Statistics
| Branch: | Revision:

root / hw / m48t59.c @ b6741956

History | View | Annotate | Download (16.6 kB)

1
/*
2
 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3
 *
4
 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
#include "m48t59.h"
26

    
27
//#define DEBUG_NVRAM
28

    
29
#if defined(DEBUG_NVRAM)
30
#define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
31
#else
32
#define NVRAM_PRINTF(fmt, args...) do { } while (0)
33
#endif
34

    
35
/*
36
 * The M48T08 and M48T59 chips are very similar. The newer '59 has
37
 * alarm and a watchdog timer and related control registers. In the
38
 * PPC platform there is also a nvram lock function.
39
 */
40
struct m48t59_t {
41
    /* Model parameters */
42
    int type; // 8 = m48t08, 59 = m48t59
43
    /* Hardware parameters */
44
    qemu_irq IRQ;
45
    int mem_index;
46
    target_phys_addr_t mem_base;
47
    uint32_t io_base;
48
    uint16_t size;
49
    /* RTC management */
50
    time_t   time_offset;
51
    time_t   stop_time;
52
    /* Alarm & watchdog */
53
    time_t   alarm;
54
    struct QEMUTimer *alrm_timer;
55
    struct QEMUTimer *wd_timer;
56
    /* NVRAM storage */
57
    uint8_t  lock;
58
    uint16_t addr;
59
    uint8_t *buffer;
60
};
61

    
62
/* Fake timer functions */
63
/* Generic helpers for BCD */
64
static inline uint8_t toBCD (uint8_t value)
65
{
66
    return (((value / 10) % 10) << 4) | (value % 10);
67
}
68

    
69
static inline uint8_t fromBCD (uint8_t BCD)
70
{
71
    return ((BCD >> 4) * 10) + (BCD & 0x0F);
72
}
73

    
74
/* RTC management helpers */
75
static void get_time (m48t59_t *NVRAM, struct tm *tm)
76
{
77
    time_t t;
78

    
79
    t = time(NULL) + NVRAM->time_offset;
80
#ifdef _WIN32
81
    memcpy(tm,localtime(&t),sizeof(*tm));
82
#else
83
    if (rtc_utc)
84
        gmtime_r (&t, tm);
85
    else
86
        localtime_r (&t, tm) ;
87
#endif
88
}
89

    
90
static void set_time (m48t59_t *NVRAM, struct tm *tm)
91
{
92
    time_t now, new_time;
93

    
94
    new_time = mktime(tm);
95
    now = time(NULL);
96
    NVRAM->time_offset = new_time - now;
97
}
98

    
99
/* Alarm management */
100
static void alarm_cb (void *opaque)
101
{
102
    struct tm tm, tm_now;
103
    uint64_t next_time;
104
    m48t59_t *NVRAM = opaque;
105

    
106
    qemu_set_irq(NVRAM->IRQ, 1);
107
    if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
108
        (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
109
        (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
110
        (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
111
        /* Repeat once a month */
112
        get_time(NVRAM, &tm_now);
113
        memcpy(&tm, &tm_now, sizeof(struct tm));
114
        tm.tm_mon++;
115
        if (tm.tm_mon == 13) {
116
            tm.tm_mon = 1;
117
            tm.tm_year++;
118
        }
119
        next_time = mktime(&tm);
120
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
121
               (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
122
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
123
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
124
        /* Repeat once a day */
125
        next_time = 24 * 60 * 60 + mktime(&tm_now);
126
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
127
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
128
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
129
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
130
        /* Repeat once an hour */
131
        next_time = 60 * 60 + mktime(&tm_now);
132
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
133
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
134
               (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
135
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
136
        /* Repeat once a minute */
137
        next_time = 60 + mktime(&tm_now);
138
    } else {
139
        /* Repeat once a second */
140
        next_time = 1 + mktime(&tm_now);
141
    }
142
    qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000);
143
    qemu_set_irq(NVRAM->IRQ, 0);
144
}
145

