog
@example
345 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
346 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
347 e0e7ada1 balrog
@end example
348 e0e7ada1 balrog
349 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
350 e0e7ada1 balrog
incremented:
351 e0e7ada1 balrog
@example
352 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
353 e0e7ada1 balrog
@end example
354 e0e7ada1 balrog
is interpreted like:
355 e0e7ada1 balrog
@example
356 e0e7ada1 balrog
qemu -hda a -hdb b
357 e0e7ada1 balrog
@end example
358 e0e7ada1 balrog
359 d2c639d6 blueswir1
@item -mtdblock file
360 d2c639d6 blueswir1
Use 'file' as on-board Flash memory image.
361 d2c639d6 blueswir1
362 d2c639d6 blueswir1
@item -sd file
363 d2c639d6 blueswir1
Use 'file' as SecureDigital card image.
364 d2c639d6 blueswir1
365 d2c639d6 blueswir1
@item -pflash file
366 d2c639d6 blueswir1
Use 'file' as a parallel flash image.
367 d2c639d6 blueswir1
368 eec85c2a ths
@item -boot [a|c|d|n]
369 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370 eec85c2a ths
is the default.
371 1f47a922 bellard
372 181f1558 bellard
@item -snapshot
373 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
374 1f47a922 bellard
the raw disk image you use is not written back. You can however force
375 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
376 ec410fc9 bellard
377 89dfe898 ths
@item -m @var{megs}
378 00f82b8a aurel32
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
379 00f82b8a aurel32
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380 00f82b8a aurel32
gigabytes respectively.
381 ec410fc9 bellard
382 d2c639d6 blueswir1
@item -k @var{language}
383 34a3d239 blueswir1
384 d2c639d6 blueswir1
Use keyboard layout @var{language} (for example @code{fr} for
385 d2c639d6 blueswir1
French). This option is only needed where it is not easy to get raw PC
386 d2c639d6 blueswir1
keycodes (e.g. on Macs, with some X11 servers or with a VNC
387 d2c639d6 blueswir1
display). You don't normally need to use it on PC/Linux or PC/Windows
388 d2c639d6 blueswir1
hosts.
389 d2c639d6 blueswir1
390 d2c639d6 blueswir1
The available layouts are:
391 d2c639d6 blueswir1
@example
392 d2c639d6 blueswir1
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
393 d2c639d6 blueswir1
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
394 d2c639d6 blueswir1
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
395 d2c639d6 blueswir1
@end example
396 d2c639d6 blueswir1
397 d2c639d6 blueswir1
The default is @code{en-us}.
398 3f9f3aa1 bellard
399 1d14ffa9 bellard
@item -audio-help
400 1d14ffa9 bellard
401 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
402 1d14ffa9 bellard
parameters.
403 1d14ffa9 bellard
404 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
405 1d14ffa9 bellard
406 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
407 1d14ffa9 bellard
available sound hardware.
408 1d14ffa9 bellard
409 1d14ffa9 bellard
@example
410 9b3469cc malc
qemu -soundhw sb16,adlib disk.img
411 9b3469cc malc
qemu -soundhw es1370 disk.img
412 9b3469cc malc
qemu -soundhw ac97 disk.img
413 9b3469cc malc
qemu -soundhw all disk.img
414 1d14ffa9 bellard
qemu -soundhw ?
415 1d14ffa9 bellard
@end example
416 a8c490cd bellard
417 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
418 e5c9a13e balrog
require manually specifying clocking.
419 e5c9a13e balrog
420 e5c9a13e balrog
@example
421 e5c9a13e balrog
modprobe i810_audio clocking=48000
422 e5c9a13e balrog
@end example
423 e5c9a13e balrog
424 d2c639d6 blueswir1
@end table
425 15a34c63 bellard
426 d2c639d6 blueswir1
USB options:
427 d2c639d6 blueswir1
@table @option
428 7e0af5d0 bellard
429 d2c639d6 blueswir1
@item -usb
430 d2c639d6 blueswir1
Enable the USB driver (will be the default soon)
431 f7cce898 bellard
432 d2c639d6 blueswir1
@item -usbdevice @var{devname}
433 d2c639d6 blueswir1
Add the USB device @var{devname}. @xref{usb_devices}.
434 71e3ceb8 ths
435 d2c639d6 blueswir1
@table @code
436 9d0a8e6f bellard
437 d2c639d6 blueswir1
@item mouse
438 d2c639d6 blueswir1
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
439 73822ec8 aliguori
440 d2c639d6 blueswir1
@item tablet
441 d2c639d6 blueswir1
Pointer device that uses absolute coordinates (like a touchscreen). This
442 d2c639d6 blueswir1
means qemu is able to report the mouse position without having to grab the
443 d2c639d6 blueswir1
mouse. Also overrides the PS/2 mouse emulation when activated.
444 d2c639d6 blueswir1
445 d2c639d6 blueswir1
@item disk:[format=@var{format}]:file
446 d2c639d6 blueswir1
Mass storage device based on file. The optional @var{format} argument
447 d2c639d6 blueswir1
will be used rather than detecting the format. Can be used to specifiy
448 d2c639d6 blueswir1
format=raw to avoid interpreting an untrusted format header.
449 d2c639d6 blueswir1
450 d2c639d6 blueswir1
@item host:bus.addr
451 d2c639d6 blueswir1
Pass through the host device identified by bus.addr (Linux only).
452 d2c639d6 blueswir1
453 d2c639d6 blueswir1
@item host:vendor_id:product_id
454 d2c639d6 blueswir1
Pass through the host device identified by vendor_id:product_id (Linux only).
455 d2c639d6 blueswir1
456 d2c639d6 blueswir1
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457 d2c639d6 blueswir1
Serial converter to host character device @var{dev}, see @code{-serial} for the
458 d2c639d6 blueswir1
available devices.
459 d2c639d6 blueswir1
460 d2c639d6 blueswir1
@item braille
461 d2c639d6 blueswir1
Braille device.  This will use BrlAPI to display the braille output on a real
462 d2c639d6 blueswir1
or fake device.
463 d2c639d6 blueswir1
464 d2c639d6 blueswir1
@item net:options
465 d2c639d6 blueswir1
Network adapter that supports CDC ethernet and RNDIS protocols.
466 d2c639d6 blueswir1
467 d2c639d6 blueswir1
@end table
468 9ae02555 ths
469 89dfe898 ths
@item -name @var{name}
470 89dfe898 ths
Sets the @var{name} of the guest.
471 1addc7c5 aurel32
This name will be displayed in the SDL window caption.
472 89dfe898 ths
The @var{name} will also be used for the VNC server.
473 c35734b2 ths
474 d2c639d6 blueswir1
@item -uuid @var{uuid}
475 d2c639d6 blueswir1
Set system UUID.
476 d2c639d6 blueswir1
477 0806e3f6 bellard
@end table
478 0806e3f6 bellard
479 f858dcae ths
Display options:
480 f858dcae ths
@table @option
481 f858dcae ths
482 f858dcae ths
@item -nographic
483 f858dcae ths
484 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
485 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
486 f858dcae ths
command line application. The emulated serial port is redirected on
487 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
488 f858dcae ths
with a serial console.
489 f858dcae ths
490 052caf70 aurel32
@item -curses
491 052caf70 aurel32
492 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
493 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
494 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
495 052caf70 aurel32
496 f858dcae ths
@item -no-frame
497 f858dcae ths
498 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
499 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
500 f858dcae ths
workspace more convenient.
501 f858dcae ths
502 d2c639d6 blueswir1
@item -alt-grab
503 d2c639d6 blueswir1
504 d2c639d6 blueswir1
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
505 d2c639d6 blueswir1
506 99aa9e4c aurel32
@item -no-quit
507 99aa9e4c aurel32
508 99aa9e4c aurel32
Disable SDL window close capability.
509 99aa9e4c aurel32
510 d2c639d6 blueswir1
@item -sdl
511 d2c639d6 blueswir1
512 d2c639d6 blueswir1
Enable SDL.
513 d2c639d6 blueswir1
514 d2c639d6 blueswir1
@item -portrait
515 d2c639d6 blueswir1
516 d2c639d6 blueswir1
Rotate graphical output 90 deg left (only PXA LCD).
517 d2c639d6 blueswir1
518 d2c639d6 blueswir1
@item -vga @var{type}
519 d2c639d6 blueswir1
Select type of VGA card to emulate. Valid values for @var{type} are
520 d2c639d6 blueswir1
@table @code
521 d2c639d6 blueswir1
@item cirrus
522 d2c639d6 blueswir1
Cirrus Logic GD5446 Video card. All Windows versions starting from
523 d2c639d6 blueswir1
Windows 95 should recognize and use this graphic card. For optimal
524 d2c639d6 blueswir1
performances, use 16 bit color depth in the guest and the host OS.
525 d2c639d6 blueswir1
(This one is the default)
526 d2c639d6 blueswir1
@item std
527 d2c639d6 blueswir1
Standard VGA card with Bochs VBE extensions.  If your guest OS
528 d2c639d6 blueswir1
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529 d2c639d6 blueswir1
to use high resolution modes (>= 1280x1024x16) then you should use
530 d2c639d6 blueswir1
this option.
531 d2c639d6 blueswir1
@item vmware
532 d2c639d6 blueswir1
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533 d2c639d6 blueswir1
recent XFree86/XOrg server or Windows guest with a driver for this
534 d2c639d6 blueswir1
card.
535 d2c639d6 blueswir1
@item none
536 d2c639d6 blueswir1
Disable VGA card.
537 d2c639d6 blueswir1
@end table
538 d2c639d6 blueswir1
539 f858dcae ths
@item -full-screen
540 f858dcae ths
Start in full screen.
541 f858dcae ths
542 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
543 f858dcae ths
544 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
545 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
546 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
547 f858dcae ths
tablet device when using this option (option @option{-usbdevice
548 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
549 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
550 f858dcae ths
syntax for the @var{display} is
551 f858dcae ths
552 f858dcae ths
@table @code
553 f858dcae ths
554 3aa3eea3 balrog
@item @var{host}:@var{d}
555 f858dcae ths
556 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
557 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
559 f858dcae ths
560 3aa3eea3 balrog
@item @code{unix}:@var{path}
561 f858dcae ths
562 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
563 f858dcae ths
location of a unix socket to listen for connections on.
564 f858dcae ths
565 89dfe898 ths
@item none
566 f858dcae ths
567 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
568 3aa3eea3 balrog
can be used to later start the VNC server.
569 f858dcae ths
570 f858dcae ths
@end table
571 f858dcae ths
572 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
573 f858dcae ths
separated by commas. Valid options are
574 f858dcae ths
575 f858dcae ths
@table @code
576 f858dcae ths
577 3aa3eea3 balrog
@item reverse
578 3aa3eea3 balrog
579 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
580 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
581 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582 3aa3eea3 balrog
is a TCP port number, not a display number.
583 3aa3eea3 balrog
584 89dfe898 ths
@item password
585 f858dcae ths
586 f858dcae ths
Require that password based authentication is used for client connections.
587 f858dcae ths
The password must be set separately using the @code{change} command in the
588 f858dcae ths
@ref{pcsys_monitor}
589 f858dcae ths
590 89dfe898 ths
@item tls
591 f858dcae ths
592 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
593 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594 f858dcae ths
attack. It is recommended that this option be combined with either the
595 f858dcae ths
@var{x509} or @var{x509verify} options.
596 f858dcae ths
597 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
598 f858dcae ths
599 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
600 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
601 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
602 f858dcae ths
to provide authentication of the client when this is used. The path following
603 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
604 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
605 f858dcae ths
606 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
607 f858dcae ths
608 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
609 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
610 f858dcae ths
to the client, and request that the client send its own x509 certificate.
611 f858dcae ths
The server will validate the client's certificate against the CA certificate,
612 f858dcae ths
and reject clients when validation fails. If the certificate authority is
613 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
614 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
615 f858dcae ths
path following this option specifies where the x509 certificates are to
616 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
617 f858dcae ths
certificates.
618 f858dcae ths
619 f858dcae ths
@end table
620 f858dcae ths
621 b389dbfb bellard
@end table
622 b389dbfb bellard
623 1f673135 bellard
Network options:
624 1f673135 bellard
625 1f673135 bellard
@table @option
626 1f673135 bellard
627 7a9f6e4a aliguori
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
628 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
629 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
630 7a9f6e4a aliguori
target. Optionally, the MAC address can be changed to @var{addr}
631 7a9f6e4a aliguori
and a @var{name} can be assigned for use in monitor commands. If no
632 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
633 549444e1 balrog
Qemu can emulate several different models of network card.
634 549444e1 balrog
Valid values for @var{type} are
635 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
636 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
637 9ad97e65 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
638 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
639 c4a7060c blueswir1
for a list of available devices for your target.
640 41d03949 bellard
641 7a9f6e4a aliguori
@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
642 7e89463d bellard
Use the user mode network stack which requires no administrator
643 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
644 115defd1 pbrook
hostname reported by the builtin DHCP server.
645 41d03949 bellard
646 8ca9217d aliguori
@item -net channel,@var{port}:@var{dev}
647 8ca9217d aliguori
Forward @option{user} TCP connection to port @var{port} to character device @var{dev}
648 8ca9217d aliguori
649 7a9f6e4a aliguori
@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
650 030370a2 aurel32
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
651 030370a2 aurel32
the network script @var{file} to configure it and the network script 
652 030370a2 aurel32
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
653 030370a2 aurel32
automatically provides one. @option{fd}=@var{h} can be used to specify
654 030370a2 aurel32
the handle of an already opened host TAP interface. The default network 
655 030370a2 aurel32
configure script is @file{/etc/qemu-ifup} and the default network 
656 030370a2 aurel32
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
657 030370a2 aurel32
or @option{downscript=no} to disable script execution. Example:
658 1f673135 bellard
659 41d03949 bellard
@example
660 41d03949 bellard
qemu linux.img -net nic -net tap
661 41d03949 bellard
@end example
662 41d03949 bellard
663 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
664 41d03949 bellard
@example
665 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
666 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
667 41d03949 bellard
@end example
668 3f1a88f4 bellard
669 3f1a88f4 bellard
670 7a9f6e4a aliguori
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
671 1f673135 bellard
672 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
673 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
674 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
675 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
676 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
677 3d830459 bellard
specifies an already opened TCP socket.
678 1f673135 bellard
679 41d03949 bellard
Example:
680 41d03949 bellard
@example
681 41d03949 bellard
# launch a first QEMU instance
682 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
683 debc7065 bellard
               -net socket,listen=:1234
684 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
685 debc7065 bellard
# of the first instance
686 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
687 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
688 41d03949 bellard
@end example
689 52c00a5f bellard
690 7a9f6e4a aliguori
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
691 3d830459 bellard
692 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
693 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
694 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
695 3d830459 bellard
NOTES:
696 3d830459 bellard
@enumerate
697 5fafdf24 ths
@item
698 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
699 3d830459 bellard
correct multicast setup for these hosts).
