Statistics
| Branch: | Revision:

root / qemu-doc.texi @ b42ec42d

History | View | Annotate | Download (103.8 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@end itemize
95

    
96
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97

    
98
@node Installation
99
@chapter Installation
100

    
101
If you want to compile QEMU yourself, see @ref{compilation}.
102

    
103
@menu
104
* install_linux::   Linux
105
* install_windows:: Windows
106
* install_mac::     Macintosh
107
@end menu
108

    
109
@node install_linux
110
@section Linux
111

    
112
If a precompiled package is available for your distribution - you just
113
have to install it. Otherwise, see @ref{compilation}.
114

    
115
@node install_windows
116
@section Windows
117

    
118
Download the experimental binary installer at
119
@url{http://www.free.oszoo.org/@/download.html}.
120

    
121
@node install_mac
122
@section Mac OS X
123

    
124
Download the experimental binary installer at
125
@url{http://www.free.oszoo.org/@/download.html}.
126

    
127
@node QEMU PC System emulator
128
@chapter QEMU PC System emulator
129

    
130
@menu
131
* pcsys_introduction:: Introduction
132
* pcsys_quickstart::   Quick Start
133
* sec_invocation::     Invocation
134
* pcsys_keys::         Keys
135
* pcsys_monitor::      QEMU Monitor
136
* disk_images::        Disk Images
137
* pcsys_network::      Network emulation
138
* direct_linux_boot::  Direct Linux Boot
139
* pcsys_usb::          USB emulation
140
* vnc_security::       VNC security
141
* gdb_usage::          GDB usage
142
* pcsys_os_specific::  Target OS specific information
143
@end menu
144

    
145
@node pcsys_introduction
146
@section Introduction
147

    
148
@c man begin DESCRIPTION
149

    
150
The QEMU PC System emulator simulates the
151
following peripherals:
152

    
153
@itemize @minus
154
@item
155
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156
@item
157
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158
extensions (hardware level, including all non standard modes).
159
@item
160
PS/2 mouse and keyboard
161
@item
162
2 PCI IDE interfaces with hard disk and CD-ROM support
163
@item
164
Floppy disk
165
@item
166
PCI/ISA PCI network adapters
167
@item
168
Serial ports
169
@item
170
Creative SoundBlaster 16 sound card
171
@item
172
ENSONIQ AudioPCI ES1370 sound card
173
@item
174
Intel 82801AA AC97 Audio compatible sound card
175
@item
176
Adlib(OPL2) - Yamaha YM3812 compatible chip
177
@item
178
Gravis Ultrasound GF1 sound card
179
@item
180
CS4231A compatible sound card
181
@item
182
PCI UHCI USB controller and a virtual USB hub.
183
@end itemize
184

    
185
SMP is supported with up to 255 CPUs.
186

    
187
Note that adlib, gus and cs4231a are only available when QEMU was
188
configured with --audio-card-list option containing the name(s) of
189
required card(s).
190

    
191
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192
VGA BIOS.
193

    
194
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195

    
196
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197
by Tibor "TS" Sch?tz.
198

    
199
CS4231A is the chip used in Windows Sound System and GUSMAX products
200

    
201
@c man end
202

    
203
@node pcsys_quickstart
204
@section Quick Start
205

    
206
Download and uncompress the linux image (@file{linux.img}) and type:
207

    
208
@example
209
qemu linux.img
210
@end example
211

    
212
Linux should boot and give you a prompt.
213

    
214
@node sec_invocation
215
@section Invocation
216

    
217
@example
218
@c man begin SYNOPSIS
219
usage: qemu [options] [@var{disk_image}]
220
@c man end
221
@end example
222

    
223
@c man begin OPTIONS
224
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225
targets do not need a disk image.
226

    
227
General options:
228
@table @option
229
@item -h
230
Display help and exit
231

    
232
@item -M @var{machine}
233
Select the emulated @var{machine} (@code{-M ?} for list)
234

    
235
@item -cpu @var{model}
236
Select CPU model (-cpu ? for list and additional feature selection)
237

    
238
@item -smp @var{n}
239
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241
to 4.
242

    
243
@item -fda @var{file}
244
@item -fdb @var{file}
245
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
246
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
247

    
248
@item -hda @var{file}
249
@item -hdb @var{file}
250
@item -hdc @var{file}
251
@item -hdd @var{file}
252
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
253

    
254
@item -cdrom @var{file}
255
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
256
@option{-cdrom} at the same time). You can use the host CD-ROM by
257
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
258

    
259
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
260

    
261
Define a new drive. Valid options are:
262

    
263
@table @code
264
@item file=@var{file}
265
This option defines which disk image (@pxref{disk_images}) to use with
266
this drive. If the filename contains comma, you must double it
267
(for instance, "file=my,,file" to use file "my,file").
268
@item if=@var{interface}
269
This option defines on which type on interface the drive is connected.
270
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
271
@item bus=@var{bus},unit=@var{unit}
272
These options define where is connected the drive by defining the bus number and
273
the unit id.
274
@item index=@var{index}
275
This option defines where is connected the drive by using an index in the list
276
of available connectors of a given interface type.
277
@item media=@var{media}
278
This option defines the type of the media: disk or cdrom.
279
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280
These options have the same definition as they have in @option{-hdachs}.
281
@item snapshot=@var{snapshot}
282
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
283
@item cache=@var{cache}
284
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
285
@item format=@var{format}
286
Specify which disk @var{format} will be used rather than detecting
287
the format.  Can be used to specifiy format=raw to avoid interpreting
288
an untrusted format header.
289
@item serial=@var{serial}
290
This option specifies the serial number to assign to the device.
291
@end table
292

    
293
By default, writethrough caching is used for all block device.  This means that
294
the host page cache will be used to read and write data but write notification
295
will be sent to the guest only when the data has been reported as written by
296
the storage subsystem.
297

    
298
Writeback caching will report data writes as completed as soon as the data is
299
present in the host page cache.  This is safe as long as you trust your host.
300
If your host crashes or loses power, then the guest may experience data
301
corruption.  When using the @option{-snapshot} option, writeback caching is
302
used by default.
303

    
304
The host page can be avoided entirely with @option{cache=none}.  This will
305
attempt to do disk IO directly to the guests memory.  QEMU may still perform
306
an internal copy of the data.
307

    
308
Some block drivers perform badly with @option{cache=writethrough}, most notably,
309
qcow2.  If performance is more important than correctness,
310
@option{cache=writeback} should be used with qcow2.  By default, if no explicit
311
caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312
used.  For all other disk types, @option{cache=writethrough} is the default.
313

    
314
Instead of @option{-cdrom} you can use:
315
@example
316
qemu -drive file=file,index=2,media=cdrom
317
@end example
318

    
319
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320
use:
321
@example
322
qemu -drive file=file,index=0,media=disk
323
qemu -drive file=file,index=1,media=disk
324
qemu -drive file=file,index=2,media=disk
325
qemu -drive file=file,index=3,media=disk
326
@end example
327

    
328
You can connect a CDROM to the slave of ide0:
329
@example
330
qemu -drive file=file,if=ide,index=1,media=cdrom
331
@end example
332

    
333
If you don't specify the "file=" argument, you define an empty drive:
334
@example
335
qemu -drive if=ide,index=1,media=cdrom
336
@end example
337

    
338
You can connect a SCSI disk with unit ID 6 on the bus #0:
339
@example
340
qemu -drive file=file,if=scsi,bus=0,unit=6
341
@end example
342

    
343
Instead of @option{-fda}, @option{-fdb}, you can use:
344
@example
345
qemu -drive file=file,index=0,if=floppy
346
qemu -drive file=file,index=1,if=floppy
347
@end example
348

    
349
By default, @var{interface} is "ide" and @var{index} is automatically
350
incremented:
351
@example
352
qemu -drive file=a -drive file=b"
353
@end example
354
is interpreted like:
355
@example
356
qemu -hda a -hdb b
357
@end example
358

    
359
@item -mtdblock file
360
Use 'file' as on-board Flash memory image.
361

    
362
@item -sd file
363
Use 'file' as SecureDigital card image.
364

    
365
@item -pflash file
366
Use 'file' as a parallel flash image.
367

    
368
@item -boot [a|c|d|n]
369
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370
is the default.
371

    
372
@item -snapshot
373
Write to temporary files instead of disk image files. In this case,
374
the raw disk image you use is not written back. You can however force
375
the write back by pressing @key{C-a s} (@pxref{disk_images}).
376

    
377
@item -m @var{megs}
378
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
379
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380
gigabytes respectively.
381

    
382
@item -k @var{language}
383

    
384
Use keyboard layout @var{language} (for example @code{fr} for
385
French). This option is only needed where it is not easy to get raw PC
386
keycodes (e.g. on Macs, with some X11 servers or with a VNC
387
display). You don't normally need to use it on PC/Linux or PC/Windows
388
hosts.
389

    
390
The available layouts are:
391
@example
392
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
393
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
394
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
395
@end example
396

    
397
The default is @code{en-us}.
398

    
399
@item -audio-help
400

    
401
Will show the audio subsystem help: list of drivers, tunable
402
parameters.
403

    
404
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
405

    
406
Enable audio and selected sound hardware. Use ? to print all
407
available sound hardware.
408

    
409
@example
410
qemu -soundhw sb16,adlib disk.img
411
qemu -soundhw es1370 disk.img
412
qemu -soundhw ac97 disk.img
413
qemu -soundhw all disk.img
414
qemu -soundhw ?
415
@end example
416

    
417
Note that Linux's i810_audio OSS kernel (for AC97) module might
418
require manually specifying clocking.
419

    
420
@example
421
modprobe i810_audio clocking=48000
422
@end example
423

    
424
@end table
425

    
426
USB options:
427
@table @option
428

    
429
@item -usb
430
Enable the USB driver (will be the default soon)
431

    
432
@item -usbdevice @var{devname}
433
Add the USB device @var{devname}. @xref{usb_devices}.
434

    
435
@table @code
436

    
437
@item mouse
438
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
439

    
440
@item tablet
441
Pointer device that uses absolute coordinates (like a touchscreen). This
442
means qemu is able to report the mouse position without having to grab the
443
mouse. Also overrides the PS/2 mouse emulation when activated.
444

    
445
@item disk:[format=@var{format}]:file
446
Mass storage device based on file. The optional @var{format} argument
447
will be used rather than detecting the format. Can be used to specifiy
448
format=raw to avoid interpreting an untrusted format header.
449

    
450
@item host:bus.addr
451
Pass through the host device identified by bus.addr (Linux only).
452

    
453
@item host:vendor_id:product_id
454
Pass through the host device identified by vendor_id:product_id (Linux only).
455

    
456
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457
Serial converter to host character device @var{dev}, see @code{-serial} for the
458
available devices.
459

    
460
@item braille
461
Braille device.  This will use BrlAPI to display the braille output on a real
462
or fake device.
463

    
464
@item net:options
465
Network adapter that supports CDC ethernet and RNDIS protocols.
466

    
467
@end table
468

    
469
@item -name @var{name}
470
Sets the @var{name} of the guest.
471
This name will be displayed in the SDL window caption.
472
The @var{name} will also be used for the VNC server.
473

    
474
@item -uuid @var{uuid}
475
Set system UUID.
476

    
477
@end table
478

    
479
Display options:
480
@table @option
481

    
482
@item -nographic
483

    
484
Normally, QEMU uses SDL to display the VGA output. With this option,
485
you can totally disable graphical output so that QEMU is a simple
486
command line application. The emulated serial port is redirected on
487
the console. Therefore, you can still use QEMU to debug a Linux kernel
488
with a serial console.
489

    
490
@item -curses
491

    
492
Normally, QEMU uses SDL to display the VGA output.  With this option,
493
QEMU can display the VGA output when in text mode using a 
494
curses/ncurses interface.  Nothing is displayed in graphical mode.
495

    
496
@item -no-frame
497

    
498
Do not use decorations for SDL windows and start them using the whole
499
available screen space. This makes the using QEMU in a dedicated desktop
500
workspace more convenient.
501

    
502
@item -alt-grab
503

    
504
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
505

    
506
@item -no-quit
507

    
508
Disable SDL window close capability.
509

    
510
@item -sdl
511

    
512
Enable SDL.
513

    
514
@item -portrait
515

    
516
Rotate graphical output 90 deg left (only PXA LCD).
517

    
518
@item -vga @var{type}
519
Select type of VGA card to emulate. Valid values for @var{type} are
520
@table @code
521
@item cirrus
522
Cirrus Logic GD5446 Video card. All Windows versions starting from
523
Windows 95 should recognize and use this graphic card. For optimal
524
performances, use 16 bit color depth in the guest and the host OS.
525
(This one is the default)
526
@item std
527
Standard VGA card with Bochs VBE extensions.  If your guest OS
528
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529
to use high resolution modes (>= 1280x1024x16) then you should use
530
this option.
531
@item vmware
532
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533
recent XFree86/XOrg server or Windows guest with a driver for this
534
card.
535
@item none
536
Disable VGA card.
537
@end table
538

