Statistics
| Branch: | Revision:

root / hw / musicpal.c @ b8c18e4c

History | View | Annotate | Download (41.1 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "hw.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_MISC_BASE            0x80002000
24
#define MP_MISC_SIZE            0x00001000
25

    
26
#define MP_ETH_BASE             0x80008000
27
#define MP_ETH_SIZE             0x00001000
28

    
29
#define MP_WLAN_BASE            0x8000C000
30
#define MP_WLAN_SIZE            0x00000800
31

    
32
#define MP_UART1_BASE           0x8000C840
33
#define MP_UART2_BASE           0x8000C940
34

    
35
#define MP_GPIO_BASE            0x8000D000
36
#define MP_GPIO_SIZE            0x00001000
37

    
38
#define MP_FLASHCFG_BASE        0x90006000
39
#define MP_FLASHCFG_SIZE        0x00001000
40

    
41
#define MP_AUDIO_BASE           0x90007000
42
#define MP_AUDIO_SIZE           0x00001000
43

    
44
#define MP_PIC_BASE             0x90008000
45
#define MP_PIC_SIZE             0x00001000
46

    
47
#define MP_PIT_BASE             0x90009000
48
#define MP_PIT_SIZE             0x00001000
49

    
50
#define MP_LCD_BASE             0x9000c000
51
#define MP_LCD_SIZE             0x00001000
52

    
53
#define MP_SRAM_BASE            0xC0000000
54
#define MP_SRAM_SIZE            0x00020000
55

    
56
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
57
#define MP_FLASH_SIZE_MAX       32*1024*1024
58

    
59
#define MP_TIMER1_IRQ           4
60
/* ... */
61
#define MP_TIMER4_IRQ           7
62
#define MP_EHCI_IRQ             8
63
#define MP_ETH_IRQ              9
64
#define MP_UART1_IRQ            11
65
#define MP_UART2_IRQ            11
66
#define MP_GPIO_IRQ             12
67
#define MP_RTC_IRQ              28
68
#define MP_AUDIO_IRQ            30
69

    
70
static uint32_t gpio_in_state = 0xffffffff;
71
static uint32_t gpio_isr;
72
static uint32_t gpio_out_state;
73
static ram_addr_t sram_off;
74

    
75
/* Address conversion helpers */
76
static void *target2host_addr(uint32_t addr)
77
{
78
    if (addr < MP_SRAM_BASE) {
79
        if (addr >= MP_RAM_DEFAULT_SIZE)
80
            return NULL;
81
        return (void *)(phys_ram_base + addr);
82
    } else {
83
        if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
84
            return NULL;
85
        return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
86
    }
87
}
88

    
89
static uint32_t host2target_addr(void *addr)
90
{
91
    if (addr < ((void *)phys_ram_base) + sram_off)
92
        return (unsigned long)addr - (unsigned long)phys_ram_base;
93
    else
94
        return (unsigned long)addr - (unsigned long)phys_ram_base -
95
            sram_off + MP_SRAM_BASE;
96
}
97

    
98

    
99
typedef enum i2c_state {
100
    STOPPED = 0,
101
    INITIALIZING,
102
    SENDING_BIT7,
103
    SENDING_BIT6,
104
    SENDING_BIT5,
105
    SENDING_BIT4,
106
    SENDING_BIT3,
107
    SENDING_BIT2,
108
    SENDING_BIT1,
109
    SENDING_BIT0,
110
    WAITING_FOR_ACK,
111
    RECEIVING_BIT7,
112
    RECEIVING_BIT6,
113
    RECEIVING_BIT5,
114
    RECEIVING_BIT4,
115
    RECEIVING_BIT3,
116
    RECEIVING_BIT2,
117
    RECEIVING_BIT1,
118
    RECEIVING_BIT0,
119
    SENDING_ACK
120
} i2c_state;
121

    
122
typedef struct i2c_interface {
123
    i2c_bus *bus;
124
    i2c_state state;
125
    int last_data;
126
    int last_clock;
127
    uint8_t buffer;
128
    int current_addr;
129
} i2c_interface;
130

    
131
static void i2c_enter_stop(i2c_interface *i2c)
132
{
133
    if (i2c->current_addr >= 0)
134
        i2c_end_transfer(i2c->bus);
135
    i2c->current_addr = -1;
136
    i2c->state = STOPPED;
137
}
138

    
139
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
140
{
141
    if (!i2c)
142
        return;
143

    
144
    switch (i2c->state) {
145
    case STOPPED:
146
        if (data == 0 && i2c->last_data == 1 && clock == 1)
147
            i2c->state = INITIALIZING;
148
        break;
149

    
150
    case INITIALIZING:
151
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
152
            i2c->state = SENDING_BIT7;
153
        else
154
            i2c_enter_stop(i2c);
155
        break;
156