700 3d830459 bellard
@item
701 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
702 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
703 4be456f1 ths
@item
704 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
705 3d830459 bellard
@end enumerate
706 3d830459 bellard
707 3d830459 bellard
Example:
708 3d830459 bellard
@example
709 3d830459 bellard
# launch one QEMU instance
710 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
711 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
712 3d830459 bellard
# launch another QEMU instance on same "bus"
713 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
714 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
715 3d830459 bellard
# launch yet another QEMU instance on same "bus"
716 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
717 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
718 3d830459 bellard
@end example
719 3d830459 bellard
720 3d830459 bellard
Example (User Mode Linux compat.):
721 3d830459 bellard
@example
722 debc7065 bellard
# launch QEMU instance (note mcast address selected
723 debc7065 bellard
# is UML's default)
724 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
725 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
726 3d830459 bellard
# launch UML
727 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
728 3d830459 bellard
@end example
729 8a16d273 ths
730 7a9f6e4a aliguori
@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
731 8a16d273 ths
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
732 8a16d273 ths
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
733 8a16d273 ths
and MODE @var{octalmode} to change default ownership and permissions for
734 8a16d273 ths
communication port. This option is available only if QEMU has been compiled
735 8a16d273 ths
with vde support enabled.
736 8a16d273 ths
737 8a16d273 ths
Example:
738 8a16d273 ths
@example
739 8a16d273 ths
# launch vde switch
740 8a16d273 ths
vde_switch -F -sock /tmp/myswitch
741 8a16d273 ths
# launch QEMU instance
742 8a16d273 ths
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
743 8a16d273 ths
@end example
744 3d830459 bellard
745 41d03949 bellard
@item -net none
746 41d03949 bellard
Indicate that no network devices should be configured. It is used to
747 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
748 039af320 bellard
is activated if no @option{-net} options are provided.
749 52c00a5f bellard
750 89dfe898 ths
@item -tftp @var{dir}
751 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
752 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
753 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
754 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
755 0db1137d ths
usual 10.0.2.2.
756 9bf05444 bellard
757 89dfe898 ths
@item -bootp @var{file}
758 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
759 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
760 47d5d01a ths
a guest from a local directory.
761 47d5d01a ths
762 47d5d01a ths
Example (using pxelinux):
763 47d5d01a ths
@example
764 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
765 47d5d01a ths
@end example
766 47d5d01a ths
767 89dfe898 ths
@item -smb @var{dir}
768 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
769 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
770 2518bd0d bellard
transparently.
771 2518bd0d bellard
772 2518bd0d bellard
In the guest Windows OS, the line:
773 2518bd0d bellard
@example
774 2518bd0d bellard
10.0.2.4 smbserver
775 2518bd0d bellard
@end example
776 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
777 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
778 2518bd0d bellard
779 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
780 2518bd0d bellard
781 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
782 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
783 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
784 2518bd0d bellard
785 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
786 9bf05444 bellard
787 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
788 9bf05444 bellard
connections to the host port @var{host-port} to the guest
789 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
790 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
791 9bf05444 bellard
built-in DHCP server).
792 9bf05444 bellard
793 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
794 9bf05444 bellard
screen 0, use the following:
795 9bf05444 bellard
796 9bf05444 bellard
@example
797 9bf05444 bellard
# on the host
798 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
799 9bf05444 bellard
# this host xterm should open in the guest X11 server
800 9bf05444 bellard
xterm -display :1
801 9bf05444 bellard
@end example
802 9bf05444 bellard
803 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
804 9bf05444 bellard
the guest, use the following:
805 9bf05444 bellard
806 9bf05444 bellard
@example
807 9bf05444 bellard
# on the host
808 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
809 9bf05444 bellard
telnet localhost 5555
810 9bf05444 bellard
@end example
811 9bf05444 bellard
812 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
813 9bf05444 bellard
connect to the guest telnet server.
814 9bf05444 bellard
815 1f673135 bellard
@end table
816 1f673135 bellard
817 2d564691 balrog
Bluetooth(R) options:
818 2d564691 balrog
@table @option
819 2d564691 balrog
820 2d564691 balrog
@item -bt hci[...]
821 2d564691 balrog
Defines the function of the corresponding Bluetooth HCI.  -bt options
822 2d564691 balrog
are matched with the HCIs present in the chosen machine type.  For
823 2d564691 balrog
example when emulating a machine with only one HCI built into it, only
824 2d564691 balrog
the first @code{-bt hci[...]} option is valid and defines the HCI's
825 2d564691 balrog
logic.  The Transport Layer is decided by the machine type.  Currently
826 2d564691 balrog
the machines @code{n800} and @code{n810} have one HCI and all other
827 2d564691 balrog
machines have none.
828 2d564691 balrog
829 2d564691 balrog
@anchor{bt-hcis}
830 2d564691 balrog
The following three types are recognized:
831 2d564691 balrog
832 2d564691 balrog
@table @code
833 2d564691 balrog
@item -bt hci,null
834 2d564691 balrog
(default) The corresponding Bluetooth HCI assumes no internal logic
835 2d564691 balrog
and will not respond to any HCI commands or emit events.
836 2d564691 balrog
837 2d564691 balrog
@item -bt hci,host[:@var{id}]
838 2d564691 balrog
(@code{bluez} only) The corresponding HCI passes commands / events
839 2d564691 balrog
to / from the physical HCI identified by the name @var{id} (default:
840 2d564691 balrog
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
841 2d564691 balrog
capable systems like Linux.
842 2d564691 balrog
843 2d564691 balrog
@item -bt hci[,vlan=@var{n}]
844 2d564691 balrog
Add a virtual, standard HCI that will participate in the Bluetooth
845 2d564691 balrog
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
846 2d564691 balrog
VLANs, devices inside a bluetooth network @var{n} can only communicate
847 2d564691 balrog
with other devices in the same network (scatternet).
848 2d564691 balrog
@end table
849 2d564691 balrog
850 2d564691 balrog
@item -bt vhci[,vlan=@var{n}]
851 2d564691 balrog
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
852 2d564691 balrog
to the host bluetooth stack instead of to the emulated target.  This
853 2d564691 balrog
allows the host and target machines to participate in a common scatternet
854 2d564691 balrog
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
855 2d564691 balrog
be used as following:
856 2d564691 balrog
857 2d564691 balrog
@example
858 2d564691 balrog
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
859 2d564691 balrog
@end example
860 2d564691 balrog
861 2d564691 balrog
@item -bt device:@var{dev}[,vlan=@var{n}]
862 2d564691 balrog
Emulate a bluetooth device @var{dev} and place it in network @var{n}
863 2d564691 balrog
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
864 2d564691 balrog
currently:
865 2d564691 balrog
866 2d564691 balrog
@table @code
867 2d564691 balrog
@item keyboard
868 2d564691 balrog
Virtual wireless keyboard implementing the HIDP bluetooth profile.
869 2d564691 balrog
@end table
870 2d564691 balrog
871 2d564691 balrog
@end table
872 2d564691 balrog
873 d2c639d6 blueswir1
i386 target only:
874 d2c639d6 blueswir1
875 d2c639d6 blueswir1
@table @option
876 d2c639d6 blueswir1
877 d2c639d6 blueswir1
@item -win2k-hack
878 d2c639d6 blueswir1
Use it when installing Windows 2000 to avoid a disk full bug. After
879 d2c639d6 blueswir1
Windows 2000 is installed, you no longer need this option (this option
880 d2c639d6 blueswir1
slows down the IDE transfers).
881 d2c639d6 blueswir1
882 d2c639d6 blueswir1
@item -rtc-td-hack
883 d2c639d6 blueswir1
Use it if you experience time drift problem in Windows with ACPI HAL.
884 d2c639d6 blueswir1
This option will try to figure out how many timer interrupts were not
885 d2c639d6 blueswir1
processed by the Windows guest and will re-inject them.
886 d2c639d6 blueswir1
887 d2c639d6 blueswir1
@item -no-fd-bootchk
888 d2c639d6 blueswir1
Disable boot signature checking for floppy disks in Bochs BIOS. It may
889 d2c639d6 blueswir1
be needed to boot from old floppy disks.
890 d2c639d6 blueswir1
891 d2c639d6 blueswir1
@item -no-acpi
892 d2c639d6 blueswir1
Disable ACPI (Advanced Configuration and Power Interface) support. Use
893 d2c639d6 blueswir1
it if your guest OS complains about ACPI problems (PC target machine
894 d2c639d6 blueswir1
only).
895 d2c639d6 blueswir1
896 d2c639d6 blueswir1
@item -no-hpet
897 d2c639d6 blueswir1
Disable HPET support.
898 d2c639d6 blueswir1
899 8a92ea2f aliguori
@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
900 8a92ea2f aliguori
Add ACPI table with specified header fields and context from specified files.
901 8a92ea2f aliguori
902 d2c639d6 blueswir1
@end table
903 d2c639d6 blueswir1
904 41d03949 bellard
Linux boot specific: When using these options, you can use a given
905 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
906 1f673135 bellard
for easier testing of various kernels.
907 1f673135 bellard
908 0806e3f6 bellard
@table @option
909 0806e3f6 bellard
910 89dfe898 ths
@item -kernel @var{bzImage}
911 0806e3f6 bellard
Use @var{bzImage} as kernel image.
912 0806e3f6 bellard
913 89dfe898 ths
@item -append @var{cmdline}
914 0806e3f6 bellard
Use @var{cmdline} as kernel command line
915 0806e3f6 bellard
916 89dfe898 ths
@item -initrd @var{file}
917 0806e3f6 bellard
Use @var{file} as initial ram disk.
918 0806e3f6 bellard
919 ec410fc9 bellard
@end table
920 ec410fc9 bellard
921 15a34c63 bellard
Debug/Expert options:
922 ec410fc9 bellard
@table @option
923 a0a821a4 bellard
924 89dfe898 ths
@item -serial @var{dev}
925 0bab00f3 bellard
Redirect the virtual serial port to host character device
926 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
927 0bab00f3 bellard
@code{stdio} in non graphical mode.
928 0bab00f3 bellard
929 d2c639d6 blueswir1
This option can be used several times to simulate up to 4 serial
930 0bab00f3 bellard
ports.
931 0bab00f3 bellard
932 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
933 c03b0f0f bellard
934 0bab00f3 bellard
Available character devices are:
935 a0a821a4 bellard
@table @code
936 af3a9031 ths
@item vc[:WxH]
937 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
938 af3a9031 ths
@example
939 af3a9031 ths
vc:800x600
940 af3a9031 ths
@end example
941 af3a9031 ths
It is also possible to specify width or height in characters:
942 af3a9031 ths
@example
943 af3a9031 ths
vc:80Cx24C
944 af3a9031 ths
@end example
945 a0a821a4 bellard
@item pty
946 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
947 c03b0f0f bellard
@item none
948 c03b0f0f bellard
No device is allocated.
949 a0a821a4 bellard
@item null
950 a0a821a4 bellard
void device
951 f8d179e3 bellard
@item /dev/XXX
952 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
953 f8d179e3 bellard
parameters are set according to the emulated ones.
954 89dfe898 ths
@item /dev/parport@var{N}
955 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
956 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
957 89dfe898 ths
@item file:@var{filename}
958 89dfe898 ths
Write output to @var{filename}. No character can be read.
959 a0a821a4 bellard
@item stdio
960 a0a821a4 bellard
[Unix only] standard input/output
961 89dfe898 ths
@item pipe:@var{filename}
962 0bab00f3 bellard
name pipe @var{filename}
963 89dfe898 ths
@item COM@var{n}
964 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
965 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
966 89dfe898 ths
This implements UDP Net Console.
967 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
968 89dfe898 ths
they default to @code{0.0.0.0}.
969 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
970 aa71cf80 aurel32
@item msmouse
971 aa71cf80 aurel32
Three button serial mouse. Configure the guest to use Microsoft protocol.
972 951f1351 bellard
973 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
974 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
975 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
976 951f1351 bellard
will appear in the netconsole session.
977 0bab00f3 bellard
978 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
979 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
980 0bab00f3 bellard
source port each time by using something like @code{-serial
981 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
982 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
983 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
984 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
985 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
986 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
987 0bab00f3 bellard
@table @code
988 951f1351 bellard
@item Qemu Options:
989 951f1351 bellard
-serial udp::4555@@:4556
990 951f1351 bellard
@item netcat options:
991 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
992 951f1351 bellard
@item telnet options:
993 951f1351 bellard
localhost 5555
994 951f1351 bellard
@end table
995 951f1351 bellard
996 951f1351 bellard
997 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
998 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
999 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
1000 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
1001 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
1002 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
1003 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
1004 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
1005 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
1006 951f1351 bellard
connect to the corresponding character device.
1007 951f1351 bellard
@table @code
1008 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
1009 951f1351 bellard
-serial tcp:192.168.0.2:4444
1010 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
1011 951f1351 bellard
-serial tcp::4444,server
1012 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
1013 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
1014 a0a821a4 bellard
@end table
1015 a0a821a4 bellard
1016 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1017 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
1018 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
1019 951f1351 bellard
difference is that the port acts like a telnet server or client using
1020 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
1021 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1022 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
1023 951f1351 bellard
type "send break" followed by pressing the enter key.
1024 0bab00f3 bellard
1025 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
1026 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
1027 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
1028 ffd843bc ths
@var{path} is used for connections.
1029 ffd843bc ths
1030 89dfe898 ths
@item mon:@var{dev_string}
1031 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
1032 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
1033 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
1034 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
1035 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
1036 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
1037 20d8a3ed ths
listening on port 4444 would be:
1038 20d8a3ed ths
@table @code
1039 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
1040 20d8a3ed ths
@end table
1041 20d8a3ed ths
1042 2e4d9fb1 aurel32
@item braille
1043 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1044 2e4d9fb1 aurel32
or fake device.
1045 2e4d9fb1 aurel32
1046 0bab00f3 bellard
@end table
1047 05d5818c bellard
1048 89dfe898 ths
@item -parallel @var{dev}
1049 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
1050 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1051 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
1052 e57a8c0e bellard
parallel port.
1053 e57a8c0e bellard
1054 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
1055 e57a8c0e bellard
ports.
1056 e57a8c0e bellard
1057 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
1058 c03b0f0f bellard
1059 89dfe898 ths
@item -monitor @var{dev}
1060 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
1061 a0a821a4 bellard
serial port).
1062 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
1063 a0a821a4 bellard
non graphical mode.
1064 a0a821a4 bellard
1065 d2c639d6 blueswir1
@item -pidfile @var{file}
1066 d2c639d6 blueswir1
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1067 d2c639d6 blueswir1
from a script.
1068 d2c639d6 blueswir1
1069 d2c639d6 blueswir1
@item -S
1070 d2c639d6 blueswir1
Do not start CPU at startup (you must type 'c' in the monitor).
1071 20d8a3ed ths
1072 ec410fc9 bellard
@item -s
1073 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1074 d2c639d6 blueswir1
1075 89dfe898 ths
@item -p @var{port}
1076 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
1077 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
1078 d2c639d6 blueswir1
1079 3b46e624 ths
@item -d
1080 9d4520d0 bellard
Output log in /tmp/qemu.log
1081 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1082 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1083 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1084 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1085 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
1086 46d4767d bellard
images.