    
146

    
147
static void get_alarm (m48t59_t *NVRAM, struct tm *tm)
148
{
149
#ifdef _WIN32
150
    memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm));
151
#else
152
    if (rtc_utc)
153
        gmtime_r (&NVRAM->alarm, tm);
154
    else
155
        localtime_r (&NVRAM->alarm, tm);
156
#endif
157
}
158

    
159
static void set_alarm (m48t59_t *NVRAM, struct tm *tm)
160
{
161
    NVRAM->alarm = mktime(tm);
162
    if (NVRAM->alrm_timer != NULL) {
163
        qemu_del_timer(NVRAM->alrm_timer);
164
        if (NVRAM->alarm - time(NULL) > 0)
165
            qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000);
166
    }
167
}
168

    
169
/* Watchdog management */
170
static void watchdog_cb (void *opaque)
171
{
172
    m48t59_t *NVRAM = opaque;
173

    
174
    NVRAM->buffer[0x1FF0] |= 0x80;
175
    if (NVRAM->buffer[0x1FF7] & 0x80) {
176
        NVRAM->buffer[0x1FF7] = 0x00;
177
        NVRAM->buffer[0x1FFC] &= ~0x40;
178
        /* May it be a hw CPU Reset instead ? */
179
        qemu_system_reset_request();
180
    } else {
181
        qemu_set_irq(NVRAM->IRQ, 1);
182
        qemu_set_irq(NVRAM->IRQ, 0);
183
    }
184
}
185

    
186
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
187
{
188
    uint64_t interval; /* in 1/16 seconds */
189

    
190
    NVRAM->buffer[0x1FF0] &= ~0x80;
191
    if (NVRAM->wd_timer != NULL) {
192
        qemu_del_timer(NVRAM->wd_timer);
193
        if (value != 0) {
194
            interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
195
            qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
196
                           ((interval * 1000) >> 4));
197
        }
198
    }
199
}
200

    
201
/* Direct access to NVRAM */
202
void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
203
{
204
    m48t59_t *NVRAM = opaque;
205
    struct tm tm;
206
    int tmp;
207