    
539
@item -full-screen
540
Start in full screen.
541

    
542
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
543

    
544
Normally, QEMU uses SDL to display the VGA output.  With this option,
545
you can have QEMU listen on VNC display @var{display} and redirect the VGA
546
display over the VNC session.  It is very useful to enable the usb
547
tablet device when using this option (option @option{-usbdevice
548
tablet}). When using the VNC display, you must use the @option{-k}
549
parameter to set the keyboard layout if you are not using en-us. Valid
550
syntax for the @var{display} is
551

    
552
@table @code
553

    
554
@item @var{host}:@var{d}
555

    
556
TCP connections will only be allowed from @var{host} on display @var{d}.
557
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558
be omitted in which case the server will accept connections from any host.
559

    
560
@item @code{unix}:@var{path}
561

    
562
Connections will be allowed over UNIX domain sockets where @var{path} is the
563
location of a unix socket to listen for connections on.
564

    
565
@item none
566

    
567
VNC is initialized but not started. The monitor @code{change} command
568
can be used to later start the VNC server.
569

    
570
@end table
571

    
572
Following the @var{display} value there may be one or more @var{option} flags
573
separated by commas. Valid options are
574

    
575
@table @code
576

    
577
@item reverse
578

    
579
Connect to a listening VNC client via a ``reverse'' connection. The
580
client is specified by the @var{display}. For reverse network
581
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582
is a TCP port number, not a display number.
583

    
584
@item password
585

    
586
Require that password based authentication is used for client connections.
587
The password must be set separately using the @code{change} command in the
588
@ref{pcsys_monitor}
589

    
590
@item tls
591

    
592
Require that client use TLS when communicating with the VNC server. This
593
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594
attack. It is recommended that this option be combined with either the
595
@var{x509} or @var{x509verify} options.
596

    
597
@item x509=@var{/path/to/certificate/dir}
598

    
599
Valid if @option{tls} is specified. Require that x509 credentials are used
600
for negotiating the TLS session. The server will send its x509 certificate
601
to the client. It is recommended that a password be set on the VNC server
602
to provide authentication of the client when this is used. The path following
603
this option specifies where the x509 certificates are to be loaded from.
604
See the @ref{vnc_security} section for details on generating certificates.
605

    
606
@item x509verify=@var{/path/to/certificate/dir}
607

    
608
Valid if @option{tls} is specified. Require that x509 credentials are used
609
for negotiating the TLS session. The server will send its x509 certificate
610
to the client, and request that the client send its own x509 certificate.
611
The server will validate the client's certificate against the CA certificate,
612
and reject clients when validation fails. If the certificate authority is
613
trusted, this is a sufficient authentication mechanism. You may still wish
614
to set a password on the VNC server as a second authentication layer. The
615
path following this option specifies where the x509 certificates are to
616
be loaded from. See the @ref{vnc_security} section for details on generating
617
certificates.
618

    
619
@end table
620

    
621
@end table
622

    
623
Network options:
624

    
625
@table @option
626

    
627
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
628
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
629
= 0 is the default). The NIC is an ne2k_pci by default on the PC
630
target. Optionally, the MAC address can be changed to @var{addr}
631
and a @var{name} can be assigned for use in monitor commands. If no
632
@option{-net} option is specified, a single NIC is created.
633
Qemu can emulate several different models of network card.
634
Valid values for @var{type} are
635
@code{i82551}, @code{i82557b}, @code{i82559er},
636
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
637
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
638
Not all devices are supported on all targets.  Use -net nic,model=?
639
for a list of available devices for your target.
640

    
641
@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
642
Use the user mode network stack which requires no administrator
643
privilege to run.  @option{hostname=name} can be used to specify the client
644
hostname reported by the builtin DHCP server.
645

    
646
@item -net channel,@var{port}:@var{dev}
647
Forward @option{user} TCP connection to port @var{port} to character device @var{dev}
648

    
649
@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
650
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
651
the network script @var{file} to configure it and the network script 
652
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
653
automatically provides one. @option{fd}=@var{h} can be used to specify
654
the handle of an already opened host TAP interface. The default network 
655
configure script is @file{/etc/qemu-ifup} and the default network 
656
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
657
or @option{downscript=no} to disable script execution. Example:
658

    
659
@example
660
qemu linux.img -net nic -net tap
661
@end example
662

    
663
More complicated example (two NICs, each one connected to a TAP device)
664
@example
665
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
666
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
667
@end example
668

    
669

    
670
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
671

    
672
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
673
machine using a TCP socket connection. If @option{listen} is
674
specified, QEMU waits for incoming connections on @var{port}
675
(@var{host} is optional). @option{connect} is used to connect to
676
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
677
specifies an already opened TCP socket.
678

    
679
Example:
680
@example
681
# launch a first QEMU instance
682
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
683
               -net socket,listen=:1234
684
# connect the VLAN 0 of this instance to the VLAN 0
685
# of the first instance
686
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
687
               -net socket,connect=127.0.0.1:1234
688
@end example
689

    
690
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
691

    
692
Create a VLAN @var{n} shared with another QEMU virtual
693
machines using a UDP multicast socket, effectively making a bus for
694
every QEMU with same multicast address @var{maddr} and @var{port}.
695
NOTES:
696
@enumerate
697
@item
698
Several QEMU can be running on different hosts and share same bus (assuming
699
correct multicast setup for these hosts).
700
@item
701
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
702
@url{http://user-mode-linux.sf.net}.
703
@item
704
Use @option{fd=h} to specify an already opened UDP multicast socket.
705
@end enumerate
706

    
707
Example:
708
@example
709
# launch one QEMU instance
710
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
711
               -net socket,mcast=230.0.0.1:1234
712
# launch another QEMU instance on same "bus"
713
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
714
               -net socket,mcast=230.0.0.1:1234
715
# launch yet another QEMU instance on same "bus"
716
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
717
               -net socket,mcast=230.0.0.1:1234
718
@end example
719

    
720
Example (User Mode Linux compat.):
721
@example
722
# launch QEMU instance (note mcast address selected
723
# is UML's default)
724
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
725
               -net socket,mcast=239.192.168.1:1102
726
# launch UML
727
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
728
@end example
729

    
730
@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
731
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
732
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
733
and MODE @var{octalmode} to change default ownership and permissions for
734
communication port. This option is available only if QEMU has been compiled
735
with vde support enabled.
736

    
737
Example:
738
@example
739
# launch vde switch
740
vde_switch -F -sock /tmp/myswitch
741
# launch QEMU instance
742
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
743
@end example
744

    
745
@item -net none
746
Indicate that no network devices should be configured. It is used to
747
override the default configuration (@option{-net nic -net user}) which
748
is activated if no @option{-net} options are provided.
749

    
750
@item -tftp @var{dir}
751
When using the user mode network stack, activate a built-in TFTP
752
server. The files in @var{dir} will be exposed as the root of a TFTP server.
753
The TFTP client on the guest must be configured in binary mode (use the command
754
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
755
usual 10.0.2.2.
756

    
757
@item -bootp @var{file}
758
When using the user mode network stack, broadcast @var{file} as the BOOTP
759
filename.  In conjunction with @option{-tftp}, this can be used to network boot
760
a guest from a local directory.
761

    
762
Example (using pxelinux):
763
@example
764
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
765
@end example
766

    
767
@item -smb @var{dir}
768
When using the user mode network stack, activate a built-in SMB
769
server so that Windows OSes can access to the host files in @file{@var{dir}}
770
transparently.
771

    
772
In the guest Windows OS, the line:
773
@example
774
10.0.2.4 smbserver
775
@end example
776
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
777
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
778

    
779
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
780

    
781
Note that a SAMBA server must be installed on the host OS in
782
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
783
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
784

    
785
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
786

    
787
When using the user mode network stack, redirect incoming TCP or UDP
788
connections to the host port @var{host-port} to the guest
789
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
790
is not specified, its value is 10.0.2.15 (default address given by the
791
built-in DHCP server).
792

    
793
For example, to redirect host X11 connection from screen 1 to guest
794
screen 0, use the following:
795

    
796
@example
797
# on the host
798
qemu -redir tcp:6001::6000 [...]
799
# this host xterm should open in the guest X11 server
800
xterm -display :1
801
@end example
802

    
803
To redirect telnet connections from host port 5555 to telnet port on
804
the guest, use the following:
805

    
806
@example
807
# on the host
808
qemu -redir tcp:5555::23 [...]
809
telnet localhost 5555
810
@end example
811

    
812
Then when you use on the host @code{telnet localhost 5555}, you
813
connect to the guest telnet server.
814

    
815
@end table
816

    
817
Bluetooth(R) options:
818
@table @option
819

    
820
@item -bt hci[...]
821
Defines the function of the corresponding Bluetooth HCI.  -bt options
822
are matched with the HCIs present in the chosen machine type.  For
823
example when emulating a machine with only one HCI built into it, only
824
the first @code{-bt hci[...]} option is valid and defines the HCI's
825
logic.  The Transport Layer is decided by the machine type.  Currently
826
the machines @code{n800} and @code{n810} have one HCI and all other
827
machines have none.
828

    
829
@anchor{bt-hcis}
830
The following three types are recognized:
831

    
832
@table @code
833
@item -bt hci,null
834
(default) The corresponding Bluetooth HCI assumes no internal logic
835
and will not respond to any HCI commands or emit events.
836

    
837
@item -bt hci,host[:@var{id}]
838
(@code{bluez} only) The corresponding HCI passes commands / events
839
to / from the physical HCI identified by the name @var{id} (default:
840
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
841
capable systems like Linux.
842

    
843
@item -bt hci[,vlan=@var{n}]
844
Add a virtual, standard HCI that will participate in the Bluetooth
845
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
846
VLANs, devices inside a bluetooth network @var{n} can only communicate
847
with other devices in the same network (scatternet).
848
@end table
849

    
850
@item -bt vhci[,vlan=@var{n}]
851
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
852
to the host bluetooth stack instead of to the emulated target.  This
853
allows the host and target machines to participate in a common scatternet
854
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
855
be used as following:
856

    
857
@example
858
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
859
@end example
860

    
861
@item -bt device:@var{dev}[,vlan=@var{n}]
862
Emulate a bluetooth device @var{dev} and place it in network @var{n}
863
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
864
currently:
865

    
866
@table @code
867
@item keyboard
868
Virtual wireless keyboard implementing the HIDP bluetooth profile.
869
@end table
870

    
871
@end table
872

    
873
i386 target only:
874

    
875
@table @option
876

    
877
@item -win2k-hack
878
Use it when installing Windows 2000 to avoid a disk full bug. After
879
Windows 2000 is installed, you no longer need this option (this option
880
slows down the IDE transfers).
881

    
882
@item -rtc-td-hack
883
Use it if you experience time drift problem in Windows with ACPI HAL.
884
This option will try to figure out how many timer interrupts were not
885
processed by the Windows guest and will re-inject them.
886

    
887
@item -no-fd-bootchk
888
Disable boot signature checking for floppy disks in Bochs BIOS. It may
889
be needed to boot from old floppy disks.
890

    
891
@item -no-acpi
892
Disable ACPI (Advanced Configuration and Power Interface) support. Use
893
it if your guest OS complains about ACPI problems (PC target machine
894
only).
895

    
896
@item -no-hpet
897
Disable HPET support.
898

    
899
@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
900
Add ACPI table with specified header fields and context from specified files.
901

    
902
@end table
903

    
904
Linux boot specific: When using these options, you can use a given
905
Linux kernel without installing it in the disk image. It can be useful
906
for easier testing of various kernels.
907

    
908
@table @option
909

    
910
@item -kernel @var{bzImage}
911
Use @var{bzImage} as kernel image.
912

    
913
@item -append @var{cmdline}
914
Use @var{cmdline} as kernel command line
915

    
916
@item -initrd @var{file}
917
Use @var{file} as initial ram disk.
918

    
919
@end table
920

    
921
Debug/Expert options:
922
@table @option
923

    
924
@item -serial @var{dev}
925
Redirect the virtual serial port to host character device
926
@var{dev}. The default device is @code{vc} in graphical mode and
927
@code{stdio} in non graphical mode.
928

    
929
This option can be used several times to simulate up to 4 serial
930
ports.
931

    
932
Use @code{-serial none} to disable all serial ports.
933

    
934
Available character devices are:
935
@table @code
936
@item vc[:WxH]
937
Virtual console. Optionally, a width and height can be given in pixel with
938
@example
939
vc:800x600
940
@end example
941
It is also possible to specify width or height in characters:
942
@example
943
vc:80Cx24C
944
@end example
945
@item pty
946
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
947
@item none
948
No device is allocated.
949
@item null
950
void device
951
@item /dev/XXX
952
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
953
parameters are set according to the emulated ones.
954
@item /dev/parport@var{N}
955
[Linux only, parallel port only] Use host parallel port
956
@var{N}. Currently SPP and EPP parallel port features can be used.
957
@item file:@var{filename}
958
Write output to @var{filename}. No character can be read.
959
@item stdio
960
[Unix only] standard input/output
961
@item pipe:@var{filename}
962
name pipe @var{filename}
963
@item COM@var{n}
964
[Windows only] Use host serial port @var{n}
965
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
966
This implements UDP Net Console.
967
When @var{remote_host} or @var{src_ip} are not specified
968
they default to @code{0.0.0.0}.
969
When not using a specified @var{src_port} a random port is automatically chosen.
970
@item msmouse
971
Three button serial mouse. Configure the guest to use Microsoft protocol.
972