1087 7c3fc84d bellard
1088 d2c639d6 blueswir1
@item -L  @var{path}
1089 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
1090 87b47350 bellard
1091 d2c639d6 blueswir1
@item -bios @var{file}
1092 d2c639d6 blueswir1
Set the filename for the BIOS.
1093 3cb0853a bellard
1094 d2c639d6 blueswir1
@item -kernel-kqemu
1095 d2c639d6 blueswir1
Enable KQEMU full virtualization (default is user mode only).
1096 d2c639d6 blueswir1
1097 d2c639d6 blueswir1
@item -no-kqemu
1098 d2c639d6 blueswir1
Disable KQEMU kernel module usage. KQEMU options are only available if
1099 d2c639d6 blueswir1
KQEMU support is enabled when compiling.
1100 d2c639d6 blueswir1
1101 d2c639d6 blueswir1
@item -enable-kvm
1102 d2c639d6 blueswir1
Enable KVM full virtualization support. This option is only available
1103 d2c639d6 blueswir1
if KVM support is enabled when compiling.
1104 3c656346 bellard
1105 d1beab82 bellard
@item -no-reboot
1106 d1beab82 bellard
Exit instead of rebooting.
1107 d1beab82 bellard
1108 99aa9e4c aurel32
@item -no-shutdown
1109 99aa9e4c aurel32
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1110 99aa9e4c aurel32
This allows for instance switching to monitor to commit changes to the
1111 99aa9e4c aurel32
disk image.
1112 99aa9e4c aurel32
1113 d2c639d6 blueswir1
@item -loadvm @var{file}
1114 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
1115 8e71621f pbrook
1116 d2c639d6 blueswir1
@item -daemonize
1117 d2c639d6 blueswir1
Daemonize the QEMU process after initialization.  QEMU will not detach from
1118 d2c639d6 blueswir1
standard IO until it is ready to receive connections on any of its devices.
1119 d2c639d6 blueswir1
This option is a useful way for external programs to launch QEMU without having
1120 d2c639d6 blueswir1
to cope with initialization race conditions.
1121 a87295e8 pbrook
1122 d2c639d6 blueswir1
@item -option-rom @var{file}
1123 d2c639d6 blueswir1
Load the contents of @var{file} as an option ROM.
1124 d2c639d6 blueswir1
This option is useful to load things like EtherBoot.
1125 a87295e8 pbrook
1126 d2c639d6 blueswir1
@item -clock @var{method}
1127 d2c639d6 blueswir1
Force the use of the given methods for timer alarm. To see what timers
1128 d2c639d6 blueswir1
are available use -clock ?.
1129 d2c639d6 blueswir1
1130 d2c639d6 blueswir1
@item -localtime
1131 d2c639d6 blueswir1
Set the real time clock to local time (the default is to UTC
1132 d2c639d6 blueswir1
time). This option is needed to have correct date in MS-DOS or
1133 d2c639d6 blueswir1
Windows.
1134 d2c639d6 blueswir1
1135 d2c639d6 blueswir1
@item -startdate @var{date}
1136 d2c639d6 blueswir1
Set the initial date of the real time clock. Valid formats for
1137 d2c639d6 blueswir1
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1138 d2c639d6 blueswir1
@code{2006-06-17}. The default value is @code{now}.
1139 2e70f6ef pbrook
1140 2e70f6ef pbrook
@item -icount [N|auto]
1141 2e70f6ef pbrook
Enable virtual instruction counter.  The virtual cpu will execute one
1142 2e70f6ef pbrook
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1143 2e70f6ef pbrook
then the virtual cpu speed will be automatically adjusted to keep virtual
1144 2e70f6ef pbrook
time within a few seconds of real time.
1145 2e70f6ef pbrook
1146 2e70f6ef pbrook
Note that while this option can give deterministic behavior, it does not
1147 2e70f6ef pbrook
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1148 dd5d6fe9 pbrook
order cores with complex cache hierarchies.  The number of instructions
1149 2e70f6ef pbrook
executed often has little or no correlation with actual performance.
1150 d2c639d6 blueswir1
1151 d2c639d6 blueswir1
@item -echr numeric_ascii_value
1152 d2c639d6 blueswir1
Change the escape character used for switching to the monitor when using
1153 d2c639d6 blueswir1
monitor and serial sharing.  The default is @code{0x01} when using the
1154 d2c639d6 blueswir1
@code{-nographic} option.  @code{0x01} is equal to pressing
1155 d2c639d6 blueswir1
@code{Control-a}.  You can select a different character from the ascii
1156 d2c639d6 blueswir1
control keys where 1 through 26 map to Control-a through Control-z.  For
1157 d2c639d6 blueswir1
instance you could use the either of the following to change the escape
1158 d2c639d6 blueswir1
character to Control-t.
1159 d2c639d6 blueswir1
@table @code
1160 d2c639d6 blueswir1
@item -echr 0x14
1161 d2c639d6 blueswir1
@item -echr 20
1162 d2c639d6 blueswir1
@end table
1163 d2c639d6 blueswir1
1164 0858532e aliguori
@item -chroot dir
1165 0858532e aliguori
Immediately before starting guest execution, chroot to the specified
1166 0858532e aliguori
directory.  Especially useful in combination with -runas.
1167 0858532e aliguori
1168 0858532e aliguori
@item -runas user
1169 0858532e aliguori
Immediately before starting guest execution, drop root privileges, switching
1170 0858532e aliguori
to the specified user.
1171 0858532e aliguori
1172 ec410fc9 bellard
@end table
1173 ec410fc9 bellard
1174 3e11db9a bellard
@c man end
1175 3e11db9a bellard
1176 debc7065 bellard
@node pcsys_keys
1177 3e11db9a bellard
@section Keys
1178 3e11db9a bellard
1179 3e11db9a bellard
@c man begin OPTIONS
1180 3e11db9a bellard
1181 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
1182 a1b74fe8 bellard
@table @key
1183 f9859310 bellard
@item Ctrl-Alt-f
1184 a1b74fe8 bellard
Toggle full screen
1185 a0a821a4 bellard
1186 f9859310 bellard
@item Ctrl-Alt-n
1187 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
1188 a0a821a4 bellard
@table @emph
1189 a0a821a4 bellard
@item 1
1190 a0a821a4 bellard
Target system display
1191 a0a821a4 bellard
@item 2
1192 a0a821a4 bellard
Monitor
1193 a0a821a4 bellard
@item 3
1194 a0a821a4 bellard
Serial port
1195 a1b74fe8 bellard
@end table
1196 a1b74fe8 bellard
1197 f9859310 bellard
@item Ctrl-Alt
1198 a0a821a4 bellard
Toggle mouse and keyboard grab.
1199 a0a821a4 bellard
@end table
1200 a0a821a4 bellard
1201 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1202 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1203 3e11db9a bellard
1204 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
1205 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
1206 ec410fc9 bellard
1207 ec410fc9 bellard
@table @key
1208 a1b74fe8 bellard
@item Ctrl-a h
1209 d2c639d6 blueswir1
@item Ctrl-a ?
1210 ec410fc9 bellard
Print this help
1211 3b46e624 ths
@item Ctrl-a x
1212 366dfc52 ths
Exit emulator
1213 3b46e624 ths
@item Ctrl-a s
1214 1f47a922 bellard
Save disk data back to file (if -snapshot)
1215 20d8a3ed ths
@item Ctrl-a t
1216 d2c639d6 blueswir1
Toggle console timestamps
1217 a1b74fe8 bellard
@item Ctrl-a b
1218 1f673135 bellard
Send break (magic sysrq in Linux)
1219 a1b74fe8 bellard
@item Ctrl-a c
1220 1f673135 bellard
Switch between console and monitor
1221 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
1222 a1b74fe8 bellard
Send Ctrl-a
1223 ec410fc9 bellard
@end table
1224 0806e3f6 bellard
@c man end
1225 0806e3f6 bellard
1226 0806e3f6 bellard
@ignore
1227 0806e3f6 bellard
1228 1f673135 bellard
@c man begin SEEALSO
1229 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
1230 1f673135 bellard
user mode emulator invocation.
1231 1f673135 bellard
@c man end
1232 1f673135 bellard
1233 1f673135 bellard
@c man begin AUTHOR
1234 1f673135 bellard
Fabrice Bellard
1235 1f673135 bellard
@c man end
1236 1f673135 bellard
1237 1f673135 bellard
@end ignore
1238 1f673135 bellard
1239 debc7065 bellard
@node pcsys_monitor
1240 1f673135 bellard
@section QEMU Monitor
1241 1f673135 bellard
1242 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1243 1f673135 bellard
emulator. You can use it to:
1244 1f673135 bellard
1245 1f673135 bellard
@itemize @minus
1246 1f673135 bellard
1247 1f673135 bellard
@item
1248 e598752a ths
Remove or insert removable media images
1249 89dfe898 ths
(such as CD-ROM or floppies).
1250 1f673135 bellard
1251 5fafdf24 ths
@item
1252 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1253 1f673135 bellard
from a disk file.
1254 1f673135 bellard
1255 1f673135 bellard
@item Inspect the VM state without an external debugger.
1256 1f673135 bellard
1257 1f673135 bellard
@end itemize
1258 1f673135 bellard
1259 1f673135 bellard
@subsection Commands
1260 1f673135 bellard
1261 1f673135 bellard
The following commands are available:
1262 1f673135 bellard
1263 1f673135 bellard
@table @option
1264 1f673135 bellard
1265 89dfe898 ths
@item help or ? [@var{cmd}]
1266 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1267 1f673135 bellard
1268 3b46e624 ths
@item commit
1269 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1270 1f673135 bellard
1271 89dfe898 ths
@item info @var{subcommand}
1272 89dfe898 ths
Show various information about the system state.
1273 1f673135 bellard
1274 1f673135 bellard
@table @option
1275 d2c639d6 blueswir1
@item info version
1276 d2c639d6 blueswir1
show the version of QEMU
1277 1f673135 bellard
@item info network
1278 41d03949 bellard
show the various VLANs and the associated devices
1279 d2c639d6 blueswir1
@item info chardev
1280 d2c639d6 blueswir1
show the character devices
1281 1f673135 bellard
@item info block
1282 1f673135 bellard
show the block devices
1283 d2c639d6 blueswir1
@item info block
1284 d2c639d6 blueswir1
show block device statistics
1285 1f673135 bellard
@item info registers
1286 1f673135 bellard
show the cpu registers
1287 d2c639d6 blueswir1
@item info cpus
1288 d2c639d6 blueswir1
show infos for each CPU
1289 1f673135 bellard
@item info history
1290 1f673135 bellard
show the command line history
1291 d2c639d6 blueswir1
@item info irq
1292 d2c639d6 blueswir1
show the interrupts statistics (if available)
1293 d2c639d6 blueswir1
@item info pic
1294 d2c639d6 blueswir1
show i8259 (PIC) state
1295 b389dbfb bellard
@item info pci
1296 d2c639d6 blueswir1
show emulated PCI device info
1297 d2c639d6 blueswir1
@item info tlb
1298 d2c639d6 blueswir1
show virtual to physical memory mappings (i386 only)
1299 d2c639d6 blueswir1
@item info mem
1300 d2c639d6 blueswir1
show the active virtual memory mappings (i386 only)
1301 d2c639d6 blueswir1
@item info hpet
1302 d2c639d6 blueswir1
show state of HPET (i386 only)
1303 d2c639d6 blueswir1
@item info kqemu
1304 d2c639d6 blueswir1
show KQEMU information
1305 d2c639d6 blueswir1
@item info kvm
1306 d2c639d6 blueswir1
show KVM information
1307 b389dbfb bellard
@item info usb
1308 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1309 b389dbfb bellard
@item info usbhost
1310 b389dbfb bellard
show all USB host devices
1311 d2c639d6 blueswir1
@item info profile
1312 d2c639d6 blueswir1
show profiling information
1313 a3c25997 bellard
@item info capture
1314 a3c25997 bellard
show information about active capturing
1315 13a2e80f bellard
@item info snapshots
1316 13a2e80f bellard
show list of VM snapshots
1317 d2c639d6 blueswir1
@item info status
1318 d2c639d6 blueswir1
show the current VM status (running|paused)
1319 d2c639d6 blueswir1
@item info pcmcia
1320 d2c639d6 blueswir1
show guest PCMCIA status
1321 455204eb ths
@item info mice
1322 455204eb ths
show which guest mouse is receiving events
1323 d2c639d6 blueswir1
@item info vnc
1324 d2c639d6 blueswir1
show the vnc server status
1325 d2c639d6 blueswir1
@item info name
1326 d2c639d6 blueswir1
show the current VM name
1327 d2c639d6 blueswir1
@item info uuid
1328 d2c639d6 blueswir1
show the current VM UUID
1329 d2c639d6 blueswir1
@item info cpustats
1330 d2c639d6 blueswir1
show CPU statistics
1331 d2c639d6 blueswir1
@item info slirp
1332 d2c639d6 blueswir1
show SLIRP statistics (if available)
1333 d2c639d6 blueswir1
@item info migrate
1334 d2c639d6 blueswir1
show migration status
1335 d2c639d6 blueswir1
@item info balloon
1336 d2c639d6 blueswir1
show balloon information
1337 1f673135 bellard
@end table
1338 1f673135 bellard
1339 1f673135 bellard
@item q or quit
1340 1f673135 bellard
Quit the emulator.
1341 1f673135 bellard
1342 89dfe898 ths
@item eject [-f] @var{device}
1343 e598752a ths
Eject a removable medium (use -f to force it).
1344 1f673135 bellard
1345 89dfe898 ths
@item change @var{device} @var{setting}
1346 f858dcae ths
1347 89dfe898 ths
Change the configuration of a device.
1348 f858dcae ths
1349 f858dcae ths
@table @option
1350 d2c639d6 blueswir1
@item change @var{diskdevice} @var{filename} [@var{format}]
1351 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1352 f858dcae ths
1353 f858dcae ths
@example
1354 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1355 f858dcae ths
@end example
1356 f858dcae ths
1357 d2c639d6 blueswir1
@var{format} is optional.
1358 d2c639d6 blueswir1
1359 89dfe898 ths
@item change vnc @var{display},@var{options}
1360 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1361 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1362 f858dcae ths
1363 f858dcae ths
@example
1364 f858dcae ths
(qemu) change vnc localhost:1
1365 f858dcae ths
@end example
1366 f858dcae ths
1367 2569da0c aliguori
@item change vnc password [@var{password}]
1368 f858dcae ths
1369 2569da0c aliguori
Change the password associated with the VNC server. If the new password is not
1370 2569da0c aliguori
supplied, the monitor will prompt for it to be entered. VNC passwords are only
1371 2569da0c aliguori
significant up to 8 letters. eg
1372 f858dcae ths
1373 f858dcae ths
@example
1374 f858dcae ths
(qemu) change vnc password
1375 f858dcae ths
Password: ********
1376 f858dcae ths
@end example
1377 f858dcae ths
1378 f858dcae ths
@end table
1379 1f673135 bellard
1380 89dfe898 ths
@item screendump @var{filename}
1381 1f673135 bellard
Save screen into PPM image @var{filename}.
1382 1f673135 bellard
1383 d2c639d6 blueswir1
@item logfile @var{filename}
1384 d2c639d6 blueswir1
Output logs to @var{filename}.