    
157
    case SENDING_BIT7 ... SENDING_BIT0:
158
        if (clock == 0 && i2c->last_clock == 1) {
159
            i2c->buffer = (i2c->buffer << 1) | data;
160
            i2c->state++; /* will end up in WAITING_FOR_ACK */
161
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
162
            i2c_enter_stop(i2c);
163
        break;
164

    
165
    case WAITING_FOR_ACK:
166
        if (clock == 0 && i2c->last_clock == 1) {
167
            if (i2c->current_addr < 0) {
168
                i2c->current_addr = i2c->buffer;
169
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
170
                                   i2c->buffer & 1);
171
            } else
172
                i2c_send(i2c->bus, i2c->buffer);
173
            if (i2c->current_addr & 1) {
174
                i2c->state = RECEIVING_BIT7;
175
                i2c->buffer = i2c_recv(i2c->bus);
176
            } else
177
                i2c->state = SENDING_BIT7;
178
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
179
            i2c_enter_stop(i2c);
180
        break;
181

    
182
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
183
        if (clock == 0 && i2c->last_clock == 1) {
184
            i2c->state++; /* will end up in SENDING_ACK */
185
            i2c->buffer <<= 1;
186
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
187
            i2c_enter_stop(i2c);
188
        break;
189

    
190
    case SENDING_ACK:
191
        if (clock == 0 && i2c->last_clock == 1) {
192
            i2c->state = RECEIVING_BIT7;
193
            if (data == 0)
194
                i2c->buffer = i2c_recv(i2c->bus);
195
            else
196
                i2c_nack(i2c->bus);
197
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
198
            i2c_enter_stop(i2c);
199
        break;
200
    }
201

    
202
    i2c->last_data = data;
203
    i2c->last_clock = clock;
204
}
205

    
206
static int i2c_get_data(i2c_interface *i2c)
207
{
208
    if (!i2c)
209
        return 0;
210

    
211
    switch (i2c->state) {
212
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
213
        return (i2c->buffer >> 7);
214

    
215
    case WAITING_FOR_ACK:
216
    default:
217
        return 0;
218
    }
219
}
220

    
221
static i2c_interface *mixer_i2c;
222

    
223
#ifdef HAS_AUDIO
224

    
225
/* Audio register offsets */
226
#define MP_AUDIO_PLAYBACK_MODE  0x00
227
#define MP_AUDIO_CLOCK_DIV      0x18
228
#define MP_AUDIO_IRQ_STATUS     0x20
229
#define MP_AUDIO_IRQ_ENABLE     0x24
230
#define MP_AUDIO_TX_START_LO    0x28
231
#define MP_AUDIO_TX_THRESHOLD   0x2C
232
#define MP_AUDIO_TX_STATUS      0x38
233
#define MP_AUDIO_TX_START_HI    0x40
234

    
235
/* Status register and IRQ enable bits */
236
#define MP_AUDIO_TX_HALF        (1 << 6)
237
#define MP_AUDIO_TX_FULL        (1 << 7)
238

    
239
/* Playback mode bits */
240
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
241
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
242
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
243
#define MP_AUDIO_MONO           (1 << 14)
244

    
245
/* Wolfson 8750 I2C address */
246
#define MP_WM_ADDR              0x34
247

    
248
static const char audio_name[] = "mv88w8618";
249

    
250
typedef struct musicpal_audio_state {
251
    qemu_irq irq;
252
    uint32_t playback_mode;
253
    uint32_t status;
254
    uint32_t irq_enable;
255
    unsigned long phys_buf;
256
    int8_t *target_buffer;
257
    unsigned int threshold;
258
    unsigned int play_pos;
259
    unsigned int last_free;
260
    uint32_t clock_div;
261
    i2c_slave *wm;
262
} musicpal_audio_state;
263

    
264
static void audio_callback(void *opaque, int free_out, int free_in)
265
{
266
    musicpal_audio_state *s = opaque;
267
    int16_t *codec_buffer;
268
    int8_t *mem_buffer;
269
    int pos, block_size;
270

    
271
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
272
        return;
273

    
274
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
275
        free_out <<= 1;
276

    
277
    if (!(s->playback_mode & MP_AUDIO_MONO))
278
        free_out <<= 1;
279

    
280
    block_size = s->threshold/2;
281
    if (free_out - s->last_free < block_size)
282
        return;
283

    
284
    mem_buffer = s->target_buffer + s->play_pos;
285
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
286
        if (s->playback_mode & MP_AUDIO_MONO) {
287
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
288
            for (pos = 0; pos < block_size; pos += 2) {
289
                *codec_buffer++ = *(int16_t *)mem_buffer;
290
                *codec_buffer++ = *(int16_t *)mem_buffer;
291
                mem_buffer += 2;
292
            }
293
        } else
294
            memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
295
                   (uint32_t *)mem_buffer, block_size);
296
    } else {
297
        if (s->playback_mode & MP_AUDIO_MONO) {
298
            codec_buffer = wm8750_dac_buffer(s->wm, block_size);
299
            for (pos = 0; pos < block_size; pos++) {
300
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
301
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
302
            }
303
        } else {
304
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
305
            for (pos = 0; pos < block_size; pos += 2) {
306
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
307
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
308
            }
309
        }
310
    }
311
    wm8750_dac_commit(s->wm);
312