    
208
    if (addr > 0x1FF8 && addr < 0x2000)
209
        NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
210
    if (NVRAM->type == 8 &&
211
        (addr >= 0x1ff0 && addr <= 0x1ff7))
212
        goto do_write;
213
    switch (addr) {
214
    case 0x1FF0:
215
        /* flags register : read-only */
216
        break;
217
    case 0x1FF1:
218
        /* unused */
219
        break;
220
    case 0x1FF2:
221
        /* alarm seconds */
222
        tmp = fromBCD(val & 0x7F);
223
        if (tmp >= 0 && tmp <= 59) {
224
            get_alarm(NVRAM, &tm);
225
            tm.tm_sec = tmp;
226
            NVRAM->buffer[0x1FF2] = val;
227
            set_alarm(NVRAM, &tm);
228
        }
229
        break;
230
    case 0x1FF3:
231
        /* alarm minutes */
232
        tmp = fromBCD(val & 0x7F);
233
        if (tmp >= 0 && tmp <= 59) {
234
            get_alarm(NVRAM, &tm);
235
            tm.tm_min = tmp;
236
            NVRAM->buffer[0x1FF3] = val;
237
            set_alarm(NVRAM, &tm);
238
        }
239
        break;
240
    case 0x1FF4:
241
        /* alarm hours */
242
        tmp = fromBCD(val & 0x3F);
243
        if (tmp >= 0 && tmp <= 23) {
244
            get_alarm(NVRAM, &tm);
245
            tm.tm_hour = tmp;
246
            NVRAM->buffer[0x1FF4] = val;
247
            set_alarm(NVRAM, &tm);
248
        }
249
        break;
250
    case 0x1FF5:
251
        /* alarm date */
252
        tmp = fromBCD(val & 0x1F);
253
        if (tmp != 0) {
254
            get_alarm(NVRAM, &tm);
255
            tm.tm_mday = tmp;
256
            NVRAM->buffer[0x1FF5] = val;
257
            set_alarm(NVRAM, &tm);
258
        }
259
        break;
260
    case 0x1FF6:
261
        /* interrupts */
262
        NVRAM->buffer[0x1FF6] = val;
263
        break;
264
    case 0x1FF7:
265
        /* watchdog */
266
        NVRAM->buffer[0x1FF7] = val;
267
        set_up_watchdog(NVRAM, val);
268
        break;
269
    case 0x1FF8:
270
        /* control */
271
        NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
272
        break;
273
    case 0x1FF9:
274
        /* seconds (BCD) */
275
        tmp = fromBCD(val & 0x7F);
276
        if (tmp >= 0 && tmp <= 59) {
277
            get_time(NVRAM, &tm);
278
            tm.tm_sec = tmp;
279
            set_time(NVRAM, &tm);
280
        }
281
        if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
282
            if (val & 0x80) {
283
                NVRAM->stop_time = time(NULL);
284
            } else {
285
                NVRAM->time_offset += NVRAM->stop_time - time(NULL);
286
                NVRAM->stop_time = 0;
287
            }
288
        }
289
        NVRAM->buffer[0x1FF9] = val & 0x80;
290
        break;
291
    case 0x1FFA:
292
        /* minutes (BCD) */
293
        tmp = fromBCD(val & 0x7F);
294
        if (tmp >= 0 && tmp <= 59) {
295
            get_time(NVRAM, &tm);
296
            tm.tm_min = tmp;
297
            set_time(NVRAM, &tm);
298
        }
299
        break;
300
    case 0x1FFB:
301
        /* hours (BCD) */
302
        tmp = fromBCD(val & 0x3F);
303
        if (tmp >= 0 && tmp <= 23) {
304
            get_time(NVRAM, &tm);
305
            tm.tm_hour = tmp;
306
            set_time(NVRAM, &tm);
307
        }
308
        break;
309
    case 0x1FFC:
310
        /* day of the week / century */
311
        tmp = fromBCD(val & 0x07);
312
        get_time(NVRAM, &tm);
313
        tm.tm_wday = tmp;
314
        set_time(NVRAM, &tm);
315
        NVRAM->buffer[0x1FFC] = val & 0x40;
316
        break;
317
    case 0x1FFD:
318
        /* date */
319
        tmp = fromBCD(val & 0x1F);
320
        if (tmp != 0) {
321
            get_time(NVRAM, &tm);
322
            tm.tm_mday = tmp;
323
            set_time(NVRAM, &tm);
324
        }
325
        break;
326
    case 0x1FFE:
327
        /* month */
328
        tmp = fromBCD(val & 0x1F);
329
        if (tmp >= 1 && tmp <= 12) {
330
            get_time(NVRAM, &tm);
331
            tm.tm_mon = tmp - 1;
332
            set_time(NVRAM, &tm);
333
        }
334
        break;
335
    case 0x1FFF:
336
        /* year */
337
        tmp = fromBCD(val);
338
        if (tmp >= 0 && tmp <= 99) {
339
            get_time(NVRAM, &tm);
340
            if (NVRAM->type == 8)
341
                tm.tm_year = fromBCD(val) + 68; // Base year is 1968
342
            else
343
                tm.tm_year = fromBCD(val);
344
            set_time(NVRAM, &tm);
345
        }
346
        break;
347
    default:
348
        /* Check lock registers state */
349
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
350
            break;
351
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
352
            break;
353
    do_write:
354
        if (addr < NVRAM->size) {
355
            NVRAM->buffer[addr] = val & 0xFF;
356
        }
357
        break;
358
    }
359
}
360

    
361
uint32_t m48t59_read (void *opaque, uint32_t addr)
362
{
363
    m48t59_t *NVRAM = opaque;
364
    struct tm tm;
365
    uint32_t retval = 0xFF;
366