1385 a3c25997 bellard
1386 89dfe898 ths
@item log @var{item1}[,...]
1387 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1388 1f673135 bellard
1389 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1390 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1391 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1392 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1393 13a2e80f bellard
@ref{vm_snapshots}.
1394 1f673135 bellard
1395 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1396 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1397 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1398 13a2e80f bellard
1399 89dfe898 ths
@item delvm @var{tag}|@var{id}
1400 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1401 1f673135 bellard
1402 1f673135 bellard
@item stop
1403 1f673135 bellard
Stop emulation.
1404 1f673135 bellard
1405 1f673135 bellard
@item c or cont
1406 1f673135 bellard
Resume emulation.
1407 1f673135 bellard
1408 89dfe898 ths
@item gdbserver [@var{port}]
1409 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1410 1f673135 bellard
1411 89dfe898 ths
@item x/fmt @var{addr}
1412 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1413 1f673135 bellard
1414 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1415 1f673135 bellard
Physical memory dump starting at @var{addr}.
1416 1f673135 bellard
1417 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1418 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1419 1f673135 bellard
1420 1f673135 bellard
@table @var
1421 5fafdf24 ths
@item count
1422 1f673135 bellard
is the number of items to be dumped.
1423 1f673135 bellard
1424 1f673135 bellard
@item format
1425 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1426 1f673135 bellard
c (char) or i (asm instruction).
1427 1f673135 bellard
1428 1f673135 bellard
@item size
1429 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1430 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1431 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1432 1f673135 bellard
1433 1f673135 bellard
@end table
1434 1f673135 bellard
1435 5fafdf24 ths
Examples:
1436 1f673135 bellard
@itemize
1437 1f673135 bellard
@item
1438 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1439 5fafdf24 ths
@example
1440 1f673135 bellard
(qemu) x/10i $eip
1441 1f673135 bellard
0x90107063:  ret
1442 1f673135 bellard
0x90107064:  sti
1443 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1444 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1445 1f673135 bellard
0x90107070:  ret
1446 1f673135 bellard
0x90107071:  jmp    0x90107080
1447 1f673135 bellard
0x90107073:  nop
1448 1f673135 bellard
0x90107074:  nop
1449 1f673135 bellard
0x90107075:  nop
1450 1f673135 bellard
0x90107076:  nop
1451 1f673135 bellard
@end example
1452 1f673135 bellard
1453 1f673135 bellard
@item
1454 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1455 5fafdf24 ths
@smallexample
1456 1f673135 bellard
(qemu) xp/80hx 0xb8000
1457 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1458 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1459 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1460 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1461 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1462 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1463 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1464 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1465 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1466 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1467 debc7065 bellard
@end smallexample
1468 1f673135 bellard
@end itemize
1469 1f673135 bellard
1470 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1471 1f673135 bellard
1472 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1473 1f673135 bellard
used.
1474 0806e3f6 bellard
1475 89dfe898 ths
@item sendkey @var{keys}
1476 a3a91a35 bellard
1477 54ae1fbd aurel32
Send @var{keys} to the emulator. @var{keys} could be the name of the
1478 54ae1fbd aurel32
key or @code{#} followed by the raw value in either decimal or hexadecimal
1479 54ae1fbd aurel32
format. Use @code{-} to press several keys simultaneously. Example:
1480 a3a91a35 bellard
@example
1481 a3a91a35 bellard
sendkey ctrl-alt-f1
1482 a3a91a35 bellard
@end example
1483 a3a91a35 bellard
1484 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1485 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1486 a3a91a35 bellard
1487 15a34c63 bellard
@item system_reset
1488 15a34c63 bellard
1489 15a34c63 bellard
Reset the system.
1490 15a34c63 bellard
1491 d2c639d6 blueswir1
@item system_powerdown
1492 0ecdffbb aurel32
1493 d2c639d6 blueswir1
Power down the system (if supported).
1494 0ecdffbb aurel32
1495 d2c639d6 blueswir1
@item sum @var{addr} @var{size}
1496 d2c639d6 blueswir1
1497 d2c639d6 blueswir1
Compute the checksum of a memory region.
1498 0ecdffbb aurel32
1499 89dfe898 ths
@item usb_add @var{devname}
1500 b389dbfb bellard
1501 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1502 0aff66b5 pbrook
@ref{usb_devices}
1503 b389dbfb bellard
1504 89dfe898 ths
@item usb_del @var{devname}
1505 b389dbfb bellard
1506 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1507 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1508 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1509 b389dbfb bellard
1510 d2c639d6 blueswir1
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1511 d2c639d6 blueswir1
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1512 d2c639d6 blueswir1
with optional scroll axis @var{dz}.
1513 d2c639d6 blueswir1
1514 d2c639d6 blueswir1
@item mouse_button @var{val}
1515 d2c639d6 blueswir1
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1516 d2c639d6 blueswir1
1517 d2c639d6 blueswir1
@item mouse_set @var{index}
1518 d2c639d6 blueswir1
Set which mouse device receives events at given @var{index}, index
1519 d2c639d6 blueswir1
can be obtained with
1520 d2c639d6 blueswir1
@example
1521 d2c639d6 blueswir1
info mice
1522 d2c639d6 blueswir1
@end example
1523 d2c639d6 blueswir1
1524 d2c639d6 blueswir1
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1525 d2c639d6 blueswir1
Capture audio into @var{filename}. Using sample rate @var{frequency}
1526 d2c639d6 blueswir1
bits per sample @var{bits} and number of channels @var{channels}.
1527 d2c639d6 blueswir1
1528 d2c639d6 blueswir1
Defaults:
1529 d2c639d6 blueswir1
@itemize @minus
1530 d2c639d6 blueswir1
@item Sample rate = 44100 Hz - CD quality
1531 d2c639d6 blueswir1
@item Bits = 16
1532 d2c639d6 blueswir1
@item Number of channels = 2 - Stereo
1533 d2c639d6 blueswir1
@end itemize
1534 d2c639d6 blueswir1
1535 d2c639d6 blueswir1
@item stopcapture @var{index}
1536 d2c639d6 blueswir1
Stop capture with a given @var{index}, index can be obtained with
1537 d2c639d6 blueswir1
@example
1538 d2c639d6 blueswir1
info capture
1539 d2c639d6 blueswir1
@end example
1540 d2c639d6 blueswir1
1541 d2c639d6 blueswir1
@item memsave @var{addr} @var{size} @var{file}
1542 d2c639d6 blueswir1
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1543 d2c639d6 blueswir1
1544 d2c639d6 blueswir1
@item pmemsave @var{addr} @var{size} @var{file}
1545 d2c639d6 blueswir1
save to disk physical memory dump starting at @var{addr} of size @var{size}.
1546 d2c639d6 blueswir1
1547 d2c639d6 blueswir1
@item boot_set @var{bootdevicelist}
1548 d2c639d6 blueswir1
1549 d2c639d6 blueswir1
Define new values for the boot device list. Those values will override
1550 d2c639d6 blueswir1
the values specified on the command line through the @code{-boot} option.
1551 d2c639d6 blueswir1
1552 d2c639d6 blueswir1
The values that can be specified here depend on the machine type, but are
1553 d2c639d6 blueswir1
the same that can be specified in the @code{-boot} command line option.
1554 d2c639d6 blueswir1
1555 d2c639d6 blueswir1
@item nmi @var{cpu}
1556 d2c639d6 blueswir1
Inject an NMI on the given CPU.
1557 d2c639d6 blueswir1
1558 d2c639d6 blueswir1
@item migrate [-d] @var{uri}
1559 d2c639d6 blueswir1
Migrate to @var{uri} (using -d to not wait for completion).
1560 d2c639d6 blueswir1
1561 d2c639d6 blueswir1
@item migrate_cancel
1562 d2c639d6 blueswir1
Cancel the current VM migration.
1563 d2c639d6 blueswir1
1564 d2c639d6 blueswir1
@item migrate_set_speed @var{value}
1565 d2c639d6 blueswir1
Set maximum speed to @var{value} (in bytes) for migrations.
1566 d2c639d6 blueswir1
1567 d2c639d6 blueswir1
@item balloon @var{value}
1568 d2c639d6 blueswir1
Request VM to change its memory allocation to @var{value} (in MB).
1569 d2c639d6 blueswir1
1570 d2c639d6 blueswir1
@item set_link @var{name} [up|down]
1571 d2c639d6 blueswir1
Set link @var{name} up or down.
1572 d2c639d6 blueswir1
1573 1f673135 bellard
@end table
1574 0806e3f6 bellard
1575 1f673135 bellard
@subsection Integer expressions
1576 1f673135 bellard
1577 1f673135 bellard
The monitor understands integers expressions for every integer
1578 1f673135 bellard
argument. You can use register names to get the value of specifics
1579 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1580 ec410fc9 bellard
1581 1f47a922 bellard
@node disk_images
1582 1f47a922 bellard
@section Disk Images
1583 1f47a922 bellard
1584 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1585 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1586 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1587 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1588 13a2e80f bellard
snapshots.
1589 1f47a922 bellard
1590 debc7065 bellard
@menu
1591 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1592 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1593 13a2e80f bellard
* vm_snapshots::              VM snapshots
1594 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1595 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
1596 19cb3738 bellard
* host_drives::               Using host drives
1597 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1598 75818250 ths
* disk_images_nbd::           NBD access
1599 debc7065 bellard
@end menu
1600 debc7065 bellard
1601 debc7065 bellard
@node disk_images_quickstart
1602 acd935ef bellard
@subsection Quick start for disk image creation
1603 acd935ef bellard
1604 acd935ef bellard
You can create a disk image with the command:
1605 1f47a922 bellard
@example
1606 acd935ef bellard
qemu-img create myimage.img mysize
1607 1f47a922 bellard
@end example
1608 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1609 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1610 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1611 acd935ef bellard
1612 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1613 1f47a922 bellard
1614 debc7065 bellard
@node disk_images_snapshot_mode
1615 1f47a922 bellard
@subsection Snapshot mode
1616 1f47a922 bellard
1617 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1618 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1619 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1620 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1621 acd935ef bellard
command (or @key{C-a s} in the serial console).
1622 1f47a922 bellard
1623 13a2e80f bellard
@node vm_snapshots
1624 13a2e80f bellard
@subsection VM snapshots
1625 13a2e80f bellard
1626 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1627 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1628 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1629 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1630 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1631 13a2e80f bellard
1632 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1633 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1634 19d36792 bellard
snapshot in addition to its numerical ID.
1635 13a2e80f bellard
1636 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1637 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1638 13a2e80f bellard
with their associated information:
1639 13a2e80f bellard
1640 13a2e80f bellard
@example
1641 13a2e80f bellard
(qemu) info snapshots
1642 13a2e80f bellard
Snapshot devices: hda
1643 13a2e80f bellard
Snapshot list (from hda):
1644 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1645 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1646 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1647 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1648 13a2e80f bellard
@end example
1649 13a2e80f bellard
1650 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1651 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1652 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1653 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1654 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1655 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1656 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1657 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1658 19d36792 bellard
disk images).
1659 13a2e80f bellard
1660 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1661 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1662 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1663 13a2e80f bellard
1664 13a2e80f bellard
VM snapshots currently have the following known limitations:
1665 13a2e80f bellard
@itemize
1666 5fafdf24 ths
@item
1667 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1668 13a2e80f bellard
inserted after a snapshot is done.
1669 5fafdf24 ths
@item
1670 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1671 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1672 13a2e80f bellard
@end itemize
1673 13a2e80f bellard
1674 acd935ef bellard
@node qemu_img_invocation
1675 acd935ef bellard
@subsection @code{qemu-img} Invocation
1676 1f47a922 bellard
1677 acd935ef bellard
@include qemu-img.texi
1678 05efe46e bellard
1679 975b092b ths
@node qemu_nbd_invocation
1680 975b092b ths
@subsection @code{qemu-nbd} Invocation
1681 975b092b ths
1682 975b092b ths
@include qemu-nbd.texi
1683 975b092b ths
1684 19cb3738 bellard
@node host_drives
1685 19cb3738 bellard
@subsection Using host drives
1686 19cb3738 bellard
1687 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1688 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1689 19cb3738 bellard
1690 19cb3738 bellard
@subsubsection Linux
1691 19cb3738 bellard
1692 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1693 4be456f1 ths
disk image filename provided you have enough privileges to access
1694 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1695 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1696 19cb3738 bellard
1697 f542086d bellard
@table @code
1698 19cb3738 bellard
@item CD
1699 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1700 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1701 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1702 19cb3738 bellard
@item Floppy
1703 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1704 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1705 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1706 19cb3738 bellard
OS will think that the same floppy is loaded).
1707 19cb3738 bellard
@item Hard disks
1708 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1709 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1710 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1711 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1712 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1713 19cb3738 bellard
line option or modify the device permissions accordingly).
1714 19cb3738 bellard
@end table
1715 19cb3738 bellard
1716 19cb3738 bellard
@subsubsection Windows
1717 19cb3738 bellard
1718 01781963 bellard
@table @code
1719 01781963 bellard
@item CD
1720 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1721 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1722 01781963 bellard
supported as an alias to the first CDROM drive.
1723 19cb3738 bellard
1724 e598752a ths
Currently there is no specific code to handle removable media, so it
1725 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1726 19cb3738 bellard
change or eject media.
1727 01781963 bellard
@item Hard disks
1728 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1729 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1730 01781963 bellard
1731 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1732 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1733 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1734 01781963 bellard
modifications are written in a temporary file).
1735 01781963 bellard
@end table
1736 01781963 bellard
1737 19cb3738 bellard
1738 19cb3738 bellard
@subsubsection Mac OS X
1739 19cb3738 bellard
1740 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1741 19cb3738 bellard
1742 e598752a ths
Currently there is no specific code to handle removable media, so it
1743 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1744 19cb3738 bellard
change or eject media.
1745 19cb3738 bellard
1746 debc7065 bellard
@node disk_images_fat_images
1747 2c6cadd4 bellard
@subsection Virtual FAT disk images
1748 2c6cadd4 bellard
1749 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1750 2c6cadd4 bellard
directory tree. In order to use it, just type:
1751 2c6cadd4 bellard
1752 5fafdf24 ths
@example
1753 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1754 2c6cadd4 bellard
@end example
1755 2c6cadd4 bellard
1756 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1757 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1758 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1759 2c6cadd4 bellard
1760 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1761 2c6cadd4 bellard
1762 5fafdf24 ths
@example
1763 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1764 2c6cadd4 bellard
@end example
1765 2c6cadd4 bellard
1766 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1767 2c6cadd4 bellard
@code{:rw:} option:
1768 2c6cadd4 bellard
1769 5fafdf24 ths
@example
1770 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1771 2c6cadd4 bellard
@end example
1772 2c6cadd4 bellard
1773 2c6cadd4 bellard
What you should @emph{never} do:
1774 2c6cadd4 bellard
@itemize
1775 2c6cadd4 bellard
@item use non-ASCII filenames ;
1776 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1777 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1778 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1779 2c6cadd4 bellard
@end itemize
1780 2c6cadd4 bellard
1781 75818250 ths
@node disk_images_nbd
1782 75818250 ths
@subsection NBD access
1783 75818250 ths
1784 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
1785 75818250 ths
protocol.