    
973
If you just want a simple readonly console you can use @code{netcat} or
974
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
975
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
976
will appear in the netconsole session.
977

    
978
If you plan to send characters back via netconsole or you want to stop
979
and start qemu a lot of times, you should have qemu use the same
980
source port each time by using something like @code{-serial
981
udp::4555@@:4556} to qemu. Another approach is to use a patched
982
version of netcat which can listen to a TCP port and send and receive
983
characters via udp.  If you have a patched version of netcat which
984
activates telnet remote echo and single char transfer, then you can
985
use the following options to step up a netcat redirector to allow
986
telnet on port 5555 to access the qemu port.
987
@table @code
988
@item Qemu Options:
989
-serial udp::4555@@:4556
990
@item netcat options:
991
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
992
@item telnet options:
993
localhost 5555
994
@end table
995

    
996

    
997
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
998
The TCP Net Console has two modes of operation.  It can send the serial
999
I/O to a location or wait for a connection from a location.  By default
1000
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
1001
the @var{server} option QEMU will wait for a client socket application
1002
to connect to the port before continuing, unless the @code{nowait}
1003
option was specified.  The @code{nodelay} option disables the Nagle buffering
1004
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
1005
one TCP connection at a time is accepted. You can use @code{telnet} to
1006
connect to the corresponding character device.
1007
@table @code
1008
@item Example to send tcp console to 192.168.0.2 port 4444
1009
-serial tcp:192.168.0.2:4444
1010
@item Example to listen and wait on port 4444 for connection
1011
-serial tcp::4444,server
1012
@item Example to not wait and listen on ip 192.168.0.100 port 4444
1013
-serial tcp:192.168.0.100:4444,server,nowait
1014
@end table
1015

    
1016
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1017
The telnet protocol is used instead of raw tcp sockets.  The options
1018
work the same as if you had specified @code{-serial tcp}.  The
1019
difference is that the port acts like a telnet server or client using
1020
telnet option negotiation.  This will also allow you to send the
1021
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1022
sequence.  Typically in unix telnet you do it with Control-] and then
1023
type "send break" followed by pressing the enter key.
1024

    
1025
@item unix:@var{path}[,server][,nowait]
1026
A unix domain socket is used instead of a tcp socket.  The option works the
1027
same as if you had specified @code{-serial tcp} except the unix domain socket
1028
@var{path} is used for connections.
1029

    
1030
@item mon:@var{dev_string}
1031
This is a special option to allow the monitor to be multiplexed onto
1032
another serial port.  The monitor is accessed with key sequence of
1033
@key{Control-a} and then pressing @key{c}. See monitor access
1034
@ref{pcsys_keys} in the -nographic section for more keys.
1035
@var{dev_string} should be any one of the serial devices specified
1036
above.  An example to multiplex the monitor onto a telnet server
1037
listening on port 4444 would be:
1038
@table @code
1039
@item -serial mon:telnet::4444,server,nowait
1040
@end table
1041

    
1042
@item braille
1043
Braille device.  This will use BrlAPI to display the braille output on a real
1044
or fake device.
1045

    
1046
@end table
1047

    
1048
@item -parallel @var{dev}
1049
Redirect the virtual parallel port to host device @var{dev} (same
1050
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1051
be used to use hardware devices connected on the corresponding host
1052
parallel port.
1053

    
1054
This option can be used several times to simulate up to 3 parallel
1055
ports.
1056

    
1057
Use @code{-parallel none} to disable all parallel ports.
1058

    
1059
@item -monitor @var{dev}
1060
Redirect the monitor to host device @var{dev} (same devices as the
1061
serial port).
1062
The default device is @code{vc} in graphical mode and @code{stdio} in
1063
non graphical mode.
1064

    
1065
@item -pidfile @var{file}
1066
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1067
from a script.
1068

    
1069
@item -S
1070
Do not start CPU at startup (you must type 'c' in the monitor).
1071

    
1072
@item -s
1073
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1074

    
1075
@item -p @var{port}
1076
Change gdb connection port.  @var{port} can be either a decimal number
1077
to specify a TCP port, or a host device (same devices as the serial port).
1078

    
1079
@item -d
1080
Output log in /tmp/qemu.log
1081
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1082
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1083
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1084
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1085
all those parameters. This option is useful for old MS-DOS disk
1086
images.
1087

    
1088
@item -L  @var{path}
1089
Set the directory for the BIOS, VGA BIOS and keymaps.
1090

    
1091
@item -bios @var{file}
1092
Set the filename for the BIOS.
1093

    
1094
@item -kernel-kqemu
1095
Enable KQEMU full virtualization (default is user mode only).
1096

    
1097
@item -no-kqemu
1098
Disable KQEMU kernel module usage. KQEMU options are only available if
1099
KQEMU support is enabled when compiling.
1100

    
1101
@item -enable-kvm
1102
Enable KVM full virtualization support. This option is only available
1103
if KVM support is enabled when compiling.
1104

    
1105
@item -no-reboot
1106
Exit instead of rebooting.
1107

    
1108
@item -no-shutdown
1109
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1110
This allows for instance switching to monitor to commit changes to the
1111
disk image.
1112

    
1113
@item -loadvm @var{file}
1114
Start right away with a saved state (@code{loadvm} in monitor)
1115

    
1116
@item -daemonize
1117
Daemonize the QEMU process after initialization.  QEMU will not detach from
1118
standard IO until it is ready to receive connections on any of its devices.
1119
This option is a useful way for external programs to launch QEMU without having
1120
to cope with initialization race conditions.
1121

    
1122
@item -option-rom @var{file}
1123
Load the contents of @var{file} as an option ROM.
1124
This option is useful to load things like EtherBoot.
1125

    
1126
@item -clock @var{method}
1127
Force the use of the given methods for timer alarm. To see what timers
1128
are available use -clock ?.
1129

    
1130
@item -localtime
1131
Set the real time clock to local time (the default is to UTC
1132
time). This option is needed to have correct date in MS-DOS or
1133
Windows.
1134

    
1135
@item -startdate @var{date}
1136
Set the initial date of the real time clock. Valid formats for
1137
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1138
@code{2006-06-17}. The default value is @code{now}.
1139

    
1140
@item -icount [N|auto]
1141
Enable virtual instruction counter.  The virtual cpu will execute one
1142
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1143
then the virtual cpu speed will be automatically adjusted to keep virtual
1144
time within a few seconds of real time.
1145

    
1146
Note that while this option can give deterministic behavior, it does not
1147
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1148
order cores with complex cache hierarchies.  The number of instructions
1149
executed often has little or no correlation with actual performance.
1150

    
1151
@item -echr numeric_ascii_value
1152
Change the escape character used for switching to the monitor when using
1153
monitor and serial sharing.  The default is @code{0x01} when using the
1154
@code{-nographic} option.  @code{0x01} is equal to pressing
1155
@code{Control-a}.  You can select a different character from the ascii
1156
control keys where 1 through 26 map to Control-a through Control-z.  For
1157
instance you could use the either of the following to change the escape
1158
character to Control-t.
1159
@table @code
1160
@item -echr 0x14
1161
@item -echr 20
1162
@end table
1163

    
1164
@item -chroot dir
1165
Immediately before starting guest execution, chroot to the specified
1166
directory.  Especially useful in combination with -runas.
1167

    
1168
@item -runas user
1169
Immediately before starting guest execution, drop root privileges, switching
1170
to the specified user.
1171

    
1172
@end table
1173

    
1174
@c man end
1175

    
1176
@node pcsys_keys
1177
@section Keys
1178

    
1179
@c man begin OPTIONS
1180

    
1181
During the graphical emulation, you can use the following keys:
1182
@table @key
1183
@item Ctrl-Alt-f
1184
Toggle full screen
1185

    
1186
@item Ctrl-Alt-n
1187
Switch to virtual console 'n'. Standard console mappings are:
1188
@table @emph
1189
@item 1
1190
Target system display
1191
@item 2
1192
Monitor
1193
@item 3
1194
Serial port
1195
@end table
1196

    
1197
@item Ctrl-Alt
1198
Toggle mouse and keyboard grab.
1199
@end table
1200

    
1201
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1202
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1203

    
1204
During emulation, if you are using the @option{-nographic} option, use
1205
@key{Ctrl-a h} to get terminal commands:
1206

    
1207
@table @key
1208
@item Ctrl-a h
1209
@item Ctrl-a ?
1210
Print this help
1211
@item Ctrl-a x
1212
Exit emulator
1213
@item Ctrl-a s
1214
Save disk data back to file (if -snapshot)
1215
@item Ctrl-a t
1216
Toggle console timestamps
1217
@item Ctrl-a b
1218
Send break (magic sysrq in Linux)
1219
@item Ctrl-a c
1220
Switch between console and monitor
1221
@item Ctrl-a Ctrl-a
1222
Send Ctrl-a
1223
@end table
1224
@c man end
1225

    
1226
@ignore
1227

    
1228
@c man begin SEEALSO
1229
The HTML documentation of QEMU for more precise information and Linux
1230
user mode emulator invocation.
1231
@c man end
1232

    
1233
@c man begin AUTHOR
1234
Fabrice Bellard
1235
@c man end
1236

    
1237
@end ignore
1238

    
1239
@node pcsys_monitor
1240
@section QEMU Monitor
1241

    
1242
The QEMU monitor is used to give complex commands to the QEMU
1243
emulator. You can use it to:
1244

    
1245
@itemize @minus
1246

    
1247
@item
1248
Remove or insert removable media images
1249
(such as CD-ROM or floppies).
1250

    
1251
@item
1252
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1253
from a disk file.
1254

    
1255
@item Inspect the VM state without an external debugger.
1256

    
1257
@end itemize
1258

    
1259
@subsection Commands
1260

    
1261
The following commands are available:
1262

    
1263
@table @option
1264

    
1265
@item help or ? [@var{cmd}]
1266
Show the help for all commands or just for command @var{cmd}.
1267

    
1268
@item commit
1269
Commit changes to the disk images (if -snapshot is used).
1270

    
1271
@item info @var{subcommand}
1272
Show various information about the system state.
1273

    
1274
@table @option
1275
@item info version
1276
show the version of QEMU
1277
@item info network
1278
show the various VLANs and the associated devices
1279
@item info chardev
1280
show the character devices
1281
@item info block
1282
show the block devices
1283
@item info block
1284
show block device statistics
1285
@item info registers
1286
show the cpu registers
1287
@item info cpus
1288
show infos for each CPU
1289
@item info history
1290
show the command line history
1291
@item info irq
1292
show the interrupts statistics (if available)
1293
@item info pic
1294
show i8259 (PIC) state
1295
@item info pci
1296
show emulated PCI device info
1297
@item info tlb
1298
show virtual to physical memory mappings (i386 only)
1299
@item info mem
1300
show the active virtual memory mappings (i386 only)
1301
@item info hpet
1302
show state of HPET (i386 only)
1303
@item info kqemu
1304
show KQEMU information
1305
@item info kvm
1306
show KVM information
1307
@item info usb
1308
show USB devices plugged on the virtual USB hub
1309
@item info usbhost
1310
show all USB host devices
1311
@item info profile
1312
show profiling information
1313
@item info capture
1314
show information about active capturing
1315
@item info snapshots
1316
show list of VM snapshots
1317
@item info status
1318
show the current VM status (running|paused)
1319
@item info pcmcia
1320
show guest PCMCIA status
1321
@item info mice
1322
show which guest mouse is receiving events
1323
@item info vnc
1324
show the vnc server status
1325
@item info name
1326
show the current VM name
1327
@item info uuid
1328
show the current VM UUID
1329
@item info cpustats
1330
show CPU statistics
1331
@item info slirp
1332
show SLIRP statistics (if available)
1333
@item info migrate
1334
show migration status
1335
@item info balloon
1336
show balloon information
1337
@end table
1338

    
1339
@item q or quit
1340
Quit the emulator.
1341

    
1342
@item eject [-f] @var{device}
1343
Eject a removable medium (use -f to force it).
1344

    
1345
@item change @var{device} @var{setting}
1346

    
1347
Change the configuration of a device.
1348

    
1349
@table @option
1350
@item change @var{diskdevice} @var{filename} [@var{format}]
1351
Change the medium for a removable disk device to point to @var{filename}. eg
1352

    
1353
@example
1354
(qemu) change ide1-cd0 /path/to/some.iso
1355
@end example
1356