    
367
    if (NVRAM->type == 8 &&
368
        (addr >= 0x1ff0 && addr <= 0x1ff7))
369
        goto do_read;
370
    switch (addr) {
371
    case 0x1FF0:
372
        /* flags register */
373
        goto do_read;
374
    case 0x1FF1:
375
        /* unused */
376
        retval = 0;
377
        break;
378
    case 0x1FF2:
379
        /* alarm seconds */
380
        goto do_read;
381
    case 0x1FF3:
382
        /* alarm minutes */
383
        goto do_read;
384
    case 0x1FF4:
385
        /* alarm hours */
386
        goto do_read;
387
    case 0x1FF5:
388
        /* alarm date */
389
        goto do_read;
390
    case 0x1FF6:
391
        /* interrupts */
392
        goto do_read;
393
    case 0x1FF7:
394
        /* A read resets the watchdog */
395
        set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
396
        goto do_read;
397
    case 0x1FF8:
398
        /* control */
399
        goto do_read;
400
    case 0x1FF9:
401
        /* seconds (BCD) */
402
        get_time(NVRAM, &tm);
403
        retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
404
        break;
405
    case 0x1FFA:
406
        /* minutes (BCD) */
407
        get_time(NVRAM, &tm);
408
        retval = toBCD(tm.tm_min);
409
        break;
410
    case 0x1FFB:
411
        /* hours (BCD) */
412
        get_time(NVRAM, &tm);
413
        retval = toBCD(tm.tm_hour);
414
        break;
415
    case 0x1FFC:
416
        /* day of the week / century */
417
        get_time(NVRAM, &tm);
418
        retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
419
        break;
420
    case 0x1FFD:
421
        /* date */
422
        get_time(NVRAM, &tm);
423
        retval = toBCD(tm.tm_mday);
424
        break;
425
    case 0x1FFE:
426
        /* month */
427
        get_time(NVRAM, &tm);
428
        retval = toBCD(tm.tm_mon + 1);
429
        break;
430
    case 0x1FFF:
431
        /* year */
432
        get_time(NVRAM, &tm);
433
        if (NVRAM->type == 8)
434
            retval = toBCD(tm.tm_year - 68); // Base year is 1968
435
        else
436
            retval = toBCD(tm.tm_year);
437
        break;
438
    default:
439
        /* Check lock registers state */
440
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
441
            break;
442
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
443
            break;
444
    do_read:
445
        if (addr < NVRAM->size) {
446
            retval = NVRAM->buffer[addr];
447
        }
448
        break;
449
    }
450
    if (addr > 0x1FF9 && addr < 0x2000)
451
        NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
452

    
453
    return retval;
454
}
455

    
456
void m48t59_set_addr (void *opaque, uint32_t addr)
457
{
458
    m48t59_t *NVRAM = opaque;
459

    
460
    NVRAM->addr = addr;
461
}
462

    
463
void m48t59_toggle_lock (void *opaque, int lock)
464
{
465
    m48t59_t *NVRAM = opaque;
466

    
467
    NVRAM->lock ^= 1 << lock;
468
}
469

    
470
/* IO access to NVRAM */
471
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
472
{
473
    m48t59_t *NVRAM = opaque;
474

    
475
    addr -= NVRAM->io_base;
476
    NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val);
477
    switch (addr) {
478
    case 0:
479
        NVRAM->addr &= ~0x00FF;
480
        NVRAM->addr |= val;
481
        break;
482
    case 1:
483
        NVRAM->addr &= ~0xFF00;
484
        NVRAM->addr |= val << 8;
485
        break;
486
    case 3:
487
        m48t59_write(NVRAM, val, NVRAM->addr);
488
        NVRAM->addr = 0x0000;
489
        break;
490
    default:
491
        break;
492
    }
493
}
494

    
495
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
496
{
497
    m48t59_t *NVRAM = opaque;
498
    uint32_t retval;
499

    
500
    addr -= NVRAM->io_base;
501
    switch (addr) {
502
    case 3:
503
        retval = m48t59_read(NVRAM, NVRAM->addr);
504
        break;
505
    default:
506
        retval = -1;
507
        break;
508
    }
509
    NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
510

    
511
    return retval;
512
}
513

    
514
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
515
{
516
    m48t59_t *NVRAM = opaque;
517

    
518
    addr -= NVRAM->mem_base;
519
    m48t59_write(NVRAM, addr, value & 0xff);
520
}
521

    
522
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
523
{
524
    m48t59_t *NVRAM = opaque;
525