1786 75818250 ths
1787 75818250 ths
@example
1788 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1789 75818250 ths
@end example
1790 75818250 ths
1791 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
1792 75818250 ths
of an inet socket:
1793 75818250 ths
1794 75818250 ths
@example
1795 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1796 75818250 ths
@end example
1797 75818250 ths
1798 75818250 ths
In this case, the block device must be exported using qemu-nbd:
1799 75818250 ths
1800 75818250 ths
@example
1801 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1802 75818250 ths
@end example
1803 75818250 ths
1804 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
1805 75818250 ths
@example
1806 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1807 75818250 ths
@end example
1808 75818250 ths
1809 75818250 ths
and then you can use it with two guests:
1810 75818250 ths
@example
1811 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1812 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1813 75818250 ths
@end example
1814 75818250 ths
1815 debc7065 bellard
@node pcsys_network
1816 9d4fb82e bellard
@section Network emulation
1817 9d4fb82e bellard
1818 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1819 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1820 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1821 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1822 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1823 41d03949 bellard
network stack can replace the TAP device to have a basic network
1824 41d03949 bellard
connection.
1825 41d03949 bellard
1826 41d03949 bellard
@subsection VLANs
1827 9d4fb82e bellard
1828 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1829 41d03949 bellard
connection between several network devices. These devices can be for
1830 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1831 41d03949 bellard
(TAP devices).
1832 9d4fb82e bellard
1833 41d03949 bellard
@subsection Using TAP network interfaces
1834 41d03949 bellard
1835 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1836 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1837 41d03949 bellard
can then configure it as if it was a real ethernet card.
1838 9d4fb82e bellard
1839 8f40c388 bellard
@subsubsection Linux host
1840 8f40c388 bellard
1841 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1842 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1843 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1844 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1845 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1846 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1847 9d4fb82e bellard
1848 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1849 ee0f4751 bellard
TAP network interfaces.
1850 9d4fb82e bellard
1851 8f40c388 bellard
@subsubsection Windows host
1852 8f40c388 bellard
1853 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1854 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1855 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1856 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1857 8f40c388 bellard
1858 9d4fb82e bellard
@subsection Using the user mode network stack
1859 9d4fb82e bellard
1860 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1861 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1862 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1863 41d03949 bellard
network). The virtual network configuration is the following:
1864 9d4fb82e bellard
1865 9d4fb82e bellard
@example
1866 9d4fb82e bellard
1867 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1868 41d03949 bellard
                           |          (10.0.2.2)
1869 9d4fb82e bellard
                           |
1870 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1871 3b46e624 ths
                           |
1872 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1873 9d4fb82e bellard
@end example
1874 9d4fb82e bellard
1875 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1876 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1877 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1878 41d03949 bellard
to the hosts starting from 10.0.2.15.
1879 9d4fb82e bellard
1880 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1881 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1882 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1883 9d4fb82e bellard
1884 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1885 4be456f1 ths
would require root privileges. It means you can only ping the local
1886 b415a407 bellard
router (10.0.2.2).
1887 b415a407 bellard
1888 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1889 9bf05444 bellard
server.
1890 9bf05444 bellard
1891 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1892 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1893 9bf05444 bellard
redirect X11, telnet or SSH connections.
1894 443f1376 bellard
1895 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1896 41d03949 bellard
1897 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1898 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1899 41d03949 bellard
basic example.
1900 41d03949 bellard
1901 9d4fb82e bellard
@node direct_linux_boot
1902 9d4fb82e bellard
@section Direct Linux Boot
1903 1f673135 bellard
1904 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1905 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1906 ee0f4751 bellard
kernel testing.
1907 1f673135 bellard
1908 ee0f4751 bellard
The syntax is:
1909 1f673135 bellard
@example
1910 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1911 1f673135 bellard
@end example
1912 1f673135 bellard
1913 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1914 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1915 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1916 1f673135 bellard
1917 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1918 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1919 ee0f4751 bellard
Linux kernel.
1920 1f673135 bellard
1921 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1922 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1923 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1924 1f673135 bellard
@example
1925 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1926 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1927 1f673135 bellard
@end example
1928 1f673135 bellard
1929 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1930 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1931 1f673135 bellard
1932 debc7065 bellard
@node pcsys_usb
1933 b389dbfb bellard
@section USB emulation
1934 b389dbfb bellard
1935 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1936 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1937 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1938 f542086d bellard
as necessary to connect multiple USB devices.
1939 b389dbfb bellard
1940 0aff66b5 pbrook
@menu
1941 0aff66b5 pbrook
* usb_devices::
1942 0aff66b5 pbrook
* host_usb_devices::
1943 0aff66b5 pbrook
@end menu
1944 0aff66b5 pbrook
@node usb_devices
1945 0aff66b5 pbrook
@subsection Connecting USB devices
1946 b389dbfb bellard
1947 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1948 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1949 b389dbfb bellard
1950 db380c06 balrog
@table @code
1951 db380c06 balrog
@item mouse
1952 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1953 db380c06 balrog
@item tablet
1954 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1955 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1956 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1957 db380c06 balrog
@item disk:@var{file}
1958 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1959 db380c06 balrog
@item host:@var{bus.addr}
1960 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1961 0aff66b5 pbrook
(Linux only)
1962 db380c06 balrog
@item host:@var{vendor_id:product_id}
1963 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1964 0aff66b5 pbrook
(Linux only)
1965 db380c06 balrog
@item wacom-tablet
1966 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1967 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1968 f6d2a316 balrog
coordinates it reports touch pressure.
1969 db380c06 balrog
@item keyboard
1970 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1971 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1972 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1973 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1974 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1975 a11d070e balrog
used to override the default 0403:6001. For instance, 
1976 db380c06 balrog
@example
1977 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1978 db380c06 balrog
@end example
1979 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1980 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1981 2e4d9fb1 aurel32
@item braille
1982 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1983 2e4d9fb1 aurel32
or fake device.
1984 9ad97e65 balrog
@item net:@var{options}
1985 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1986 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1987 9ad97e65 balrog
For instance, user-mode networking can be used with
1988 6c9f886c balrog
@example
1989 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1990 6c9f886c balrog
@end example
1991 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
1992 2d564691 balrog
@item bt[:@var{hci-type}]
1993 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
1994 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1995 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1996 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
1997 2d564691 balrog
usage:
1998 2d564691 balrog
@example
1999 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2000 2d564691 balrog
@end example
2001 0aff66b5 pbrook
@end table
2002 b389dbfb bellard
2003 0aff66b5 pbrook
@node host_usb_devices
2004 b389dbfb bellard
@subsection Using host USB devices on a Linux host
2005 b389dbfb bellard
2006 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
2007 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
2008 b389dbfb bellard
Cameras) are not supported yet.
2009 b389dbfb bellard
2010 b389dbfb bellard
@enumerate
2011 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
2012 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
2013 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
2014 b389dbfb bellard
to @file{mydriver.o.disabled}.
2015 b389dbfb bellard
2016 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2017 b389dbfb bellard
@example
2018 b389dbfb bellard
ls /proc/bus/usb
2019 b389dbfb bellard
001  devices  drivers
2020 b389dbfb bellard
@end example
2021 b389dbfb bellard
2022 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2023 b389dbfb bellard
@example
2024 b389dbfb bellard
chown -R myuid /proc/bus/usb
2025 b389dbfb bellard
@end example
2026 b389dbfb bellard
2027 b389dbfb bellard
@item Launch QEMU and do in the monitor:
2028 5fafdf24 ths
@example
2029 b389dbfb bellard
info usbhost
2030 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
2031 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
2032 b389dbfb bellard
@end example
2033 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
2034 b389dbfb bellard
hubs, it won't work).
2035 b389dbfb bellard
2036 b389dbfb bellard
@item Add the device in QEMU by using:
2037 5fafdf24 ths
@example
2038 b389dbfb bellard
usb_add host:1234:5678
2039 b389dbfb bellard
@end example
2040 b389dbfb bellard
2041 b389dbfb bellard
Normally the guest OS should report that a new USB device is
2042 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
2043 b389dbfb bellard
2044 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
2045 b389dbfb bellard
2046 b389dbfb bellard
@end enumerate
2047 b389dbfb bellard
2048 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
2049 b389dbfb bellard
device to make it work again (this is a bug).
2050 b389dbfb bellard
2051 f858dcae ths
@node vnc_security
2052 f858dcae ths
@section VNC security
2053 f858dcae ths
2054 f858dcae ths
The VNC server capability provides access to the graphical console
2055 f858dcae ths
of the guest VM across the network. This has a number of security
2056 f858dcae ths
considerations depending on the deployment scenarios.
2057 f858dcae ths
2058 f858dcae ths
@menu
2059 f858dcae ths
* vnc_sec_none::
2060 f858dcae ths
* vnc_sec_password::
2061 f858dcae ths
* vnc_sec_certificate::
2062 f858dcae ths
* vnc_sec_certificate_verify::
2063 f858dcae ths
* vnc_sec_certificate_pw::
2064 f858dcae ths
* vnc_generate_cert::
2065 f858dcae ths
@end menu
2066 f858dcae ths
@node vnc_sec_none
2067 f858dcae ths
@subsection Without passwords
2068 f858dcae ths
2069 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
2070 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
2071 f858dcae ths
socket only. For example
2072 f858dcae ths
2073 f858dcae ths
@example
2074 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2075 f858dcae ths
@end example
2076 f858dcae ths
2077 f858dcae ths
This ensures that only users on local box with read/write access to that
2078 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
2079 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
2080 f858dcae ths
tunnel.
2081 f858dcae ths
2082 f858dcae ths
@node vnc_sec_password
2083 f858dcae ths
@subsection With passwords
2084 f858dcae ths
2085 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
2086 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
2087 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
2088 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
2089 f858dcae ths
authentication should be restricted to only listen on the loopback interface
2090 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
2091 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
2092 f858dcae ths
the monitor is used to set the password all clients will be rejected.
2093 f858dcae ths
2094 f858dcae ths
@example
2095 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2096 f858dcae ths
(qemu) change vnc password
2097 f858dcae ths
Password: ********
2098 f858dcae ths
(qemu)
2099 f858dcae ths
@end example
2100 f858dcae ths
2101 f858dcae ths
@node vnc_sec_certificate
2102 f858dcae ths
@subsection With x509 certificates
2103 f858dcae ths
2104 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
2105 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
2106 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
2107 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2108 f858dcae ths
support provides a secure session, but no authentication. This allows any
2109 f858dcae ths
client to connect, and provides an encrypted session.
2110 f858dcae ths
2111 f858dcae ths
@example
2112 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2113 f858dcae ths
@end example
2114 f858dcae ths
2115 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
2116 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2117 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2118 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
2119 f858dcae ths
only be readable by the user owning it.
2120 f858dcae ths
2121 f858dcae ths
@node vnc_sec_certificate_verify
2122 f858dcae ths
@subsection With x509 certificates and client verification
2123 f858dcae ths
2124 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
2125 f858dcae ths
The server will request that the client provide a certificate, which it will
2126 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
2127 f858dcae ths
in an environment with a private internal certificate authority.
2128 f858dcae ths
2129 f858dcae ths
@example
2130 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2131 f858dcae ths
@end example
2132 f858dcae ths
2133 f858dcae ths
2134 f858dcae ths
@node vnc_sec_certificate_pw
2135 f858dcae ths
@subsection With x509 certificates, client verification and passwords
2136 f858dcae ths
2137 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
2138 f858dcae ths
to provide two layers of authentication for clients.
2139 f858dcae ths
2140 f858dcae ths
@example
2141 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2142 f858dcae ths
(qemu) change vnc password
2143 f858dcae ths
Password: ********
2144 f858dcae ths
(qemu)
2145 f858dcae ths
@end example
2146 f858dcae ths
2147 f858dcae ths
@node vnc_generate_cert
2148 f858dcae ths
@subsection Generating certificates for VNC
2149 f858dcae ths
2150 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
2151 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
2152 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
2153 f858dcae ths
each server. If using certificates for authentication, then each client
2154 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
2155 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
2156 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
2157 f858dcae ths
2158 f858dcae ths
@menu
2159 f858dcae ths
* vnc_generate_ca::
2160 f858dcae ths
* vnc_generate_server::
2161 f858dcae ths
* vnc_generate_client::
2162 f858dcae ths
@end menu
2163 f858dcae ths
@node vnc_generate_ca
2164 f858dcae ths
@subsubsection Setup the Certificate Authority
2165 f858dcae ths
2166 f858dcae ths
This step only needs to be performed once per organization / organizational
2167 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
2168 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
2169 f858dcae ths
issued with it is lost.
2170 f858dcae ths
2171 f858dcae ths
@example
2172 f858dcae ths
# certtool --generate-privkey > ca-key.pem
2173 f858dcae ths
@end example
2174 f858dcae ths
2175 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
2176 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
2177 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
2178 f858dcae ths
name of the organization.
2179 f858dcae ths
2180 f858dcae ths
@example
2181 f858dcae ths
# cat > ca.info <<EOF
2182 f858dcae ths
cn = Name of your organization
2183 f858dcae ths
ca
2184 f858dcae ths
cert_signing_key
2185 f858dcae ths
EOF
2186 f858dcae ths
# certtool --generate-self-signed \
2187 f858dcae ths
           --load-privkey ca-key.pem
2188 f858dcae ths
           --template ca.info \
2189 f858dcae ths
           --outfile ca-cert.pem
2190 f858dcae ths
@end example
2191 f858dcae ths
2192 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2193 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2194 f858dcae ths
2195 f858dcae ths
@node vnc_generate_server
2196 f858dcae ths
@subsubsection Issuing server certificates
2197 f858dcae ths
2198 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
2199 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
2200 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
2201 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
2202 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
2203 f858dcae ths
secure CA private key:
2204 f858dcae ths
2205 f858dcae ths
@example
2206 f858dcae ths
# cat > server.info <<EOF
2207 f858dcae ths
organization = Name  of your organization
2208 f858dcae ths
cn = server.foo.example.com
2209 f858dcae ths
tls_www_server
2210 f858dcae ths
encryption_key
2211 f858dcae ths
signing_key
2212 f858dcae ths
EOF
2213 f858dcae ths
# certtool --generate-privkey > server-key.pem
2214 f858dcae ths
# certtool --generate-certificate \
2215 f858dcae ths
           --load-ca-certificate ca-cert.pem \
2216 f858dcae ths
           --load-ca-privkey ca-key.pem \
2217 f858dcae ths
           --load-privkey server server-key.pem \
2218 f858dcae ths
           --template server.info \
2219 f858dcae ths
           --outfile server-cert.pem
2220 f858dcae ths
@end example
2221 f858dcae ths
2222 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2223 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
2224 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2225 f858dcae ths
2226 f858dcae ths
@node vnc_generate_client
2227 f858dcae ths
@subsubsection Issuing client certificates
2228 f858dcae ths
2229 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2230 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
2231 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
2232 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
2233 f858dcae ths
the secure CA private key:
2234 f858dcae ths
2235 f858dcae ths
@example
2236 f858dcae ths
# cat > client.info <<EOF
2237 f858dcae ths
country = GB
2238 f858dcae ths
state = London
2239 f858dcae ths
locality = London
2240 f858dcae ths
organiazation = Name of your organization
2241 f858dcae ths
cn = client.foo.example.com
2242 f858dcae ths
tls_www_client
2243 f858dcae ths
encryption_key
2244 f858dcae ths
signing_key
2245 f858dcae ths
EOF
2246 f858dcae ths
# certtool --generate-privkey > client-key.pem
2247 f858dcae ths
# certtool --generate-certificate \
2248 f858dcae ths
           --load-ca-certificate ca-cert.pem \
2249 f858dcae ths
           --load-ca-privkey ca-key.pem \
2250 f858dcae ths
           --load-privkey client-key.pem \
2251 f858dcae ths
           --template client.info \
2252 f858dcae ths
           --outfile client-cert.pem
2253 f858dcae ths
@end example
2254 f858dcae ths
2255 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2256 f858dcae ths
copied to the client for which they were generated.