    
1357
@var{format} is optional.
1358

    
1359
@item change vnc @var{display},@var{options}
1360
Change the configuration of the VNC server. The valid syntax for @var{display}
1361
and @var{options} are described at @ref{sec_invocation}. eg
1362

    
1363
@example
1364
(qemu) change vnc localhost:1
1365
@end example
1366

    
1367
@item change vnc password [@var{password}]
1368

    
1369
Change the password associated with the VNC server. If the new password is not
1370
supplied, the monitor will prompt for it to be entered. VNC passwords are only
1371
significant up to 8 letters. eg
1372

    
1373
@example
1374
(qemu) change vnc password
1375
Password: ********
1376
@end example
1377

    
1378
@end table
1379

    
1380
@item screendump @var{filename}
1381
Save screen into PPM image @var{filename}.
1382

    
1383
@item logfile @var{filename}
1384
Output logs to @var{filename}.
1385

    
1386
@item log @var{item1}[,...]
1387
Activate logging of the specified items to @file{/tmp/qemu.log}.
1388

    
1389
@item savevm [@var{tag}|@var{id}]
1390
Create a snapshot of the whole virtual machine. If @var{tag} is
1391
provided, it is used as human readable identifier. If there is already
1392
a snapshot with the same tag or ID, it is replaced. More info at
1393
@ref{vm_snapshots}.
1394

    
1395
@item loadvm @var{tag}|@var{id}
1396
Set the whole virtual machine to the snapshot identified by the tag
1397
@var{tag} or the unique snapshot ID @var{id}.
1398

    
1399
@item delvm @var{tag}|@var{id}
1400
Delete the snapshot identified by @var{tag} or @var{id}.
1401

    
1402
@item stop
1403
Stop emulation.
1404

    
1405
@item c or cont
1406
Resume emulation.
1407

    
1408
@item gdbserver [@var{port}]
1409
Start gdbserver session (default @var{port}=1234)
1410

    
1411
@item x/fmt @var{addr}
1412
Virtual memory dump starting at @var{addr}.
1413

    
1414
@item xp /@var{fmt} @var{addr}
1415
Physical memory dump starting at @var{addr}.
1416

    
1417
@var{fmt} is a format which tells the command how to format the
1418
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1419

    
1420
@table @var
1421
@item count
1422
is the number of items to be dumped.
1423

    
1424
@item format
1425
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1426
c (char) or i (asm instruction).
1427

    
1428
@item size
1429
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1430
@code{h} or @code{w} can be specified with the @code{i} format to
1431
respectively select 16 or 32 bit code instruction size.
1432

    
1433
@end table
1434

    
1435
Examples:
1436
@itemize
1437
@item
1438
Dump 10 instructions at the current instruction pointer:
1439
@example
1440
(qemu) x/10i $eip
1441
0x90107063:  ret
1442
0x90107064:  sti
1443
0x90107065:  lea    0x0(%esi,1),%esi
1444
0x90107069:  lea    0x0(%edi,1),%edi
1445
0x90107070:  ret
1446
0x90107071:  jmp    0x90107080
1447
0x90107073:  nop
1448
0x90107074:  nop
1449
0x90107075:  nop
1450
0x90107076:  nop
1451
@end example
1452

    
1453
@item
1454
Dump 80 16 bit values at the start of the video memory.
1455
@smallexample
1456
(qemu) xp/80hx 0xb8000
1457
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1458
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1459
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1460
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1461
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1462
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1463
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1464
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1465
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1466
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1467
@end smallexample
1468
@end itemize
1469

    
1470
@item p or print/@var{fmt} @var{expr}
1471

    
1472
Print expression value. Only the @var{format} part of @var{fmt} is
1473
used.
1474

    
1475
@item sendkey @var{keys}
1476

    
1477
Send @var{keys} to the emulator. @var{keys} could be the name of the
1478
key or @code{#} followed by the raw value in either decimal or hexadecimal
1479
format. Use @code{-} to press several keys simultaneously. Example:
1480
@example
1481
sendkey ctrl-alt-f1
1482
@end example
1483

    
1484
This command is useful to send keys that your graphical user interface
1485
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1486

    
1487
@item system_reset
1488

    
1489
Reset the system.
1490

    
1491
@item system_powerdown
1492

    
1493
Power down the system (if supported).
1494

    
1495
@item sum @var{addr} @var{size}
1496

    
1497
Compute the checksum of a memory region.
1498

    
1499
@item usb_add @var{devname}
1500

    
1501
Add the USB device @var{devname}.  For details of available devices see
1502
@ref{usb_devices}
1503

    
1504
@item usb_del @var{devname}
1505

    
1506
Remove the USB device @var{devname} from the QEMU virtual USB
1507
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1508
command @code{info usb} to see the devices you can remove.
1509

    
1510
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1511
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1512
with optional scroll axis @var{dz}.
1513

    
1514
@item mouse_button @var{val}
1515
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1516

    
1517
@item mouse_set @var{index}
1518
Set which mouse device receives events at given @var{index}, index
1519
can be obtained with
1520
@example
1521
info mice
1522
@end example
1523

    
1524
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1525
Capture audio into @var{filename}. Using sample rate @var{frequency}
1526
bits per sample @var{bits} and number of channels @var{channels}.
1527

    
1528
Defaults:
1529
@itemize @minus
1530
@item Sample rate = 44100 Hz - CD quality
1531
@item Bits = 16
1532
@item Number of channels = 2 - Stereo
1533
@end itemize
1534

    
1535
@item stopcapture @var{index}
1536
Stop capture with a given @var{index}, index can be obtained with
1537
@example
1538
info capture
1539
@end example
1540

    
1541
@item memsave @var{addr} @var{size} @var{file}
1542
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1543

    
1544
@item pmemsave @var{addr} @var{size} @var{file}
1545
save to disk physical memory dump starting at @var{addr} of size @var{size}.
1546

    
1547
@item boot_set @var{bootdevicelist}
1548

    
1549
Define new values for the boot device list. Those values will override
1550
the values specified on the command line through the @code{-boot} option.
1551

    
1552
The values that can be specified here depend on the machine type, but are
1553
the same that can be specified in the @code{-boot} command line option.
1554

    
1555
@item nmi @var{cpu}
1556
Inject an NMI on the given CPU.
1557

    
1558
@item migrate [-d] @var{uri}
1559
Migrate to @var{uri} (using -d to not wait for completion).
1560

    
1561
@item migrate_cancel
1562
Cancel the current VM migration.
1563

    
1564
@item migrate_set_speed @var{value}
1565
Set maximum speed to @var{value} (in bytes) for migrations.
1566

    
1567
@item balloon @var{value}
1568
Request VM to change its memory allocation to @var{value} (in MB).
1569

    
1570
@item set_link @var{name} [up|down]
1571
Set link @var{name} up or down.
1572

    
1573
@end table
1574

    
1575
@subsection Integer expressions
1576

    
1577
The monitor understands integers expressions for every integer
1578
argument. You can use register names to get the value of specifics
1579
CPU registers by prefixing them with @emph{$}.
1580

    
1581
@node disk_images
1582
@section Disk Images
1583

    
1584
Since version 0.6.1, QEMU supports many disk image formats, including
1585
growable disk images (their size increase as non empty sectors are
1586
written), compressed and encrypted disk images. Version 0.8.3 added
1587
the new qcow2 disk image format which is essential to support VM
1588
snapshots.
1589

    
1590
@menu
1591
* disk_images_quickstart::    Quick start for disk image creation
1592
* disk_images_snapshot_mode:: Snapshot mode
1593
* vm_snapshots::              VM snapshots
1594
* qemu_img_invocation::       qemu-img Invocation
1595
* qemu_nbd_invocation::       qemu-nbd Invocation
1596
* host_drives::               Using host drives
1597
* disk_images_fat_images::    Virtual FAT disk images
1598
* disk_images_nbd::           NBD access
1599
@end menu
1600

    
1601
@node disk_images_quickstart
1602
@subsection Quick start for disk image creation
1603

    
1604
You can create a disk image with the command:
1605
@example
1606
qemu-img create myimage.img mysize
1607
@end example
1608
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1609
size in kilobytes. You can add an @code{M} suffix to give the size in
1610
megabytes and a @code{G} suffix for gigabytes.
1611

    
1612
See @ref{qemu_img_invocation} for more information.
1613

    
1614
@node disk_images_snapshot_mode
1615
@subsection Snapshot mode
1616

    
1617
If you use the option @option{-snapshot}, all disk images are
1618
considered as read only. When sectors in written, they are written in
1619
a temporary file created in @file{/tmp}. You can however force the
1620
write back to the raw disk images by using the @code{commit} monitor
1621
command (or @key{C-a s} in the serial console).
1622

    
1623
@node vm_snapshots
1624
@subsection VM snapshots
1625

    
1626
VM snapshots are snapshots of the complete virtual machine including
1627
CPU state, RAM, device state and the content of all the writable
1628
disks. In order to use VM snapshots, you must have at least one non
1629
removable and writable block device using the @code{qcow2} disk image
1630
format. Normally this device is the first virtual hard drive.
1631

    
1632
Use the monitor command @code{savevm} to create a new VM snapshot or
1633
replace an existing one. A human readable name can be assigned to each
1634
snapshot in addition to its numerical ID.
1635

    
1636
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1637
a VM snapshot. @code{info snapshots} lists the available snapshots
1638
with their associated information:
1639

    
1640
@example
1641
(qemu) info snapshots
1642
Snapshot devices: hda
1643
Snapshot list (from hda):
1644
ID        TAG                 VM SIZE                DATE       VM CLOCK
1645
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1646
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1647
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1648
@end example
1649

    
1650
A VM snapshot is made of a VM state info (its size is shown in
1651
@code{info snapshots}) and a snapshot of every writable disk image.
1652
The VM state info is stored in the first @code{qcow2} non removable
1653
and writable block device. The disk image snapshots are stored in
1654
every disk image. The size of a snapshot in a disk image is difficult
1655
to evaluate and is not shown by @code{info snapshots} because the
1656
associated disk sectors are shared among all the snapshots to save
1657
disk space (otherwise each snapshot would need a full copy of all the
1658
disk images).
1659

    
1660
When using the (unrelated) @code{-snapshot} option
1661
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1662
but they are deleted as soon as you exit QEMU.
1663

    
1664
VM snapshots currently have the following known limitations:
1665
@itemize
1666
@item
1667
They cannot cope with removable devices if they are removed or
1668
inserted after a snapshot is done.
1669
@item
1670
A few device drivers still have incomplete snapshot support so their
1671
state is not saved or restored properly (in particular USB).
1672
@end itemize
1673

    
1674
@node qemu_img_invocation
1675
@subsection @code{qemu-img} Invocation
1676

    
1677
@include qemu-img.texi
1678

    
1679
@node qemu_nbd_invocation
1680
@subsection @code{qemu-nbd} Invocation
1681

    
1682
@include qemu-nbd.texi
1683

    
1684
@node host_drives
1685
@subsection Using host drives
1686

    
1687
In addition to disk image files, QEMU can directly access host
1688
devices. We describe here the usage for QEMU version >= 0.8.3.
1689

    
1690
@subsubsection Linux
1691

    
1692
On Linux, you can directly use the host device filename instead of a
1693
disk image filename provided you have enough privileges to access
1694
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1695
@file{/dev/fd0} for the floppy.
1696

    
1697
@table @code
1698
@item CD
1699
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1700
specific code to detect CDROM insertion or removal. CDROM ejection by
1701
the guest OS is supported. Currently only data CDs are supported.
1702
@item Floppy
1703
You can specify a floppy device even if no floppy is loaded. Floppy
1704
removal is currently not detected accurately (if you change floppy
1705
without doing floppy access while the floppy is not loaded, the guest
1706
OS will think that the same floppy is loaded).
1707
@item Hard disks
1708
Hard disks can be used. Normally you must specify the whole disk
1709
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1710
see it as a partitioned disk. WARNING: unless you know what you do, it
1711
is better to only make READ-ONLY accesses to the hard disk otherwise
1712
you may corrupt your host data (use the @option{-snapshot} command
1713
line option or modify the device permissions accordingly).
1714
@end table
1715

    
1716
@subsubsection Windows
1717

    
1718
@table @code
1719
@item CD
1720
The preferred syntax is the drive letter (e.g. @file{d:}). The
1721
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1722
supported as an alias to the first CDROM drive.
1723

    
1724
Currently there is no specific code to handle removable media, so it
1725
is better to use the @code{change} or @code{eject} monitor commands to
1726
change or eject media.
1727
@item Hard disks
1728
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1729
where @var{N} is the drive number (0 is the first hard disk).
1730

    
1731
WARNING: unless you know what you do, it is better to only make
1732
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1733
host data (use the @option{-snapshot} command line so that the
1734
modifications are written in a temporary file).
1735
@end table
1736

    
1737

    
1738
@subsubsection Mac OS X
1739

    
1740
@file{/dev/cdrom} is an alias to the first CDROM.
1741

    
1742
Currently there is no specific code to handle removable media, so it
1743
is better to use the @code{change} or @code{eject} monitor commands to
1744
change or eject media.
1745