    
526
    addr -= NVRAM->mem_base;
527
    m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
528
    m48t59_write(NVRAM, addr + 1, value & 0xff);
529
}
530

    
531
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
532
{
533
    m48t59_t *NVRAM = opaque;
534

    
535
    addr -= NVRAM->mem_base;
536
    m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
537
    m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
538
    m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
539
    m48t59_write(NVRAM, addr + 3, value & 0xff);
540
}
541

    
542
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
543
{
544
    m48t59_t *NVRAM = opaque;
545
    uint32_t retval;
546

    
547
    addr -= NVRAM->mem_base;
548
    retval = m48t59_read(NVRAM, addr);
549
    return retval;
550
}
551

    
552
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
553
{
554
    m48t59_t *NVRAM = opaque;
555
    uint32_t retval;
556

    
557
    addr -= NVRAM->mem_base;
558
    retval = m48t59_read(NVRAM, addr) << 8;
559
    retval |= m48t59_read(NVRAM, addr + 1);
560
    return retval;
561
}
562

    
563
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
564
{
565
    m48t59_t *NVRAM = opaque;
566
    uint32_t retval;
567

    
568
    addr -= NVRAM->mem_base;
569
    retval = m48t59_read(NVRAM, addr) << 24;
570
    retval |= m48t59_read(NVRAM, addr + 1) << 16;
571
    retval |= m48t59_read(NVRAM, addr + 2) << 8;
572
    retval |= m48t59_read(NVRAM, addr + 3);
573
    return retval;
574
}
575

    
576
static CPUWriteMemoryFunc *nvram_write[] = {
577
    &nvram_writeb,
578
    &nvram_writew,
579
    &nvram_writel,
580
};
581

    
582
static CPUReadMemoryFunc *nvram_read[] = {
583
    &nvram_readb,
584
    &nvram_readw,
585
    &nvram_readl,
586
};
587

    
588
static void m48t59_save(QEMUFile *f, void *opaque)
589
{
590
    m48t59_t *s = opaque;
591

    
592
    qemu_put_8s(f, &s->lock);
593
    qemu_put_be16s(f, &s->addr);
594
    qemu_put_buffer(f, s->buffer, s->size);
595
}
596

    
597
static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
598
{
599
    m48t59_t *s = opaque;
600

    
601
    if (version_id != 1)
602
        return -EINVAL;
603

    
604
    qemu_get_8s(f, &s->lock);
605
    qemu_get_be16s(f, &s->addr);
606
    qemu_get_buffer(f, s->buffer, s->size);
607

    
608
    return 0;
609
}
610

    
611
static void m48t59_reset(void *opaque)
612
{
613
    m48t59_t *NVRAM = opaque;
614

    
615
    if (NVRAM->alrm_timer != NULL)
616
        qemu_del_timer(NVRAM->alrm_timer);
617

    
618
    if (NVRAM->wd_timer != NULL)
619
        qemu_del_timer(NVRAM->wd_timer);
620
}
621

    
622
/* Initialisation routine */
623
m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
624
                       uint32_t io_base, uint16_t size,
625
                       int type)
626
{
627
    m48t59_t *s;
628
    target_phys_addr_t save_base;
629

    
630
    s = qemu_mallocz(sizeof(m48t59_t));
631
    if (!s)
632
        return NULL;
633
    s->buffer = qemu_mallocz(size);
634
    if (!s->buffer) {
635
        qemu_free(s);
636
        return NULL;
637
    }
638
    s->IRQ = IRQ;
639
    s->size = size;
640
    s->mem_base = mem_base;
641
    s->io_base = io_base;
642
    s->addr = 0;
643
    s->type = type;
644
    if (io_base != 0) {
645
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
646
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
647
    }
648
    if (mem_base != 0) {
649
        s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
650
        cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
651
    }
652
    if (type == 59) {
653
        s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
654
        s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
655
    }
656
    s->lock = 0;
657

    
658
    qemu_register_reset(m48t59_reset, s);
659
    save_base = mem_base ? mem_base : io_base;
660
    register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
661

    
662
    return s;
663
}