2257 f858dcae ths
2258 0806e3f6 bellard
@node gdb_usage
2259 da415d54 bellard
@section GDB usage
2260 da415d54 bellard
2261 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
2262 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
2263 da415d54 bellard
2264 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2265 da415d54 bellard
gdb connection:
2266 da415d54 bellard
@example
2267 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2268 debc7065 bellard
       -append "root=/dev/hda"
2269 da415d54 bellard
Connected to host network interface: tun0
2270 da415d54 bellard
Waiting gdb connection on port 1234
2271 da415d54 bellard
@end example
2272 da415d54 bellard
2273 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
2274 da415d54 bellard
@example
2275 da415d54 bellard
> gdb vmlinux
2276 da415d54 bellard
@end example
2277 da415d54 bellard
2278 da415d54 bellard
In gdb, connect to QEMU:
2279 da415d54 bellard
@example
2280 6c9bf893 bellard
(gdb) target remote localhost:1234
2281 da415d54 bellard
@end example
2282 da415d54 bellard
2283 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2284 da415d54 bellard
@example
2285 da415d54 bellard
(gdb) c
2286 da415d54 bellard
@end example
2287 da415d54 bellard
2288 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
2289 0806e3f6 bellard
2290 0806e3f6 bellard
@enumerate
2291 0806e3f6 bellard
@item
2292 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
2293 0806e3f6 bellard
@item
2294 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
2295 0806e3f6 bellard
@item
2296 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
2297 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2298 0806e3f6 bellard
@end enumerate
2299 0806e3f6 bellard
2300 60897d36 edgar_igl
Advanced debugging options:
2301 60897d36 edgar_igl
2302 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2303 94d45e44 edgar_igl
@table @code
2304 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
2305 60897d36 edgar_igl
2306 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
2307 60897d36 edgar_igl
@example
2308 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
2309 60897d36 edgar_igl
sending: "qqemu.sstepbits"
2310 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2311 60897d36 edgar_igl
@end example
2312 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
2313 60897d36 edgar_igl
2314 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
2315 60897d36 edgar_igl
@example
2316 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
2317 60897d36 edgar_igl
sending: "qqemu.sstep"
2318 60897d36 edgar_igl
received: "0x7"
2319 60897d36 edgar_igl
@end example
2320 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
2321 60897d36 edgar_igl
2322 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2323 60897d36 edgar_igl
@example
2324 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
2325 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
2326 60897d36 edgar_igl
received: "OK"
2327 60897d36 edgar_igl
@end example
2328 94d45e44 edgar_igl
@end table
2329 60897d36 edgar_igl
2330 debc7065 bellard
@node pcsys_os_specific
2331 1a084f3d bellard
@section Target OS specific information
2332 1a084f3d bellard
2333 1a084f3d bellard
@subsection Linux
2334 1a084f3d bellard
2335 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2336 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2337 15a34c63 bellard
color depth in the guest and the host OS.
2338 1a084f3d bellard
2339 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
2340 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
2341 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
2342 e3371e62 bellard
cannot simulate exactly.
2343 e3371e62 bellard
2344 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2345 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
2346 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
2347 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2348 7c3fc84d bellard
patch by default. Newer kernels don't have it.
2349 7c3fc84d bellard
2350 1a084f3d bellard
@subsection Windows
2351 1a084f3d bellard
2352 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
2353 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
2354 1a084f3d bellard
2355 e3371e62 bellard
@subsubsection SVGA graphic modes support
2356 e3371e62 bellard
2357 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
2358 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
2359 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
2360 15a34c63 bellard
depth in the guest and the host OS.
2361 1a084f3d bellard
2362 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
2363 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2364 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
2365 3cb0853a bellard
(option @option{-std-vga}).
2366 3cb0853a bellard
2367 e3371e62 bellard
@subsubsection CPU usage reduction
2368 e3371e62 bellard
2369 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
2370 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
2371 15a34c63 bellard
idle. You can install the utility from
2372 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2373 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
2374 1a084f3d bellard
2375 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
2376 e3371e62 bellard
2377 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
2378 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
2379 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
2380 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
2381 9d0a8e6f bellard
IDE transfers).
2382 e3371e62 bellard
2383 6cc721cf bellard
@subsubsection Windows 2000 shutdown
2384 6cc721cf bellard
2385 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2386 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
2387 6cc721cf bellard
use the APM driver provided by the BIOS.
2388 6cc721cf bellard
2389 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
2390 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2391 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
2392 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2393 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
2394 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
2395 6cc721cf bellard
2396 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
2397 6cc721cf bellard
2398 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
2399 6cc721cf bellard
2400 2192c332 bellard
@subsubsection Windows XP security problem
2401 e3371e62 bellard
2402 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
2403 e3371e62 bellard
error when booting:
2404 e3371e62 bellard
@example
2405 e3371e62 bellard
A problem is preventing Windows from accurately checking the
2406 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
2407 e3371e62 bellard
@end example
2408 e3371e62 bellard
2409 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
2410 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
2411 2192c332 bellard
network while in safe mode, its recommended to download the full
2412 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
2413 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2414 e3371e62 bellard
2415 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2416 a0a821a4 bellard
2417 a0a821a4 bellard
@subsubsection CPU usage reduction
2418 a0a821a4 bellard
2419 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2420 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2421 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2422 a0a821a4 bellard
problem.
2423 a0a821a4 bellard
2424 debc7065 bellard
@node QEMU System emulator for non PC targets
2425 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2426 3f9f3aa1 bellard
2427 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2428 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2429 4be456f1 ths
differences are mentioned in the following sections.
2430 3f9f3aa1 bellard
2431 debc7065 bellard
@menu
2432 debc7065 bellard
* QEMU PowerPC System emulator::
2433 24d4de45 ths
* Sparc32 System emulator::
2434 24d4de45 ths
* Sparc64 System emulator::
2435 24d4de45 ths
* MIPS System emulator::
2436 24d4de45 ths
* ARM System emulator::
2437 24d4de45 ths
* ColdFire System emulator::
2438 debc7065 bellard
@end menu
2439 debc7065 bellard
2440 debc7065 bellard
@node QEMU PowerPC System emulator
2441 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2442 1a084f3d bellard
2443 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2444 15a34c63 bellard
or PowerMac PowerPC system.
2445 1a084f3d bellard
2446 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2447 1a084f3d bellard
2448 15a34c63 bellard
@itemize @minus
2449 5fafdf24 ths
@item
2450 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
2451 15a34c63 bellard
@item
2452 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2453 5fafdf24 ths
@item
2454 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2455 5fafdf24 ths
@item
2456 15a34c63 bellard
NE2000 PCI adapters
2457 15a34c63 bellard
@item
2458 15a34c63 bellard
Non Volatile RAM
2459 15a34c63 bellard
@item
2460 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2461 1a084f3d bellard
@end itemize
2462 1a084f3d bellard
2463 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2464 52c00a5f bellard
2465 52c00a5f bellard
@itemize @minus
2466 5fafdf24 ths
@item
2467 15a34c63 bellard
PCI Bridge
2468 15a34c63 bellard
@item
2469 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2470 5fafdf24 ths
@item
2471 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2472 52c00a5f bellard
@item
2473 52c00a5f bellard
Floppy disk
2474 5fafdf24 ths
@item
2475 15a34c63 bellard
NE2000 network adapters
2476 52c00a5f bellard
@item
2477 52c00a5f bellard
Serial port
2478 52c00a5f bellard
@item
2479 52c00a5f bellard
PREP Non Volatile RAM
2480 15a34c63 bellard
@item
2481 15a34c63 bellard
PC compatible keyboard and mouse.
2482 52c00a5f bellard
@end itemize
2483 52c00a5f bellard
2484 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2485 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2486 52c00a5f bellard
2487 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2488 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2489 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
2490 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2491 992e5acd blueswir1
2492 15a34c63 bellard
@c man begin OPTIONS
2493 15a34c63 bellard
2494 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2495 15a34c63 bellard
2496 15a34c63 bellard
@table @option
2497 15a34c63 bellard
2498 3b46e624 ths
@item -g WxH[xDEPTH]
2499 15a34c63 bellard
2500 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2501 15a34c63 bellard
2502 95efd11c blueswir1
@item -prom-env string
2503 95efd11c blueswir1
2504 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
2505 95efd11c blueswir1
2506 95efd11c blueswir1
@example
2507 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
2508 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
2509 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2510 95efd11c blueswir1
@end example
2511 95efd11c blueswir1
2512 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
2513 95efd11c blueswir1
2514 15a34c63 bellard
@end table
2515 15a34c63 bellard
2516 5fafdf24 ths
@c man end
2517 15a34c63 bellard
2518 15a34c63 bellard
2519 52c00a5f bellard
More information is available at
2520 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2521 52c00a5f bellard
2522 24d4de45 ths
@node Sparc32 System emulator
2523 24d4de45 ths
@section Sparc32 System emulator
2524 e80cfcfc bellard
2525 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
2526 34a3d239 blueswir1
Sun4m architecture machines:
2527 34a3d239 blueswir1
@itemize @minus
2528 34a3d239 blueswir1
@item
2529 34a3d239 blueswir1
SPARCstation 4
2530 34a3d239 blueswir1
@item
2531 34a3d239 blueswir1
SPARCstation 5
2532 34a3d239 blueswir1
@item
2533 34a3d239 blueswir1
SPARCstation 10
2534 34a3d239 blueswir1
@item
2535 34a3d239 blueswir1
SPARCstation 20
2536 34a3d239 blueswir1
@item
2537 34a3d239 blueswir1
SPARCserver 600MP
2538 34a3d239 blueswir1
@item
2539 34a3d239 blueswir1
SPARCstation LX
2540 34a3d239 blueswir1
@item
2541 34a3d239 blueswir1
SPARCstation Voyager
2542 34a3d239 blueswir1
@item
2543 34a3d239 blueswir1
SPARCclassic
2544 34a3d239 blueswir1
@item
2545 34a3d239 blueswir1
SPARCbook
2546 34a3d239 blueswir1
@end itemize
2547 34a3d239 blueswir1
2548 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2549 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
2550 e80cfcfc bellard
2551 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2552 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2553 34a3d239 blueswir1
emulators are not usable yet.
2554 34a3d239 blueswir1
2555 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2556 e80cfcfc bellard
2557 e80cfcfc bellard
@itemize @minus
2558 3475187d bellard
@item
2559 7d85892b blueswir1
IOMMU or IO-UNITs
2560 e80cfcfc bellard
@item
2561 e80cfcfc bellard
TCX Frame buffer
2562 5fafdf24 ths
@item
2563 e80cfcfc bellard
Lance (Am7990) Ethernet
2564 e80cfcfc bellard
@item
2565 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
2566 e80cfcfc bellard
@item
2567 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2568 3475187d bellard
and power/reset logic
2569 3475187d bellard
@item
2570 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2571 3475187d bellard
@item
2572 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2573 a2502b58 blueswir1
@item
2574 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2575 e80cfcfc bellard
@end itemize
2576 e80cfcfc bellard
2577 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2578 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2579 7d85892b blueswir1
others 2047MB.
2580 3475187d bellard
2581 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2582 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2583 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2584 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2585 3475187d bellard
2586 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2587 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2588 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
2589 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
2590 34a3d239 blueswir1
Solaris.
2591 3475187d bellard
2592 3475187d bellard
@c man begin OPTIONS
2593 3475187d bellard
2594 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2595 3475187d bellard
2596 3475187d bellard
@table @option
2597 3475187d bellard
2598 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2599 3475187d bellard
2600 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2601 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2602 3475187d bellard
2603 66508601 blueswir1
@item -prom-env string
2604 66508601 blueswir1
2605 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2606 66508601 blueswir1
2607 66508601 blueswir1
@example
2608 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2609 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2610 66508601 blueswir1
@end example
2611 66508601 blueswir1
2612 34a3d239 blueswir1
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2613 a2502b58 blueswir1
2614 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2615 a2502b58 blueswir1
2616 3475187d bellard
@end table
2617 3475187d bellard
2618 5fafdf24 ths
@c man end
2619 3475187d bellard
2620 24d4de45 ths
@node Sparc64 System emulator
2621 24d4de45 ths
@section Sparc64 System emulator
2622 e80cfcfc bellard
2623 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2624 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2625 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
2626 34a3d239 blueswir1
it can launch some kernels.