    
1746
@node disk_images_fat_images
1747
@subsection Virtual FAT disk images
1748

    
1749
QEMU can automatically create a virtual FAT disk image from a
1750
directory tree. In order to use it, just type:
1751

    
1752
@example
1753
qemu linux.img -hdb fat:/my_directory
1754
@end example
1755

    
1756
Then you access access to all the files in the @file{/my_directory}
1757
directory without having to copy them in a disk image or to export
1758
them via SAMBA or NFS. The default access is @emph{read-only}.
1759

    
1760
Floppies can be emulated with the @code{:floppy:} option:
1761

    
1762
@example
1763
qemu linux.img -fda fat:floppy:/my_directory
1764
@end example
1765

    
1766
A read/write support is available for testing (beta stage) with the
1767
@code{:rw:} option:
1768

    
1769
@example
1770
qemu linux.img -fda fat:floppy:rw:/my_directory
1771
@end example
1772

    
1773
What you should @emph{never} do:
1774
@itemize
1775
@item use non-ASCII filenames ;
1776
@item use "-snapshot" together with ":rw:" ;
1777
@item expect it to work when loadvm'ing ;
1778
@item write to the FAT directory on the host system while accessing it with the guest system.
1779
@end itemize
1780

    
1781
@node disk_images_nbd
1782
@subsection NBD access
1783

    
1784
QEMU can access directly to block device exported using the Network Block Device
1785
protocol.
1786

    
1787
@example
1788
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1789
@end example
1790

    
1791
If the NBD server is located on the same host, you can use an unix socket instead
1792
of an inet socket:
1793

    
1794
@example
1795
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1796
@end example
1797

    
1798
In this case, the block device must be exported using qemu-nbd:
1799

    
1800
@example
1801
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1802
@end example
1803

    
1804
The use of qemu-nbd allows to share a disk between several guests:
1805
@example
1806
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1807
@end example
1808

    
1809
and then you can use it with two guests:
1810
@example
1811
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1812
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1813
@end example
1814

    
1815
@node pcsys_network
1816
@section Network emulation
1817

    
1818
QEMU can simulate several network cards (PCI or ISA cards on the PC
1819
target) and can connect them to an arbitrary number of Virtual Local
1820
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1821
VLAN. VLAN can be connected between separate instances of QEMU to
1822
simulate large networks. For simpler usage, a non privileged user mode
1823
network stack can replace the TAP device to have a basic network
1824
connection.
1825

    
1826
@subsection VLANs
1827

    
1828
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1829
connection between several network devices. These devices can be for
1830
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1831
(TAP devices).
1832

    
1833
@subsection Using TAP network interfaces
1834

    
1835
This is the standard way to connect QEMU to a real network. QEMU adds
1836
a virtual network device on your host (called @code{tapN}), and you
1837
can then configure it as if it was a real ethernet card.
1838

    
1839
@subsubsection Linux host
1840

    
1841
As an example, you can download the @file{linux-test-xxx.tar.gz}
1842
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1843
configure properly @code{sudo} so that the command @code{ifconfig}
1844
contained in @file{qemu-ifup} can be executed as root. You must verify
1845
that your host kernel supports the TAP network interfaces: the
1846
device @file{/dev/net/tun} must be present.
1847

    
1848
See @ref{sec_invocation} to have examples of command lines using the
1849
TAP network interfaces.
1850

    
1851
@subsubsection Windows host
1852

    
1853
There is a virtual ethernet driver for Windows 2000/XP systems, called
1854
TAP-Win32. But it is not included in standard QEMU for Windows,
1855
so you will need to get it separately. It is part of OpenVPN package,
1856
so download OpenVPN from : @url{http://openvpn.net/}.
1857

    
1858
@subsection Using the user mode network stack
1859

    
1860
By using the option @option{-net user} (default configuration if no
1861
@option{-net} option is specified), QEMU uses a completely user mode
1862
network stack (you don't need root privilege to use the virtual
1863
network). The virtual network configuration is the following:
1864

    
1865
@example
1866

    
1867
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1868
                           |          (10.0.2.2)
1869
                           |
1870
                           ---->  DNS server (10.0.2.3)
1871
                           |
1872
                           ---->  SMB server (10.0.2.4)
1873
@end example
1874

    
1875
The QEMU VM behaves as if it was behind a firewall which blocks all
1876
incoming connections. You can use a DHCP client to automatically
1877
configure the network in the QEMU VM. The DHCP server assign addresses
1878
to the hosts starting from 10.0.2.15.
1879

    
1880
In order to check that the user mode network is working, you can ping
1881
the address 10.0.2.2 and verify that you got an address in the range
1882
10.0.2.x from the QEMU virtual DHCP server.
1883

    
1884
Note that @code{ping} is not supported reliably to the internet as it
1885
would require root privileges. It means you can only ping the local
1886
router (10.0.2.2).
1887

    
1888
When using the built-in TFTP server, the router is also the TFTP
1889
server.
1890

    
1891
When using the @option{-redir} option, TCP or UDP connections can be
1892
redirected from the host to the guest. It allows for example to
1893
redirect X11, telnet or SSH connections.
1894

    
1895
@subsection Connecting VLANs between QEMU instances
1896

    
1897
Using the @option{-net socket} option, it is possible to make VLANs
1898
that span several QEMU instances. See @ref{sec_invocation} to have a
1899
basic example.
1900

    
1901
@node direct_linux_boot
1902
@section Direct Linux Boot
1903

    
1904
This section explains how to launch a Linux kernel inside QEMU without
1905
having to make a full bootable image. It is very useful for fast Linux
1906
kernel testing.
1907

    
1908
The syntax is:
1909
@example
1910
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1911
@end example
1912

    
1913
Use @option{-kernel} to provide the Linux kernel image and
1914
@option{-append} to give the kernel command line arguments. The
1915
@option{-initrd} option can be used to provide an INITRD image.
1916

    
1917
When using the direct Linux boot, a disk image for the first hard disk
1918
@file{hda} is required because its boot sector is used to launch the
1919
Linux kernel.
1920

    
1921
If you do not need graphical output, you can disable it and redirect
1922
the virtual serial port and the QEMU monitor to the console with the
1923
@option{-nographic} option. The typical command line is:
1924
@example
1925
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1926
     -append "root=/dev/hda console=ttyS0" -nographic
1927
@end example
1928

    
1929
Use @key{Ctrl-a c} to switch between the serial console and the
1930
monitor (@pxref{pcsys_keys}).
1931

    
1932
@node pcsys_usb
1933
@section USB emulation
1934

    
1935
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1936
virtual USB devices or real host USB devices (experimental, works only
1937
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1938
as necessary to connect multiple USB devices.
1939

    
1940
@menu
1941
* usb_devices::
1942
* host_usb_devices::
1943
@end menu
1944
@node usb_devices
1945
@subsection Connecting USB devices
1946

    
1947
USB devices can be connected with the @option{-usbdevice} commandline option
1948
or the @code{usb_add} monitor command.  Available devices are:
1949

    
1950
@table @code
1951
@item mouse
1952
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1953
@item tablet
1954
Pointer device that uses absolute coordinates (like a touchscreen).
1955
This means qemu is able to report the mouse position without having
1956
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1957
@item disk:@var{file}
1958
Mass storage device based on @var{file} (@pxref{disk_images})
1959
@item host:@var{bus.addr}
1960
Pass through the host device identified by @var{bus.addr}
1961
(Linux only)
1962
@item host:@var{vendor_id:product_id}
1963
Pass through the host device identified by @var{vendor_id:product_id}
1964
(Linux only)
1965
@item wacom-tablet
1966
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1967
above but it can be used with the tslib library because in addition to touch
1968
coordinates it reports touch pressure.
1969
@item keyboard
1970
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1971
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1972
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1973
device @var{dev}. The available character devices are the same as for the
1974
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1975
used to override the default 0403:6001. For instance, 
1976
@example
1977
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1978
@end example
1979
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1980
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1981
@item braille
1982
Braille device.  This will use BrlAPI to display the braille output on a real
1983
or fake device.
1984
@item net:@var{options}
1985
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1986
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1987
For instance, user-mode networking can be used with
1988
@example
1989
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1990
@end example
1991
Currently this cannot be used in machines that support PCI NICs.
1992
@item bt[:@var{hci-type}]
1993
Bluetooth dongle whose type is specified in the same format as with
1994
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1995
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1996
This USB device implements the USB Transport Layer of HCI.  Example
1997
usage:
1998
@example
1999
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2000
@end example
2001
@end table
2002

    
2003
@node host_usb_devices
2004
@subsection Using host USB devices on a Linux host
2005

    
2006
WARNING: this is an experimental feature. QEMU will slow down when
2007
using it. USB devices requiring real time streaming (i.e. USB Video
2008
Cameras) are not supported yet.
2009

    
2010
@enumerate
2011
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
2012
is actually using the USB device. A simple way to do that is simply to
2013
disable the corresponding kernel module by renaming it from @file{mydriver.o}
2014
to @file{mydriver.o.disabled}.
2015

    
2016
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2017
@example
2018
ls /proc/bus/usb
2019
001  devices  drivers
2020
@end example
2021

    
2022
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2023
@example
2024
chown -R myuid /proc/bus/usb
2025
@end example
2026

    
2027
@item Launch QEMU and do in the monitor:
2028
@example
2029
info usbhost
2030
  Device 1.2, speed 480 Mb/s
2031
    Class 00: USB device 1234:5678, USB DISK
2032
@end example
2033
You should see the list of the devices you can use (Never try to use
2034
hubs, it won't work).
2035

    
2036
@item Add the device in QEMU by using:
2037
@example
2038
usb_add host:1234:5678
2039
@end example
2040

    
2041
Normally the guest OS should report that a new USB device is
2042
plugged. You can use the option @option{-usbdevice} to do the same.
2043

    
2044
@item Now you can try to use the host USB device in QEMU.
2045

    
2046
@end enumerate
2047

    
2048
When relaunching QEMU, you may have to unplug and plug again the USB
2049
device to make it work again (this is a bug).
2050

    
2051
@node vnc_security
2052
@section VNC security
2053

    
2054
The VNC server capability provides access to the graphical console
2055
of the guest VM across the network. This has a number of security
2056
considerations depending on the deployment scenarios.
2057

    
2058
@menu
2059
* vnc_sec_none::
2060
* vnc_sec_password::
2061
* vnc_sec_certificate::
2062
* vnc_sec_certificate_verify::
2063
* vnc_sec_certificate_pw::
2064
* vnc_generate_cert::
2065
@end menu
2066
@node vnc_sec_none
2067
@subsection Without passwords
2068

    
2069
The simplest VNC server setup does not include any form of authentication.
2070
For this setup it is recommended to restrict it to listen on a UNIX domain
2071
socket only. For example
2072

    
2073
@example
2074
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2075
@end example
2076

    
2077
This ensures that only users on local box with read/write access to that
2078
path can access the VNC server. To securely access the VNC server from a
2079
remote machine, a combination of netcat+ssh can be used to provide a secure
2080
tunnel.
2081

    
2082
@node vnc_sec_password
2083
@subsection With passwords
2084

    
2085
The VNC protocol has limited support for password based authentication. Since
2086
the protocol limits passwords to 8 characters it should not be considered
2087
to provide high security. The password can be fairly easily brute-forced by
2088
a client making repeat connections. For this reason, a VNC server using password
2089
authentication should be restricted to only listen on the loopback interface
2090
or UNIX domain sockets. Password authentication is requested with the @code{password}
2091
option, and then once QEMU is running the password is set with the monitor. Until
2092
the monitor is used to set the password all clients will be rejected.
2093

    
2094
@example
2095
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2096
(qemu) change vnc password
2097
Password: ********
2098
(qemu)
2099
@end example
2100

    
2101
@node vnc_sec_certificate
2102
@subsection With x509 certificates
2103

    
2104
The QEMU VNC server also implements the VeNCrypt extension allowing use of
2105
TLS for encryption of the session, and x509 certificates for authentication.
2106
The use of x509 certificates is strongly recommended, because TLS on its
2107
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2108
support provides a secure session, but no authentication. This allows any
2109
client to connect, and provides an encrypted session.
2110

    
2111
@example
2112
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2113
@end example
2114

    
2115
In the above example @code{/etc/pki/qemu} should contain at least three files,
2116
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2117
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2118
NB the @code{server-key.pem} file should be protected with file mode 0600 to
2119
only be readable by the user owning it.
2120

    
2121
@node vnc_sec_certificate_verify
2122
@subsection With x509 certificates and client verification
2123

    
2124
Certificates can also provide a means to authenticate the client connecting.
2125
The server will request that the client provide a certificate, which it will
2126
then validate against the CA certificate. This is a good choice if deploying
2127
in an environment with a private internal certificate authority.
2128

    
2129
@example
2130
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2131
@end example
2132

    
2133

    
2134
@node vnc_sec_certificate_pw
2135
@subsection With x509 certificates, client verification and passwords
2136