2627 b756921a bellard
2628 c7ba218d blueswir1
QEMU emulates the following peripherals:
2629 83469015 bellard
2630 83469015 bellard
@itemize @minus
2631 83469015 bellard
@item
2632 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2633 83469015 bellard
@item
2634 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2635 83469015 bellard
@item
2636 34a3d239 blueswir1
PS/2 mouse and keyboard
2637 34a3d239 blueswir1
@item
2638 83469015 bellard
Non Volatile RAM M48T59
2639 83469015 bellard
@item
2640 83469015 bellard
PC-compatible serial ports
2641 c7ba218d blueswir1
@item
2642 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
2643 34a3d239 blueswir1
@item
2644 34a3d239 blueswir1
Floppy disk
2645 83469015 bellard
@end itemize
2646 83469015 bellard
2647 c7ba218d blueswir1
@c man begin OPTIONS
2648 c7ba218d blueswir1
2649 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
2650 c7ba218d blueswir1
2651 c7ba218d blueswir1
@table @option
2652 c7ba218d blueswir1
2653 34a3d239 blueswir1
@item -prom-env string
2654 34a3d239 blueswir1
2655 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2656 34a3d239 blueswir1
2657 34a3d239 blueswir1
@example
2658 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2659 34a3d239 blueswir1
@end example
2660 34a3d239 blueswir1
2661 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
2662 c7ba218d blueswir1
2663 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
2664 c7ba218d blueswir1
2665 c7ba218d blueswir1
@end table
2666 c7ba218d blueswir1
2667 c7ba218d blueswir1
@c man end
2668 c7ba218d blueswir1
2669 24d4de45 ths
@node MIPS System emulator
2670 24d4de45 ths
@section MIPS System emulator
2671 9d0a8e6f bellard
2672 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2673 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2674 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2675 88cb0a02 aurel32
Five different machine types are emulated:
2676 24d4de45 ths
2677 24d4de45 ths
@itemize @minus
2678 24d4de45 ths
@item
2679 24d4de45 ths
A generic ISA PC-like machine "mips"
2680 24d4de45 ths
@item
2681 24d4de45 ths
The MIPS Malta prototype board "malta"
2682 24d4de45 ths
@item
2683 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2684 6bf5b4e8 ths
@item
2685 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2686 88cb0a02 aurel32
@item
2687 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2688 24d4de45 ths
@end itemize
2689 24d4de45 ths
2690 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2691 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2692 24d4de45 ths
emulated:
2693 3f9f3aa1 bellard
2694 3f9f3aa1 bellard
@itemize @minus
2695 5fafdf24 ths
@item
2696 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2697 3f9f3aa1 bellard
@item
2698 3f9f3aa1 bellard
PC style serial port
2699 3f9f3aa1 bellard
@item
2700 24d4de45 ths
PC style IDE disk
2701 24d4de45 ths
@item
2702 3f9f3aa1 bellard
NE2000 network card
2703 3f9f3aa1 bellard
@end itemize
2704 3f9f3aa1 bellard
2705 24d4de45 ths
The Malta emulation supports the following devices:
2706 24d4de45 ths
2707 24d4de45 ths
@itemize @minus
2708 24d4de45 ths
@item
2709 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2710 24d4de45 ths
@item
2711 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2712 24d4de45 ths
@item
2713 24d4de45 ths
The Multi-I/O chip's serial device
2714 24d4de45 ths
@item
2715 24d4de45 ths
PCnet32 PCI network card
2716 24d4de45 ths
@item
2717 24d4de45 ths
Malta FPGA serial device
2718 24d4de45 ths
@item
2719 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
2720 24d4de45 ths
@end itemize
2721 24d4de45 ths
2722 24d4de45 ths
The ACER Pica emulation supports:
2723 24d4de45 ths
2724 24d4de45 ths
@itemize @minus
2725 24d4de45 ths
@item
2726 24d4de45 ths
MIPS R4000 CPU
2727 24d4de45 ths
@item
2728 24d4de45 ths
PC-style IRQ and DMA controllers
2729 24d4de45 ths
@item
2730 24d4de45 ths
PC Keyboard
2731 24d4de45 ths
@item
2732 24d4de45 ths
IDE controller
2733 24d4de45 ths
@end itemize
2734 3f9f3aa1 bellard
2735 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2736 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2737 f0fc6f8f ths
It supports:
2738 6bf5b4e8 ths
2739 6bf5b4e8 ths
@itemize @minus
2740 6bf5b4e8 ths
@item
2741 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2742 6bf5b4e8 ths
@item
2743 6bf5b4e8 ths
PC style serial port
2744 6bf5b4e8 ths
@item
2745 6bf5b4e8 ths
MIPSnet network emulation
2746 6bf5b4e8 ths
@end itemize
2747 6bf5b4e8 ths
2748 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
2749 88cb0a02 aurel32
2750 88cb0a02 aurel32
@itemize @minus
2751 88cb0a02 aurel32
@item
2752 88cb0a02 aurel32
MIPS R4000 CPU
2753 88cb0a02 aurel32
@item
2754 88cb0a02 aurel32
PC-style IRQ controller
2755 88cb0a02 aurel32
@item
2756 88cb0a02 aurel32
PC Keyboard
2757 88cb0a02 aurel32
@item
2758 88cb0a02 aurel32
SCSI controller
2759 88cb0a02 aurel32
@item
2760 88cb0a02 aurel32
G364 framebuffer
2761 88cb0a02 aurel32
@end itemize
2762 88cb0a02 aurel32
2763 88cb0a02 aurel32
2764 24d4de45 ths
@node ARM System emulator
2765 24d4de45 ths
@section ARM System emulator
2766 3f9f3aa1 bellard
2767 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2768 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2769 3f9f3aa1 bellard
devices:
2770 3f9f3aa1 bellard
2771 3f9f3aa1 bellard
@itemize @minus
2772 3f9f3aa1 bellard
@item
2773 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2774 3f9f3aa1 bellard
@item
2775 3f9f3aa1 bellard
Two PL011 UARTs
2776 5fafdf24 ths
@item
2777 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2778 00a9bf19 pbrook
@item
2779 00a9bf19 pbrook
PL110 LCD controller
2780 00a9bf19 pbrook
@item
2781 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2782 a1bb27b1 pbrook
@item
2783 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2784 00a9bf19 pbrook
@end itemize
2785 00a9bf19 pbrook
2786 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2787 00a9bf19 pbrook
2788 00a9bf19 pbrook
@itemize @minus
2789 00a9bf19 pbrook
@item
2790 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2791 00a9bf19 pbrook
@item
2792 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2793 00a9bf19 pbrook
@item
2794 00a9bf19 pbrook
Four PL011 UARTs
2795 5fafdf24 ths
@item
2796 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2797 00a9bf19 pbrook
@item
2798 00a9bf19 pbrook
PL110 LCD controller
2799 00a9bf19 pbrook
@item
2800 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2801 00a9bf19 pbrook
@item
2802 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2803 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2804 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2805 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2806 00a9bf19 pbrook
mapped control registers.
2807 e6de1bad pbrook
@item
2808 e6de1bad pbrook
PCI OHCI USB controller.
2809 e6de1bad pbrook
@item
2810 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2811 a1bb27b1 pbrook
@item
2812 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2813 3f9f3aa1 bellard
@end itemize
2814 3f9f3aa1 bellard
2815 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2816 d7739d75 pbrook
2817 d7739d75 pbrook
@itemize @minus
2818 d7739d75 pbrook
@item
2819 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2820 d7739d75 pbrook
@item
2821 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2822 d7739d75 pbrook
@item
2823 d7739d75 pbrook
Four PL011 UARTs
2824 5fafdf24 ths
@item
2825 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2826 d7739d75 pbrook
@item
2827 d7739d75 pbrook
PL110 LCD controller
2828 d7739d75 pbrook
@item
2829 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2830 d7739d75 pbrook
@item
2831 d7739d75 pbrook
PCI host bridge
2832 d7739d75 pbrook
@item
2833 d7739d75 pbrook
PCI OHCI USB controller
2834 d7739d75 pbrook
@item
2835 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2836 a1bb27b1 pbrook
@item
2837 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2838 d7739d75 pbrook
@end itemize
2839 d7739d75 pbrook
2840 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2841 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2842 b00052e4 balrog
2843 b00052e4 balrog
@itemize @minus
2844 b00052e4 balrog
@item
2845 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2846 b00052e4 balrog
@item
2847 b00052e4 balrog
NAND Flash memory
2848 b00052e4 balrog
@item
2849 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2850 b00052e4 balrog
@item
2851 b00052e4 balrog
On-chip OHCI USB controller
2852 b00052e4 balrog
@item
2853 b00052e4 balrog
On-chip LCD controller
2854 b00052e4 balrog
@item
2855 b00052e4 balrog
On-chip Real Time Clock
2856 b00052e4 balrog
@item
2857 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2858 b00052e4 balrog
@item
2859 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2860 b00052e4 balrog
@item
2861 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2862 b00052e4 balrog
@item
2863 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2864 b00052e4 balrog
@item
2865 b00052e4 balrog
Three on-chip UARTs
2866 b00052e4 balrog
@item
2867 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2868 b00052e4 balrog
@end itemize
2869 b00052e4 balrog
2870 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2871 02645926 balrog
following elements:
2872 02645926 balrog
2873 02645926 balrog
@itemize @minus
2874 02645926 balrog
@item
2875 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2876 02645926 balrog
@item
2877 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2878 02645926 balrog
@item
2879 02645926 balrog
On-chip LCD controller
2880 02645926 balrog
@item
2881 02645926 balrog
On-chip Real Time Clock
2882 02645926 balrog
@item
2883 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2884 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2885 02645926 balrog
@item
2886 02645926 balrog
GPIO-connected matrix keypad
2887 02645926 balrog
@item
2888 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2889 02645926 balrog
@item
2890 02645926 balrog
Three on-chip UARTs
2891 02645926 balrog
@end itemize
2892 02645926 balrog
2893 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2894 c30bb264 balrog
emulation supports the following elements:
2895 c30bb264 balrog
2896 c30bb264 balrog
@itemize @minus
2897 c30bb264 balrog
@item
2898 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2899 c30bb264 balrog
@item
2900 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2901 c30bb264 balrog
@item
2902 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2903 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2904 c30bb264 balrog
@item
2905 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2906 c30bb264 balrog
driven through SPI bus
2907 c30bb264 balrog
@item
2908 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2909 c30bb264 balrog
through I@math{^2}C bus
2910 c30bb264 balrog
@item
2911 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2912 c30bb264 balrog
@item
2913 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2914 c30bb264 balrog
@item
2915 2d564691 balrog
A Bluetooth(R) transciever and HCI connected to an UART
2916 2d564691 balrog
@item
2917 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2918 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2919 c30bb264 balrog
@item
2920 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2921 c30bb264 balrog
@item
2922 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2923 c30bb264 balrog
@item
2924 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2925 c30bb264 balrog
through CBUS
2926 c30bb264 balrog
@end itemize
2927 c30bb264 balrog
2928 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2929 9ee6e8bb pbrook
devices:
2930 9ee6e8bb pbrook
2931 9ee6e8bb pbrook
@itemize @minus
2932 9ee6e8bb pbrook
@item
2933 9ee6e8bb pbrook
Cortex-M3 CPU core.
2934 9ee6e8bb pbrook
@item
2935 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2936 9ee6e8bb pbrook
@item
2937 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2938 9ee6e8bb pbrook
@item
2939 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2940 9ee6e8bb pbrook
@end itemize
2941 9ee6e8bb pbrook
2942 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2943 9ee6e8bb pbrook
devices:
2944 9ee6e8bb pbrook
2945 9ee6e8bb pbrook
@itemize @minus
2946 9ee6e8bb pbrook
@item
2947 9ee6e8bb pbrook
Cortex-M3 CPU core.
2948 9ee6e8bb pbrook
@item
2949 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2950 9ee6e8bb pbrook
@item
2951 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2952 9ee6e8bb pbrook
@item
2953 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2954 9ee6e8bb pbrook
@end itemize
2955 9ee6e8bb pbrook
2956 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2957 57cd6e97 balrog
elements:
2958 57cd6e97 balrog
2959 57cd6e97 balrog
@itemize @minus
2960 57cd6e97 balrog
@item
2961 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2962 57cd6e97 balrog
@item
2963 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2964 57cd6e97 balrog
@item
2965 57cd6e97 balrog
Up to 2 16550 UARTs
2966 57cd6e97 balrog
@item
2967 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2968 57cd6e97 balrog
@item
2969 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2970 57cd6e97 balrog
@item
2971 57cd6e97 balrog
128?64 display with brightness control
2972 57cd6e97 balrog
@item
2973 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2974 57cd6e97 balrog
@end itemize
2975 57cd6e97 balrog
2976 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
2977 997641a8 balrog
The emulaton includes the following elements:
2978 997641a8 balrog
2979 997641a8 balrog
@itemize @minus
2980 997641a8 balrog
@item
2981 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2982 997641a8 balrog
@item
2983 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2984 997641a8 balrog
V1
2985 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2986 997641a8 balrog
V2
2987 997641a8 balrog
1 Flash of 32MB
2988 997641a8 balrog
@item
2989 997641a8 balrog
On-chip LCD controller
2990 997641a8 balrog
@item
2991 997641a8 balrog
On-chip Real Time Clock
2992 997641a8 balrog
@item
2993 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2994 997641a8 balrog
@item
2995 997641a8 balrog
Three on-chip UARTs
2996 997641a8 balrog
@end itemize
2997 997641a8 balrog
2998 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2999 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
3000 9d0a8e6f bellard
3001 d2c639d6 blueswir1
@c man begin OPTIONS
3002 d2c639d6 blueswir1
3003 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
3004 d2c639d6 blueswir1
3005 d2c639d6 blueswir1
@table @option
3006 d2c639d6 blueswir1
3007 d2c639d6 blueswir1
@item -semihosting
3008 d2c639d6 blueswir1
Enable semihosting syscall emulation.
3009 d2c639d6 blueswir1
3010 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
3011 d2c639d6 blueswir1
3012 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
3013 d2c639d6 blueswir1
so should only be used with trusted guest OS.
3014 d2c639d6 blueswir1
3015 d2c639d6 blueswir1
@end table
3016 d2c639d6 blueswir1
3017 24d4de45 ths
@node ColdFire System emulator
3018 24d4de45 ths
@section ColdFire System emulator
3019 209a4e69 pbrook
3020 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
3021 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
3022 707e011b pbrook
3023 707e011b pbrook
The M5208EVB emulation includes the following devices:
3024 707e011b pbrook
3025 707e011b pbrook
@itemize @minus
3026 5fafdf24 ths
@item
3027 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
3028 707e011b pbrook
@item
3029 707e011b pbrook
Three Two on-chip UARTs.
3030 707e011b pbrook
@item
3031 707e011b pbrook
Fast Ethernet Controller (FEC)
3032 707e011b pbrook
@end itemize
3033 707e011b pbrook
3034 707e011b pbrook
The AN5206 emulation includes the following devices:
3035 209a4e69 pbrook
3036 209a4e69 pbrook
@itemize @minus
3037 5fafdf24 ths
@item
3038 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
3039 209a4e69 pbrook
@item
3040 209a4e69 pbrook
Two on-chip UARTs.
3041 209a4e69 pbrook
@end itemize
3042 209a4e69 pbrook
3043 d2c639d6 blueswir1
@c man begin OPTIONS
3044 d2c639d6 blueswir1
3045 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
3046 d2c639d6 blueswir1
3047 d2c639d6 blueswir1
@table @option
3048 d2c639d6 blueswir1
3049 d2c639d6 blueswir1
@item -semihosting
3050 d2c639d6 blueswir1
Enable semihosting syscall emulation.
3051 d2c639d6 blueswir1
3052 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
3053 d2c639d6 blueswir1
3054 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
3055 d2c639d6 blueswir1
so should only be used with trusted guest OS.