    
2137
Finally, the previous method can be combined with VNC password authentication
2138
to provide two layers of authentication for clients.
2139

    
2140
@example
2141
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2142
(qemu) change vnc password
2143
Password: ********
2144
(qemu)
2145
@end example
2146

    
2147
@node vnc_generate_cert
2148
@subsection Generating certificates for VNC
2149

    
2150
The GNU TLS packages provides a command called @code{certtool} which can
2151
be used to generate certificates and keys in PEM format. At a minimum it
2152
is neccessary to setup a certificate authority, and issue certificates to
2153
each server. If using certificates for authentication, then each client
2154
will also need to be issued a certificate. The recommendation is for the
2155
server to keep its certificates in either @code{/etc/pki/qemu} or for
2156
unprivileged users in @code{$HOME/.pki/qemu}.
2157

    
2158
@menu
2159
* vnc_generate_ca::
2160
* vnc_generate_server::
2161
* vnc_generate_client::
2162
@end menu
2163
@node vnc_generate_ca
2164
@subsubsection Setup the Certificate Authority
2165

    
2166
This step only needs to be performed once per organization / organizational
2167
unit. First the CA needs a private key. This key must be kept VERY secret
2168
and secure. If this key is compromised the entire trust chain of the certificates
2169
issued with it is lost.
2170

    
2171
@example
2172
# certtool --generate-privkey > ca-key.pem
2173
@end example
2174

    
2175
A CA needs to have a public certificate. For simplicity it can be a self-signed
2176
certificate, or one issue by a commercial certificate issuing authority. To
2177
generate a self-signed certificate requires one core piece of information, the
2178
name of the organization.
2179

    
2180
@example
2181
# cat > ca.info <<EOF
2182
cn = Name of your organization
2183
ca
2184
cert_signing_key
2185
EOF
2186
# certtool --generate-self-signed \
2187
           --load-privkey ca-key.pem
2188
           --template ca.info \
2189
           --outfile ca-cert.pem
2190
@end example
2191

    
2192
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2193
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2194

    
2195
@node vnc_generate_server
2196
@subsubsection Issuing server certificates
2197

    
2198
Each server (or host) needs to be issued with a key and certificate. When connecting
2199
the certificate is sent to the client which validates it against the CA certificate.
2200
The core piece of information for a server certificate is the hostname. This should
2201
be the fully qualified hostname that the client will connect with, since the client
2202
will typically also verify the hostname in the certificate. On the host holding the
2203
secure CA private key:
2204

    
2205
@example
2206
# cat > server.info <<EOF
2207
organization = Name  of your organization
2208
cn = server.foo.example.com
2209
tls_www_server
2210
encryption_key
2211
signing_key
2212
EOF
2213
# certtool --generate-privkey > server-key.pem
2214
# certtool --generate-certificate \
2215
           --load-ca-certificate ca-cert.pem \
2216
           --load-ca-privkey ca-key.pem \
2217
           --load-privkey server server-key.pem \
2218
           --template server.info \
2219
           --outfile server-cert.pem
2220
@end example
2221

    
2222
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2223
to the server for which they were generated. The @code{server-key.pem} is security
2224
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2225

    
2226
@node vnc_generate_client
2227
@subsubsection Issuing client certificates
2228

    
2229
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2230
certificates as its authentication mechanism, each client also needs to be issued
2231
a certificate. The client certificate contains enough metadata to uniquely identify
2232
the client, typically organization, state, city, building, etc. On the host holding
2233
the secure CA private key:
2234

    
2235
@example
2236
# cat > client.info <<EOF
2237
country = GB
2238
state = London
2239
locality = London
2240
organiazation = Name of your organization
2241
cn = client.foo.example.com
2242
tls_www_client
2243
encryption_key
2244
signing_key
2245
EOF
2246
# certtool --generate-privkey > client-key.pem
2247
# certtool --generate-certificate \
2248
           --load-ca-certificate ca-cert.pem \
2249
           --load-ca-privkey ca-key.pem \
2250
           --load-privkey client-key.pem \
2251
           --template client.info \
2252
           --outfile client-cert.pem
2253
@end example
2254

    
2255
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2256
copied to the client for which they were generated.
2257

    
2258
@node gdb_usage
2259
@section GDB usage
2260

    
2261
QEMU has a primitive support to work with gdb, so that you can do
2262
'Ctrl-C' while the virtual machine is running and inspect its state.
2263

    
2264
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2265
gdb connection:
2266
@example
2267
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2268
       -append "root=/dev/hda"
2269
Connected to host network interface: tun0
2270
Waiting gdb connection on port 1234
2271
@end example
2272

    
2273
Then launch gdb on the 'vmlinux' executable:
2274
@example
2275
> gdb vmlinux
2276
@end example
2277

    
2278
In gdb, connect to QEMU:
2279
@example
2280
(gdb) target remote localhost:1234
2281
@end example
2282

    
2283
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2284
@example
2285
(gdb) c
2286
@end example
2287

    
2288
Here are some useful tips in order to use gdb on system code:
2289

    
2290
@enumerate
2291
@item
2292
Use @code{info reg} to display all the CPU registers.
2293
@item
2294
Use @code{x/10i $eip} to display the code at the PC position.
2295
@item
2296
Use @code{set architecture i8086} to dump 16 bit code. Then use
2297
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2298
@end enumerate
2299

    
2300
Advanced debugging options:
2301

    
2302
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2303
@table @code
2304
@item maintenance packet qqemu.sstepbits
2305

    
2306
This will display the MASK bits used to control the single stepping IE:
2307
@example
2308
(gdb) maintenance packet qqemu.sstepbits
2309
sending: "qqemu.sstepbits"
2310
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2311
@end example
2312
@item maintenance packet qqemu.sstep
2313

    
2314
This will display the current value of the mask used when single stepping IE:
2315
@example
2316
(gdb) maintenance packet qqemu.sstep
2317
sending: "qqemu.sstep"
2318
received: "0x7"
2319
@end example
2320
@item maintenance packet Qqemu.sstep=HEX_VALUE
2321

    
2322
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2323
@example
2324
(gdb) maintenance packet Qqemu.sstep=0x5
2325
sending: "qemu.sstep=0x5"
2326
received: "OK"
2327
@end example
2328
@end table
2329

    
2330
@node pcsys_os_specific
2331
@section Target OS specific information
2332

    
2333
@subsection Linux
2334

    
2335
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2336
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2337
color depth in the guest and the host OS.
2338

    
2339
When using a 2.6 guest Linux kernel, you should add the option
2340
@code{clock=pit} on the kernel command line because the 2.6 Linux
2341
kernels make very strict real time clock checks by default that QEMU
2342
cannot simulate exactly.
2343

    
2344
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2345
not activated because QEMU is slower with this patch. The QEMU
2346
Accelerator Module is also much slower in this case. Earlier Fedora
2347
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2348
patch by default. Newer kernels don't have it.
2349

    
2350
@subsection Windows
2351

    
2352
If you have a slow host, using Windows 95 is better as it gives the
2353
best speed. Windows 2000 is also a good choice.
2354

    
2355
@subsubsection SVGA graphic modes support
2356

    
2357
QEMU emulates a Cirrus Logic GD5446 Video
2358
card. All Windows versions starting from Windows 95 should recognize
2359
and use this graphic card. For optimal performances, use 16 bit color
2360
depth in the guest and the host OS.
2361

    
2362
If you are using Windows XP as guest OS and if you want to use high
2363
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2364
1280x1024x16), then you should use the VESA VBE virtual graphic card
2365
(option @option{-std-vga}).
2366

    
2367
@subsubsection CPU usage reduction
2368

    
2369
Windows 9x does not correctly use the CPU HLT
2370
instruction. The result is that it takes host CPU cycles even when
2371
idle. You can install the utility from
2372
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2373
problem. Note that no such tool is needed for NT, 2000 or XP.
2374

    
2375
@subsubsection Windows 2000 disk full problem
2376

    
2377
Windows 2000 has a bug which gives a disk full problem during its
2378
installation. When installing it, use the @option{-win2k-hack} QEMU
2379
option to enable a specific workaround. After Windows 2000 is
2380
installed, you no longer need this option (this option slows down the
2381
IDE transfers).
2382

    
2383
@subsubsection Windows 2000 shutdown
2384

    
2385
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2386
can. It comes from the fact that Windows 2000 does not automatically
2387
use the APM driver provided by the BIOS.
2388

    
2389
In order to correct that, do the following (thanks to Struan
2390
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2391
Add/Troubleshoot a device => Add a new device & Next => No, select the
2392
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2393
(again) a few times. Now the driver is installed and Windows 2000 now
2394
correctly instructs QEMU to shutdown at the appropriate moment.
2395

    
2396
@subsubsection Share a directory between Unix and Windows
2397

    
2398
See @ref{sec_invocation} about the help of the option @option{-smb}.
2399

    
2400
@subsubsection Windows XP security problem
2401

    
2402
Some releases of Windows XP install correctly but give a security
2403
error when booting:
2404
@example
2405
A problem is preventing Windows from accurately checking the
2406
license for this computer. Error code: 0x800703e6.
2407
@end example
2408

    
2409
The workaround is to install a service pack for XP after a boot in safe
2410
mode. Then reboot, and the problem should go away. Since there is no
2411
network while in safe mode, its recommended to download the full
2412
installation of SP1 or SP2 and transfer that via an ISO or using the
2413
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2414

    
2415
@subsection MS-DOS and FreeDOS
2416

    
2417
@subsubsection CPU usage reduction
2418

    
2419
DOS does not correctly use the CPU HLT instruction. The result is that
2420
it takes host CPU cycles even when idle. You can install the utility
2421
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2422
problem.
2423

    
2424
@node QEMU System emulator for non PC targets
2425
@chapter QEMU System emulator for non PC targets
2426

    
2427
QEMU is a generic emulator and it emulates many non PC
2428
machines. Most of the options are similar to the PC emulator. The
2429
differences are mentioned in the following sections.
2430

    
2431
@menu
2432
* QEMU PowerPC System emulator::
2433
* Sparc32 System emulator::
2434
* Sparc64 System emulator::
2435
* MIPS System emulator::
2436
* ARM System emulator::
2437
* ColdFire System emulator::
2438
@end menu
2439

    
2440
@node QEMU PowerPC System emulator
2441
@section QEMU PowerPC System emulator
2442

    
2443
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2444
or PowerMac PowerPC system.
2445

    
2446
QEMU emulates the following PowerMac peripherals:
2447

    
2448
@itemize @minus
2449
@item
2450
UniNorth or Grackle PCI Bridge
2451
@item
2452
PCI VGA compatible card with VESA Bochs Extensions
2453
@item
2454
2 PMAC IDE interfaces with hard disk and CD-ROM support
2455
@item
2456
NE2000 PCI adapters
2457
@item
2458
Non Volatile RAM
2459
@item
2460
VIA-CUDA with ADB keyboard and mouse.
2461
@end itemize
2462

    
2463
QEMU emulates the following PREP peripherals:
2464

    
2465
@itemize @minus
2466
@item
2467
PCI Bridge
2468
@item
2469
PCI VGA compatible card with VESA Bochs Extensions
2470
@item
2471
2 IDE interfaces with hard disk and CD-ROM support
2472
@item
2473
Floppy disk
2474
@item
2475
NE2000 network adapters
2476
@item
2477
Serial port
2478
@item
2479
PREP Non Volatile RAM
2480
@item
2481
PC compatible keyboard and mouse.
2482
@end itemize
2483

    
2484
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2485
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2486

    
2487
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2488
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2489
v2) portable firmware implementation. The goal is to implement a 100%
2490
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2491

    
2492
@c man begin OPTIONS
2493

    
2494
The following options are specific to the PowerPC emulation:
2495

    
2496
@table @option
2497

    
2498
@item -g WxH[xDEPTH]
2499

    
2500
Set the initial VGA graphic mode. The default is 800x600x15.
2501

    
2502
@item -prom-env string
2503

    
2504
Set OpenBIOS variables in NVRAM, for example:
2505

    
2506
@example
2507
qemu-system-ppc -prom-env 'auto-boot?=false' \
2508
 -prom-env 'boot-device=hd:2,\yaboot' \
2509
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2510
@end example
2511

    
2512
These variables are not used by Open Hack'Ware.
2513

    
2514
@end table
2515

    
2516
@c man end
2517

    
2518

    
2519
More information is available at
2520
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2521

    
2522
@node Sparc32 System emulator
2523
@section Sparc32 System emulator
2524

    
2525
Use the executable @file{qemu-system-sparc} to simulate the following
2526
Sun4m architecture machines:
2527
@itemize @minus
2528
@item
2529
SPARCstation 4
2530
@item
2531
SPARCstation 5
2532
@item
2533
SPARCstation 10
2534
@item
2535
SPARCstation 20
2536
@item
2537
SPARCserver 600MP
2538
@item
2539
SPARCstation LX
2540
@item
2541
SPARCstation Voyager
2542
@item
2543
SPARCclassic
2544
@item
2545
SPARCbook
2546
@end itemize
2547

    
2548
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2549
but Linux limits the number of usable CPUs to 4.
2550

    
2551
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2552
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2553
emulators are not usable yet.
2554

    
2555
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2556

    
2557
@itemize @minus
2558
@item
2559
IOMMU or IO-UNITs
2560
@item
2561
TCX Frame buffer
2562
@item
2563
Lance (Am7990) Ethernet
2564
@item
2565
Non Volatile RAM M48T02/M48T08
2566
@item
2567
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2568
and power/reset logic
2569
@item
2570
ESP SCSI controller with hard disk and CD-ROM support
2571
@item
2572
Floppy drive (not on SS-600MP)
2573
@item
2574
CS4231 sound device (only on SS-5, not working yet)
2575
@end itemize
2576

    
2577
The number of peripherals is fixed in the architecture.  Maximum
2578
memory size depends on the machine type, for SS-5 it is 256MB and for
2579
others 2047MB.
2580

    
2581
Since version 0.8.2, QEMU uses OpenBIOS
2582
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2583
firmware implementation. The goal is to implement a 100% IEEE
2584
1275-1994 (referred to as Open Firmware) compliant firmware.
2585

    
2586
A sample Linux 2.6 series kernel and ram disk image are available on
2587
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2588
some kernel versions work. Please note that currently Solaris kernels
2589
don't work probably due to interface issues between OpenBIOS and
2590
Solaris.
2591

    
2592
@c man begin OPTIONS
2593

    
2594
The following options are specific to the Sparc32 emulation:
2595

    
2596
@table @option
2597

    
2598
@item -g WxHx[xDEPTH]
2599

    
2600
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2601
the only other possible mode is 1024x768x24.
2602

    
2603
@item -prom-env string
2604

    
2605
Set OpenBIOS variables in NVRAM, for example:
2606

    
2607
@example
2608
qemu-system-sparc -prom-env 'auto-boot?=false' \
2609
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2610
@end example
2611

    
2612
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2613

    
2614
Set the emulated machine type. Default is SS-5.
2615

    
2616
@end table
2617

    
2618
@c man end
2619

    
2620
@node Sparc64 System emulator
2621
@section Sparc64 System emulator
2622

    
2623
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2624
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2625
Niagara (T1) machine. The emulator is not usable for anything yet, but
2626
it can launch some kernels.
2627

    
2628
QEMU emulates the following peripherals:
2629

    
2630
@itemize @minus
2631
@item
2632
UltraSparc IIi APB PCI Bridge
2633
@item
2634
PCI VGA compatible card with VESA Bochs Extensions
2635
@item
2636
PS/2 mouse and keyboard
2637
@item
2638
Non Volatile RAM M48T59
2639
@item
2640
PC-compatible serial ports
2641
@item
2642
2 PCI IDE interfaces with hard disk and CD-ROM support
2643
@item
2644
Floppy disk
2645
@end itemize
2646

    
2647
@c man begin OPTIONS
2648

    
2649
The following options are specific to the Sparc64 emulation:
2650

    
2651
@table @option
2652

    
2653
@item -prom-env string
2654

    
2655
Set OpenBIOS variables in NVRAM, for example:
2656

    
2657
@example
2658
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2659
@end example
2660

    
2661
@item -M [sun4u|sun4v|Niagara]
2662

    
2663
Set the emulated machine type. The default is sun4u.
2664

    
2665
@end table
2666

    
2667
@c man end
2668

    
2669
@node MIPS System emulator
2670
@section MIPS System emulator
2671

    
2672
Four executables cover simulation of 32 and 64-bit MIPS systems in
2673
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2674
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2675
Five different machine types are emulated:
2676

    
2677
@itemize @minus
2678
@item
2679
A generic ISA PC-like machine "mips"
2680
@item
2681
The MIPS Malta prototype board "malta"
2682
@item
2683
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2684
@item
2685
MIPS emulator pseudo board "mipssim"
2686
@item
2687
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2688
@end itemize
2689

    
2690
The generic emulation is supported by Debian 'Etch' and is able to
2691
install Debian into a virtual disk image. The following devices are
2692
emulated:
2693

    
2694
@itemize @minus
2695
@item
2696
A range of MIPS CPUs, default is the 24Kf
2697
@item
2698
PC style serial port
2699
@item
2700
PC style IDE disk
2701
@item
2702
NE2000 network card
2703
@end itemize
2704

    
2705
The Malta emulation supports the following devices:
2706

    
2707
@itemize @minus
2708
@item
2709
Core board with MIPS 24Kf CPU and Galileo system controller
2710
@item
2711
PIIX4 PCI/USB/SMbus controller
2712
@item
2713
The Multi-I/O chip's serial device
2714
@item
2715
PCnet32 PCI network card
2716
@item
2717
Malta FPGA serial device
2718
@item
2719
Cirrus (default) or any other PCI VGA graphics card
2720
@end itemize
2721

    
2722
The ACER Pica emulation supports:
2723

    
2724
@itemize @minus
2725
@item
2726
MIPS R4000 CPU
2727
@item
2728
PC-style IRQ and DMA controllers
2729
@item
2730
PC Keyboard
2731
@item
2732
IDE controller
2733
@end itemize
2734

    
2735
The mipssim pseudo board emulation provides an environment similiar
2736
to what the proprietary MIPS emulator uses for running Linux.
2737
It supports:
2738

    
2739
@itemize @minus
2740
@item
2741
A range of MIPS CPUs, default is the 24Kf
2742
@item
2743
PC style serial port
2744
@item
2745
MIPSnet network emulation
2746
@end itemize
2747

    
2748
The MIPS Magnum R4000 emulation supports:
2749

    
2750
@itemize @minus
2751
@item
2752
MIPS R4000 CPU
2753
@item
2754
PC-style IRQ controller
2755
@item
2756
PC Keyboard
2757
@item
2758
SCSI controller
2759
@item
2760
G364 framebuffer
2761
@end itemize
2762

    
2763

    
2764
@node ARM System emulator
2765
@section ARM System emulator
2766

    
2767
Use the executable @file{qemu-system-arm} to simulate a ARM
2768
machine. The ARM Integrator/CP board is emulated with the following
2769
devices:
2770

    
2771
@itemize @minus
2772
@item
2773
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2774
@item
2775
Two PL011 UARTs
2776
@item
2777
SMC 91c111 Ethernet adapter
2778
@item
2779
PL110 LCD controller
2780
@item
2781
PL050 KMI with PS/2 keyboard and mouse.
2782
@item
2783
PL181 MultiMedia Card Interface with SD card.
2784
@end itemize
2785

    
2786
The ARM Versatile baseboard is emulated with the following devices:
2787

    
2788
@itemize @minus
2789
@item
2790
ARM926E, ARM1136 or Cortex-A8 CPU
2791
@item
2792
PL190 Vectored Interrupt Controller
2793
@item
2794
Four PL011 UARTs
2795
@item
2796
SMC 91c111 Ethernet adapter
2797
@item
2798
PL110 LCD controller
2799
@item
2800
PL050 KMI with PS/2 keyboard and mouse.
2801
@item
2802
PCI host bridge.  Note the emulated PCI bridge only provides access to
2803
PCI memory space.  It does not provide access to PCI IO space.
2804
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2805
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2806
mapped control registers.
2807
@item
2808
PCI OHCI USB controller.
2809
@item
2810
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2811
@item
2812
PL181 MultiMedia Card Interface with SD card.
2813
@end itemize
2814

    
2815
The ARM RealView Emulation baseboard is emulated with the following devices:
2816

    
2817
@itemize @minus
2818
@item
2819
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2820
@item
2821
ARM AMBA Generic/Distributed Interrupt Controller
2822
@item
2823
Four PL011 UARTs
2824
@item
2825
SMC 91c111 Ethernet adapter
2826
@item
2827
PL110 LCD controller
2828
@item
2829
PL050 KMI with PS/2 keyboard and mouse
2830
@item
2831
PCI host bridge
2832
@item
2833
PCI OHCI USB controller
2834
@item
2835
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2836
@item
2837
PL181 MultiMedia Card Interface with SD card.
2838
@end itemize
2839

    
2840
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2841
and "Terrier") emulation includes the following peripherals:
2842

    
2843
@itemize @minus
2844
@item
2845
Intel PXA270 System-on-chip (ARM V5TE core)
2846
@item
2847
NAND Flash memory
2848
@item
2849
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2850
@item
2851
On-chip OHCI USB controller
2852
@item
2853
On-chip LCD controller
2854
@item
2855
On-chip Real Time Clock
2856
@item
2857
TI ADS7846 touchscreen controller on SSP bus
2858
@item
2859
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2860
@item
2861
GPIO-connected keyboard controller and LEDs
2862
@item
2863
Secure Digital card connected to PXA MMC/SD host
2864
@item
2865
Three on-chip UARTs
2866
@item
2867
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2868
@end itemize
2869

    
2870
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2871
following elements:
2872

    
2873
@itemize @minus
2874
@item
2875
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2876
@item
2877
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2878
@item
2879
On-chip LCD controller
2880
@item
2881
On-chip Real Time Clock
2882
@item
2883
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2884
CODEC, connected through MicroWire and I@math{^2}S busses
2885
@item
2886
GPIO-connected matrix keypad
2887
@item
2888
Secure Digital card connected to OMAP MMC/SD host
2889
@item
2890
Three on-chip UARTs
2891
@end itemize
2892

    
2893
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2894
emulation supports the following elements:
2895

    
2896
@itemize @minus
2897
@item
2898
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2899
@item
2900
RAM and non-volatile OneNAND Flash memories
2901
@item
2902
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2903
display controller and a LS041y3 MIPI DBI-C controller
2904
@item
2905
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2906
driven through SPI bus
2907
@item
2908
National Semiconductor LM8323-controlled qwerty keyboard driven
2909
through I@math{^2}C bus
2910
@item
2911
Secure Digital card connected to OMAP MMC/SD host
2912
@item
2913
Three OMAP on-chip UARTs and on-chip STI debugging console
2914
@item
2915
A Bluetooth(R) transciever and HCI connected to an UART
2916
@item
2917
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2918
TUSB6010 chip - only USB host mode is supported
2919
@item
2920
TI TMP105 temperature sensor driven through I@math{^2}C bus
2921
@item
2922
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2923
@item
2924
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2925
through CBUS
2926
@end itemize
2927

    
2928
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2929
devices:
2930

    
2931
@itemize @minus
2932
@item
2933
Cortex-M3 CPU core.
2934
@item
2935
64k Flash and 8k SRAM.
2936
@item
2937
Timers, UARTs, ADC and I@math{^2}C interface.
2938
@item
2939
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2940
@end itemize
2941

    
2942
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2943
devices:
2944

    
2945
@itemize @minus
2946
@item
2947
Cortex-M3 CPU core.
2948
@item
2949
256k Flash and 64k SRAM.
2950
@item
2951
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2952
@item
2953
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2954
@end itemize
2955

    
2956
The Freecom MusicPal internet radio emulation includes the following
2957
elements:
2958

    
2959
@itemize @minus
2960
@item
2961
Marvell MV88W8618 ARM core.
2962
@item
2963
32 MB RAM, 256 KB SRAM, 8 MB flash.
2964
@item
2965
Up to 2 16550 UARTs
2966
@item
2967
MV88W8xx8 Ethernet controller
2968
@item
2969
MV88W8618 audio controller, WM8750 CODEC and mixer
2970
@item
2971
128?64 display with brightness control
2972
@item
2973
2 buttons, 2 navigation wheels with button function
2974
@end itemize
2975

    
2976
The Siemens SX1 models v1 and v2 (default) basic emulation.
2977
The emulaton includes the following elements:
2978

    
2979
@itemize @minus
2980
@item
2981
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2982
@item
2983
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2984
V1
2985
1 Flash of 16MB and 1 Flash of 8MB
2986
V2
2987
1 Flash of 32MB
2988
@item
2989
On-chip LCD controller
2990
@item
2991
On-chip Real Time Clock
2992
@item
2993
Secure Digital card connected to OMAP MMC/SD host
2994
@item
2995
Three on-chip UARTs
2996
@end itemize
2997

    
2998
A Linux 2.6 test image is available on the QEMU web site. More
2999
information is available in the QEMU mailing-list archive.
3000

    
3001
@c man begin OPTIONS
3002

    
3003
The following options are specific to the ARM emulation:
3004

    
3005
@table @option
3006

    
3007
@item -semihosting
3008
Enable semihosting syscall emulation.
3009

    
3010
On ARM this implements the "Angel" interface.
3011

    
3012
Note that this allows guest direct access to the host filesystem,
3013
so should only be used with trusted guest OS.
3014

    
3015
@end table
3016

    
3017
@node ColdFire System emulator
3018
@section ColdFire System emulator
3019

    
3020
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
3021
The emulator is able to boot a uClinux kernel.
3022

    
3023
The M5208EVB emulation includes the following devices:
3024

    
3025
@itemize @minus
3026
@item
3027
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
3028
@item
3029
Three Two on-chip UARTs.
3030
@item
3031
Fast Ethernet Controller (FEC)
3032
@end itemize
3033