3056 d2c639d6 blueswir1
3057 d2c639d6 blueswir1
@end table
3058 d2c639d6 blueswir1
3059 5fafdf24 ths
@node QEMU User space emulator
3060 5fafdf24 ths
@chapter QEMU User space emulator
3061 83195237 bellard
3062 83195237 bellard
@menu
3063 83195237 bellard
* Supported Operating Systems ::
3064 83195237 bellard
* Linux User space emulator::
3065 83195237 bellard
* Mac OS X/Darwin User space emulator ::
3066 84778508 blueswir1
* BSD User space emulator ::
3067 83195237 bellard
@end menu
3068 83195237 bellard
3069 83195237 bellard
@node Supported Operating Systems
3070 83195237 bellard
@section Supported Operating Systems
3071 83195237 bellard
3072 83195237 bellard
The following OS are supported in user space emulation:
3073 83195237 bellard
3074 83195237 bellard
@itemize @minus
3075 83195237 bellard
@item
3076 4be456f1 ths
Linux (referred as qemu-linux-user)
3077 83195237 bellard
@item
3078 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
3079 84778508 blueswir1
@item
3080 84778508 blueswir1
BSD (referred as qemu-bsd-user)
3081 83195237 bellard
@end itemize
3082 83195237 bellard
3083 83195237 bellard
@node Linux User space emulator
3084 83195237 bellard
@section Linux User space emulator
3085 386405f7 bellard
3086 debc7065 bellard
@menu
3087 debc7065 bellard
* Quick Start::
3088 debc7065 bellard
* Wine launch::
3089 debc7065 bellard
* Command line options::
3090 79737e4a pbrook
* Other binaries::
3091 debc7065 bellard
@end menu
3092 debc7065 bellard
3093 debc7065 bellard
@node Quick Start
3094 83195237 bellard
@subsection Quick Start
3095 df0f11a0 bellard
3096 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
3097 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
3098 386405f7 bellard
3099 1f673135 bellard
@itemize
3100 386405f7 bellard
3101 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
3102 1f673135 bellard
libraries:
3103 386405f7 bellard
3104 5fafdf24 ths
@example
3105 1f673135 bellard
qemu-i386 -L / /bin/ls
3106 1f673135 bellard
@end example
3107 386405f7 bellard
3108 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
3109 1f673135 bellard
@file{/} prefix.
3110 386405f7 bellard
3111 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
3112 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
3113 386405f7 bellard
3114 5fafdf24 ths
@example
3115 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
3116 1f673135 bellard
@end example
3117 386405f7 bellard
3118 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
3119 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
3120 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
3121 df0f11a0 bellard
3122 1f673135 bellard
@example
3123 5fafdf24 ths
unset LD_LIBRARY_PATH
3124 1f673135 bellard
@end example
3125 1eb87257 bellard
3126 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
3127 1eb87257 bellard
3128 1f673135 bellard
@example
3129 1f673135 bellard
qemu-i386 tests/i386/ls
3130 1f673135 bellard
@end example
3131 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
3132 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
3133 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
3134 1f673135 bellard
Linux kernel.
3135 1eb87257 bellard
3136 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
3137 1f673135 bellard
@example
3138 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
3139 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
3140 1f673135 bellard
@end example
3141 1eb20527 bellard
3142 1f673135 bellard
@end itemize
3143 1eb20527 bellard
3144 debc7065 bellard
@node Wine launch
3145 83195237 bellard
@subsection Wine launch
3146 1eb20527 bellard
3147 1f673135 bellard
@itemize
3148 386405f7 bellard
3149 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
3150 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
3151 1f673135 bellard
able to do:
3152 386405f7 bellard
3153 1f673135 bellard
@example
3154 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
3155 1f673135 bellard
@end example
3156 386405f7 bellard
3157 1f673135 bellard
@item Download the binary x86 Wine install
3158 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
3159 386405f7 bellard
3160 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
3161 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
3162 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
3163 386405f7 bellard
3164 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
3165 386405f7 bellard
3166 1f673135 bellard
@example
3167 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
3168 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
3169 1f673135 bellard
@end example
3170 386405f7 bellard
3171 1f673135 bellard
@end itemize
3172 fd429f2f bellard
3173 debc7065 bellard
@node Command line options
3174 83195237 bellard
@subsection Command line options
3175 1eb20527 bellard
3176 1f673135 bellard
@example
3177 34a3d239 blueswir1
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
3178 1f673135 bellard
@end example
3179 1eb20527 bellard
3180 1f673135 bellard
@table @option
3181 1f673135 bellard
@item -h
3182 1f673135 bellard
Print the help
3183 3b46e624 ths
@item -L path
3184 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
3185 1f673135 bellard
@item -s size
3186 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
3187 34a3d239 blueswir1
@item -cpu model
3188 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
3189 386405f7 bellard
@end table
3190 386405f7 bellard
3191 1f673135 bellard
Debug options:
3192 386405f7 bellard
3193 1f673135 bellard
@table @option
3194 1f673135 bellard
@item -d
3195 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
3196 1f673135 bellard
@item -p pagesize
3197 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
3198 34a3d239 blueswir1
@item -g port
3199 34a3d239 blueswir1
Wait gdb connection to port
3200 1f673135 bellard
@end table
3201 386405f7 bellard
3202 b01bcae6 balrog
Environment variables:
3203 b01bcae6 balrog
3204 b01bcae6 balrog
@table @env
3205 b01bcae6 balrog
@item QEMU_STRACE
3206 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
3207 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
3208 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
3209 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
3210 b01bcae6 balrog
format are printed with information for six arguments.  Many
3211 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
3212 5cfdf930 ths
@end table
3213 b01bcae6 balrog
3214 79737e4a pbrook
@node Other binaries
3215 83195237 bellard
@subsection Other binaries
3216 79737e4a pbrook
3217 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3218 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3219 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
3220 79737e4a pbrook
3221 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3222 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3223 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
3224 e6e5906b pbrook
3225 79737e4a pbrook
The binary format is detected automatically.
3226 79737e4a pbrook
3227 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3228 34a3d239 blueswir1
3229 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3230 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
3231 a785e42e blueswir1
3232 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3233 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3234 a785e42e blueswir1
3235 83195237 bellard
@node Mac OS X/Darwin User space emulator
3236 83195237 bellard
@section Mac OS X/Darwin User space emulator
3237 83195237 bellard
3238 83195237 bellard
@menu
3239 83195237 bellard
* Mac OS X/Darwin Status::
3240 83195237 bellard
* Mac OS X/Darwin Quick Start::
3241 83195237 bellard
* Mac OS X/Darwin Command line options::
3242 83195237 bellard
@end menu
3243 83195237 bellard
3244 83195237 bellard
@node Mac OS X/Darwin Status
3245 83195237 bellard
@subsection Mac OS X/Darwin Status
3246 83195237 bellard
3247 83195237 bellard
@itemize @minus
3248 83195237 bellard
@item
3249 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3250 83195237 bellard
@item
3251 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3252 83195237 bellard
@item
3253 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3254 83195237 bellard
@item
3255 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3256 83195237 bellard
@end itemize
3257 83195237 bellard
3258 83195237 bellard
[1] If you're host commpage can be executed by qemu.
3259 83195237 bellard
3260 83195237 bellard
@node Mac OS X/Darwin Quick Start
3261 83195237 bellard
@subsection Quick Start
3262 83195237 bellard
3263 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3264 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
3265 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3266 83195237 bellard
CD or compile them by hand.
3267 83195237 bellard
3268 83195237 bellard
@itemize
3269 83195237 bellard
3270 83195237 bellard
@item On x86, you can just try to launch any process by using the native
3271 83195237 bellard
libraries:
3272 83195237 bellard
3273 5fafdf24 ths
@example
3274 dbcf5e82 ths
qemu-i386 /bin/ls
3275 83195237 bellard
@end example
3276 83195237 bellard
3277 83195237 bellard
or to run the ppc version of the executable:
3278 83195237 bellard
3279 5fafdf24 ths
@example
3280 dbcf5e82 ths
qemu-ppc /bin/ls
3281 83195237 bellard
@end example
3282 83195237 bellard
3283 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3284 83195237 bellard
are installed:
3285 83195237 bellard
3286 5fafdf24 ths
@example
3287 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
3288 83195237 bellard
@end example
3289 83195237 bellard
3290 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3291 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
3292 83195237 bellard
3293 83195237 bellard
@end itemize
3294 83195237 bellard
3295 83195237 bellard
@node Mac OS X/Darwin Command line options
3296 83195237 bellard
@subsection Command line options
3297 83195237 bellard
3298 83195237 bellard
@example
3299 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3300 83195237 bellard
@end example
3301 83195237 bellard
3302 83195237 bellard
@table @option
3303 83195237 bellard
@item -h
3304 83195237 bellard
Print the help
3305 3b46e624 ths
@item -L path
3306 83195237 bellard
Set the library root path (default=/)
3307 83195237 bellard
@item -s size
3308 83195237 bellard
Set the stack size in bytes (default=524288)
3309 83195237 bellard
@end table
3310 83195237 bellard
3311 83195237 bellard
Debug options:
3312 83195237 bellard
3313 83195237 bellard
@table @option
3314 83195237 bellard
@item -d
3315 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
3316 83195237 bellard
@item -p pagesize
3317 83195237 bellard
Act as if the host page size was 'pagesize' bytes
3318 83195237 bellard
@end table
3319 83195237 bellard
3320 84778508 blueswir1
@node BSD User space emulator
3321 84778508 blueswir1
@section BSD User space emulator
3322 84778508 blueswir1
3323 84778508 blueswir1
@menu
3324 84778508 blueswir1
* BSD Status::
3325 84778508 blueswir1
* BSD Quick Start::
3326 84778508 blueswir1
* BSD Command line options::
3327 84778508 blueswir1
@end menu
3328 84778508 blueswir1
3329 84778508 blueswir1
@node BSD Status
3330 84778508 blueswir1
@subsection BSD Status
3331 84778508 blueswir1
3332 84778508 blueswir1
@itemize @minus
3333 84778508 blueswir1
@item
3334 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
3335 84778508 blueswir1
@end itemize
3336 84778508 blueswir1
3337 84778508 blueswir1
@node BSD Quick Start
3338 84778508 blueswir1
@subsection Quick Start
3339 84778508 blueswir1
3340 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
3341 84778508 blueswir1
itself and all the target dynamic libraries used by it.
3342 84778508 blueswir1
3343 84778508 blueswir1
@itemize
3344 84778508 blueswir1
3345 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
3346 84778508 blueswir1
libraries:
3347 84778508 blueswir1
3348 84778508 blueswir1
@example
3349 84778508 blueswir1
qemu-sparc64 /bin/ls
3350 84778508 blueswir1
@end example
3351 84778508 blueswir1
3352 84778508 blueswir1
@end itemize
3353 84778508 blueswir1
3354 84778508 blueswir1
@node BSD Command line options
3355 84778508 blueswir1
@subsection Command line options
3356 84778508 blueswir1
3357 84778508 blueswir1
@example
3358 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3359 84778508 blueswir1
@end example
3360 84778508 blueswir1
3361 84778508 blueswir1
@table @option
3362 84778508 blueswir1
@item -h
3363 84778508 blueswir1
Print the help
3364 84778508 blueswir1
@item -L path
3365 84778508 blueswir1
Set the library root path (default=/)
3366 84778508 blueswir1
@item -s size
3367 84778508 blueswir1
Set the stack size in bytes (default=524288)
3368 84778508 blueswir1
@item -bsd type
3369 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
3370 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
3371 84778508 blueswir1
@end table
3372 84778508 blueswir1
3373 84778508 blueswir1
Debug options:
3374 84778508 blueswir1
3375 84778508 blueswir1
@table @option
3376 84778508 blueswir1
@item -d
3377 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
3378 84778508 blueswir1
@item -p pagesize
3379 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
3380 84778508 blueswir1
@end table
3381 84778508 blueswir1
3382 15a34c63 bellard
@node compilation
3383 15a34c63 bellard
@chapter Compilation from the sources
3384 15a34c63 bellard
3385 debc7065 bellard
@menu
3386 debc7065 bellard
* Linux/Unix::
3387 debc7065 bellard
* Windows::
3388 debc7065 bellard
* Cross compilation for Windows with Linux::
3389 debc7065 bellard
* Mac OS X::
3390 debc7065 bellard
@end menu
3391 debc7065 bellard
3392 debc7065 bellard
@node Linux/Unix
3393 7c3fc84d bellard
@section Linux/Unix
3394 7c3fc84d bellard
3395 7c3fc84d bellard
@subsection Compilation
3396 7c3fc84d bellard
3397 7c3fc84d bellard
First you must decompress the sources:
3398 7c3fc84d bellard
@example
3399 7c3fc84d bellard
cd /tmp
3400 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
3401 7c3fc84d bellard
cd qemu-x.y.z
3402 7c3fc84d bellard
@end example
3403 7c3fc84d bellard
3404 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
3405 7c3fc84d bellard
@example
3406 7c3fc84d bellard
./configure
3407 7c3fc84d bellard
make
3408 7c3fc84d bellard
@end example
3409 7c3fc84d bellard
3410 7c3fc84d bellard
Then type as root user:
3411 7c3fc84d bellard
@example
3412 7c3fc84d bellard
make install
3413 7c3fc84d bellard
@end example
3414 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
3415 7c3fc84d bellard
3416 4fe8b87a bellard
@subsection GCC version
3417 7c3fc84d bellard
3418 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
3419 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
3420 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3421 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
3422 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
3423 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
3424 4be456f1 ths
these older versions so that usually you don't have to do anything.
3425 15a34c63 bellard
3426 debc7065 bellard
@node Windows
3427 15a34c63 bellard
@section Windows
3428 15a34c63 bellard
3429 15a34c63 bellard
@itemize
3430 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
3431 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
3432 15a34c63 bellard
instructions in the download section and the FAQ.
3433 15a34c63 bellard
3434 5fafdf24 ths
@item Download
3435 15a34c63 bellard
the MinGW development library of SDL 1.2.x
3436 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3437 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3438 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3439 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
3440 15a34c63 bellard
correct SDL directory when invoked.
3441 15a34c63 bellard
3442 15a34c63 bellard
@item Extract the current version of QEMU.
3443 5fafdf24 ths
3444 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
3445 15a34c63 bellard
3446 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
3447 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
3448 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
3449 15a34c63 bellard
3450 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
3451 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
3452 15a34c63 bellard
@file{Program Files/Qemu}.
3453 15a34c63 bellard
3454 15a34c63 bellard
@end itemize
3455 15a34c63 bellard
3456 debc7065 bellard
@node Cross compilation for Windows with Linux
3457 15a34c63 bellard
@section Cross compilation for Windows with Linux
3458 15a34c63 bellard
3459 15a34c63 bellard
@itemize
3460 15a34c63 bellard
@item
3461 15a34c63 bellard
Install the MinGW cross compilation tools available at
3462 15a34c63 bellard
@url{http://www.mingw.org/}.
3463 15a34c63 bellard
3464 5fafdf24 ths
@item
3465 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3466 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3467 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3468 15a34c63 bellard
the QEMU configuration script.
3469 15a34c63 bellard
3470 5fafdf24 ths
@item
3471 15a34c63 bellard
Configure QEMU for Windows cross compilation:
3472 15a34c63 bellard
@example
3473 15a34c63 bellard
./configure --enable-mingw32
3474 15a34c63 bellard
@end example
3475 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
3476 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
3477 15a34c63 bellard
--prefix to set the Win32 install path.
3478 15a34c63 bellard
3479 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
3480 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3481 5fafdf24 ths
installation directory.
3482 15a34c63 bellard
3483 15a34c63 bellard
@end itemize
3484 15a34c63 bellard
3485 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
3486 15a34c63 bellard
QEMU for Win32.
3487 15a34c63 bellard
3488 debc7065 bellard
@node Mac OS X
3489 15a34c63 bellard
@section Mac OS X
3490 15a34c63 bellard
3491 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
3492 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
3493 15a34c63 bellard
information.
3494 15a34c63 bellard
3495 debc7065 bellard
@node Index
3496 debc7065 bellard
@chapter Index
3497 debc7065 bellard
@printindex cp
3498 debc7065 bellard
3499 debc7065 bellard
@bye