    
3034
The AN5206 emulation includes the following devices:
3035

    
3036
@itemize @minus
3037
@item
3038
MCF5206 ColdFire V2 Microprocessor.
3039
@item
3040
Two on-chip UARTs.
3041
@end itemize
3042

    
3043
@c man begin OPTIONS
3044

    
3045
The following options are specific to the ARM emulation:
3046

    
3047
@table @option
3048

    
3049
@item -semihosting
3050
Enable semihosting syscall emulation.
3051

    
3052
On M68K this implements the "ColdFire GDB" interface used by libgloss.
3053

    
3054
Note that this allows guest direct access to the host filesystem,
3055
so should only be used with trusted guest OS.
3056

    
3057
@end table
3058

    
3059
@node QEMU User space emulator
3060
@chapter QEMU User space emulator
3061

    
3062
@menu
3063
* Supported Operating Systems ::
3064
* Linux User space emulator::
3065
* Mac OS X/Darwin User space emulator ::
3066
* BSD User space emulator ::
3067
@end menu
3068

    
3069
@node Supported Operating Systems
3070
@section Supported Operating Systems
3071

    
3072
The following OS are supported in user space emulation:
3073

    
3074
@itemize @minus
3075
@item
3076
Linux (referred as qemu-linux-user)
3077
@item
3078
Mac OS X/Darwin (referred as qemu-darwin-user)
3079
@item
3080
BSD (referred as qemu-bsd-user)
3081
@end itemize
3082

    
3083
@node Linux User space emulator
3084
@section Linux User space emulator
3085

    
3086
@menu
3087
* Quick Start::
3088
* Wine launch::
3089
* Command line options::
3090
* Other binaries::
3091
@end menu
3092

    
3093
@node Quick Start
3094
@subsection Quick Start
3095

    
3096
In order to launch a Linux process, QEMU needs the process executable
3097
itself and all the target (x86) dynamic libraries used by it.
3098

    
3099
@itemize
3100

    
3101
@item On x86, you can just try to launch any process by using the native
3102
libraries:
3103

    
3104
@example
3105
qemu-i386 -L / /bin/ls
3106
@end example
3107

    
3108
@code{-L /} tells that the x86 dynamic linker must be searched with a
3109
@file{/} prefix.
3110

    
3111
@item Since QEMU is also a linux process, you can launch qemu with
3112
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
3113

    
3114
@example
3115
qemu-i386 -L / qemu-i386 -L / /bin/ls
3116
@end example
3117

    
3118
@item On non x86 CPUs, you need first to download at least an x86 glibc
3119
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
3120
@code{LD_LIBRARY_PATH} is not set:
3121

    
3122
@example
3123
unset LD_LIBRARY_PATH
3124
@end example
3125

    
3126
Then you can launch the precompiled @file{ls} x86 executable:
3127

    
3128
@example
3129
qemu-i386 tests/i386/ls
3130
@end example
3131
You can look at @file{qemu-binfmt-conf.sh} so that
3132
QEMU is automatically launched by the Linux kernel when you try to
3133
launch x86 executables. It requires the @code{binfmt_misc} module in the
3134
Linux kernel.
3135

    
3136
@item The x86 version of QEMU is also included. You can try weird things such as:
3137
@example
3138
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
3139
          /usr/local/qemu-i386/bin/ls-i386
3140
@end example
3141

    
3142
@end itemize
3143

    
3144
@node Wine launch
3145
@subsection Wine launch
3146

    
3147
@itemize
3148

    
3149
@item Ensure that you have a working QEMU with the x86 glibc
3150
distribution (see previous section). In order to verify it, you must be
3151
able to do:
3152

    
3153
@example
3154
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
3155
@end example
3156

    
3157
@item Download the binary x86 Wine install
3158
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
3159

    
3160
@item Configure Wine on your account. Look at the provided script
3161
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
3162
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
3163

    
3164
@item Then you can try the example @file{putty.exe}:
3165

    
3166
@example
3167
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
3168
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
3169
@end example
3170

    
3171
@end itemize
3172

    
3173
@node Command line options
3174
@subsection Command line options
3175

    
3176
@example
3177
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
3178
@end example
3179

    
3180
@table @option
3181
@item -h
3182
Print the help
3183
@item -L path
3184
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
3185
@item -s size
3186
Set the x86 stack size in bytes (default=524288)
3187
@item -cpu model
3188
Select CPU model (-cpu ? for list and additional feature selection)
3189
@end table
3190

    
3191
Debug options:
3192

    
3193
@table @option
3194
@item -d
3195
Activate log (logfile=/tmp/qemu.log)
3196
@item -p pagesize
3197
Act as if the host page size was 'pagesize' bytes
3198
@item -g port
3199
Wait gdb connection to port
3200
@end table
3201

    
3202
Environment variables:
3203

    
3204
@table @env
3205
@item QEMU_STRACE
3206
Print system calls and arguments similar to the 'strace' program
3207
(NOTE: the actual 'strace' program will not work because the user
3208
space emulator hasn't implemented ptrace).  At the moment this is
3209
incomplete.  All system calls that don't have a specific argument
3210
format are printed with information for six arguments.  Many
3211
flag-style arguments don't have decoders and will show up as numbers.
3212
@end table
3213

    
3214
@node Other binaries
3215
@subsection Other binaries
3216

    
3217
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3218
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3219
configurations), and arm-uclinux bFLT format binaries.
3220

    
3221
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3222
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3223
coldfire uClinux bFLT format binaries.
3224

    
3225
The binary format is detected automatically.
3226

    
3227
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3228

    
3229
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3230
(Sparc64 CPU, 32 bit ABI).
3231

    
3232
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3233
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3234

    
3235
@node Mac OS X/Darwin User space emulator
3236
@section Mac OS X/Darwin User space emulator
3237

    
3238
@menu
3239
* Mac OS X/Darwin Status::
3240
* Mac OS X/Darwin Quick Start::
3241
* Mac OS X/Darwin Command line options::
3242
@end menu
3243

    
3244
@node Mac OS X/Darwin Status
3245
@subsection Mac OS X/Darwin Status
3246

    
3247
@itemize @minus
3248
@item
3249
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3250
@item
3251
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3252
@item
3253
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3254
@item
3255
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3256
@end itemize
3257

    
3258
[1] If you're host commpage can be executed by qemu.
3259

    
3260
@node Mac OS X/Darwin Quick Start
3261
@subsection Quick Start
3262

    
3263
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3264
itself and all the target dynamic libraries used by it. If you don't have the FAT
3265
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3266
CD or compile them by hand.
3267

    
3268
@itemize
3269

    
3270
@item On x86, you can just try to launch any process by using the native
3271
libraries:
3272

    
3273
@example
3274
qemu-i386 /bin/ls
3275
@end example
3276

    
3277
or to run the ppc version of the executable:
3278

    
3279
@example
3280
qemu-ppc /bin/ls
3281
@end example
3282

    
3283
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3284
are installed:
3285

    
3286
@example
3287
qemu-i386 -L /opt/x86_root/ /bin/ls
3288
@end example
3289

    
3290
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3291
@file{/opt/x86_root/usr/bin/dyld}.
3292

    
3293
@end itemize
3294

    
3295
@node Mac OS X/Darwin Command line options
3296
@subsection Command line options
3297

    
3298
@example
3299
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3300
@end example
3301

    
3302
@table @option
3303
@item -h
3304
Print the help
3305
@item -L path
3306
Set the library root path (default=/)
3307
@item -s size
3308
Set the stack size in bytes (default=524288)
3309
@end table
3310

    
3311
Debug options:
3312

    
3313
@table @option
3314
@item -d
3315
Activate log (logfile=/tmp/qemu.log)
3316
@item -p pagesize
3317
Act as if the host page size was 'pagesize' bytes
3318
@end table
3319

    
3320
@node BSD User space emulator
3321
@section BSD User space emulator
3322

    
3323
@menu
3324
* BSD Status::
3325
* BSD Quick Start::
3326
* BSD Command line options::
3327
@end menu
3328

    
3329
@node BSD Status
3330
@subsection BSD Status
3331

    
3332
@itemize @minus
3333
@item
3334
target Sparc64 on Sparc64: Some trivial programs work.
3335
@end itemize
3336

    
3337
@node BSD Quick Start
3338
@subsection Quick Start
3339

    
3340
In order to launch a BSD process, QEMU needs the process executable
3341
itself and all the target dynamic libraries used by it.
3342

    
3343
@itemize
3344

    
3345
@item On Sparc64, you can just try to launch any process by using the native
3346
libraries:
3347

    
3348
@example
3349
qemu-sparc64 /bin/ls
3350
@end example
3351

    
3352
@end itemize
3353

    
3354
@node BSD Command line options
3355
@subsection Command line options
3356

    
3357
@example
3358
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3359
@end example
3360

    
3361
@table @option
3362
@item -h
3363
Print the help
3364
@item -L path
3365
Set the library root path (default=/)
3366
@item -s size
3367
Set the stack size in bytes (default=524288)
3368
@item -bsd type
3369
Set the type of the emulated BSD Operating system. Valid values are
3370
FreeBSD, NetBSD and OpenBSD (default).
3371
@end table
3372

    
3373
Debug options:
3374

    
3375
@table @option
3376
@item -d
3377
Activate log (logfile=/tmp/qemu.log)
3378
@item -p pagesize
3379
Act as if the host page size was 'pagesize' bytes
3380
@end table
3381

    
3382
@node compilation
3383
@chapter Compilation from the sources
3384

    
3385
@menu
3386
* Linux/Unix::
3387
* Windows::
3388
* Cross compilation for Windows with Linux::
3389
* Mac OS X::
3390
@end menu
3391

    
3392
@node Linux/Unix
3393
@section Linux/Unix
3394

    
3395
@subsection Compilation
3396

    
3397
First you must decompress the sources:
3398
@example
3399
cd /tmp
3400
tar zxvf qemu-x.y.z.tar.gz
3401
cd qemu-x.y.z
3402
@end example
3403

    
3404
Then you configure QEMU and build it (usually no options are needed):
3405
@example
3406
./configure
3407
make
3408
@end example
3409

    
3410
Then type as root user:
3411
@example
3412
make install
3413
@end example
3414
to install QEMU in @file{/usr/local}.
3415

    
3416
@subsection GCC version
3417

    
3418
In order to compile QEMU successfully, it is very important that you
3419
have the right tools. The most important one is gcc. On most hosts and
3420
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3421
Linux distribution includes a gcc 4.x compiler, you can usually
3422
install an older version (it is invoked by @code{gcc32} or
3423
@code{gcc34}). The QEMU configure script automatically probes for
3424
these older versions so that usually you don't have to do anything.
3425

    
3426
@node Windows
3427
@section Windows
3428

    
3429
@itemize
3430
@item Install the current versions of MSYS and MinGW from
3431
@url{http://www.mingw.org/}. You can find detailed installation
3432
instructions in the download section and the FAQ.
3433

    
3434
@item Download
3435
the MinGW development library of SDL 1.2.x
3436
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3437
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3438
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3439
directory. Edit the @file{sdl-config} script so that it gives the
3440
correct SDL directory when invoked.
3441

    
3442
@item Extract the current version of QEMU.
3443

    
3444
@item Start the MSYS shell (file @file{msys.bat}).
3445

    
3446
@item Change to the QEMU directory. Launch @file{./configure} and
3447
@file{make}.  If you have problems using SDL, verify that
3448
@file{sdl-config} can be launched from the MSYS command line.
3449

    
3450
@item You can install QEMU in @file{Program Files/Qemu} by typing
3451
@file{make install}. Don't forget to copy @file{SDL.dll} in
3452
@file{Program Files/Qemu}.
3453

    
3454
@end itemize
3455

    
3456
@node Cross compilation for Windows with Linux
3457
@section Cross compilation for Windows with Linux
3458

    
3459
@itemize
3460
@item
3461
Install the MinGW cross compilation tools available at
3462
@url{http://www.mingw.org/}.
3463

    
3464
@item
3465
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3466
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3467
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3468
the QEMU configuration script.
3469

    
3470
@item
3471
Configure QEMU for Windows cross compilation:
3472
@example
3473
./configure --enable-mingw32
3474
@end example
3475
If necessary, you can change the cross-prefix according to the prefix
3476
chosen for the MinGW tools with --cross-prefix. You can also use
3477
--prefix to set the Win32 install path.
3478

    
3479
@item You can install QEMU in the installation directory by typing
3480
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3481
installation directory.
3482

    
3483
@end itemize
3484

    
3485
Note: Currently, Wine does not seem able to launch
3486
QEMU for Win32.
3487

    
3488
@node Mac OS X
3489
@section Mac OS X
3490

    
3491
The Mac OS X patches are not fully merged in QEMU, so you should look
3492
at the QEMU mailing list archive to have all the necessary
3493
information.
3494

    
3495
@node Index
3496
@chapter Index
3497
@printindex cp
3498

    
3499
@bye