    
313
    s->last_free = free_out - block_size;
314

    
315
    if (s->play_pos == 0) {
316
        s->status |= MP_AUDIO_TX_HALF;
317
        s->play_pos = block_size;
318
    } else {
319
        s->status |= MP_AUDIO_TX_FULL;
320
        s->play_pos = 0;
321
    }
322

    
323
    if (s->status & s->irq_enable)
324
        qemu_irq_raise(s->irq);
325
}
326

    
327
static void musicpal_audio_clock_update(musicpal_audio_state *s)
328
{
329
    int rate;
330

    
331
    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
332
        rate = 24576000 / 64; /* 24.576MHz */
333
    else
334
        rate = 11289600 / 64; /* 11.2896MHz */
335

    
336
    rate /= ((s->clock_div >> 8) & 0xff) + 1;
337

    
338
    wm8750_set_bclk_in(s->wm, rate);
339
}
340

    
341
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
342
{
343
    musicpal_audio_state *s = opaque;
344

    
345
    switch (offset) {
346
    case MP_AUDIO_PLAYBACK_MODE:
347
        return s->playback_mode;
348

    
349
    case MP_AUDIO_CLOCK_DIV:
350
        return s->clock_div;
351

    
352
    case MP_AUDIO_IRQ_STATUS:
353
        return s->status;
354

    
355
    case MP_AUDIO_IRQ_ENABLE:
356
        return s->irq_enable;
357

    
358
    case MP_AUDIO_TX_STATUS:
359
        return s->play_pos >> 2;
360

    
361
    default:
362
        return 0;
363
    }
364
}
365

    
366
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
367
                                 uint32_t value)
368
{
369
    musicpal_audio_state *s = opaque;
370

    
371
    switch (offset) {
372
    case MP_AUDIO_PLAYBACK_MODE:
373
        if (value & MP_AUDIO_PLAYBACK_EN &&
374
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
375
            s->status = 0;
376
            s->last_free = 0;
377
            s->play_pos = 0;
378
        }
379
        s->playback_mode = value;
380
        musicpal_audio_clock_update(s);
381
        break;
382

    
383
    case MP_AUDIO_CLOCK_DIV:
384
        s->clock_div = value;
385
        s->last_free = 0;
386
        s->play_pos = 0;
387
        musicpal_audio_clock_update(s);
388
        break;
389

    
390
    case MP_AUDIO_IRQ_STATUS:
391
        s->status &= ~value;
392
        break;
393

    
394
    case MP_AUDIO_IRQ_ENABLE:
395
        s->irq_enable = value;
396
        if (s->status & s->irq_enable)
397
            qemu_irq_raise(s->irq);
398
        break;
399

    
400
    case MP_AUDIO_TX_START_LO:
401
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
402
        s->target_buffer = target2host_addr(s->phys_buf);
403
        s->play_pos = 0;
404
        s->last_free = 0;
405
        break;
406

    
407
    case MP_AUDIO_TX_THRESHOLD:
408
        s->threshold = (value + 1) * 4;
409
        break;
410

    
411
    case MP_AUDIO_TX_START_HI:
412
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
413
        s->target_buffer = target2host_addr(s->phys_buf);
414
        s->play_pos = 0;
415
        s->last_free = 0;
416
        break;
417
    }
418
}
419

    
420
static void musicpal_audio_reset(void *opaque)
421
{
422
    musicpal_audio_state *s = opaque;
423

    
424
    s->playback_mode = 0;
425
    s->status = 0;
426
    s->irq_enable = 0;
427
}
428

    
429
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
430
    musicpal_audio_read,
431
    musicpal_audio_read,
432
    musicpal_audio_read
433
};
434

    
435
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
436
    musicpal_audio_write,
437
    musicpal_audio_write,
438
    musicpal_audio_write
439
};
440

    
441
static i2c_interface *musicpal_audio_init(qemu_irq irq)
442
{
443
    AudioState *audio;
444
    musicpal_audio_state *s;
445
    i2c_interface *i2c;
446
    int iomemtype;
447

    
448
    audio = AUD_init();
449
    if (!audio) {
450
        AUD_log(audio_name, "No audio state\n");
451
        return NULL;
452
    }
453

    
454
    s = qemu_mallocz(sizeof(musicpal_audio_state));
455
    s->irq = irq;
456

    
457
    i2c = qemu_mallocz(sizeof(i2c_interface));
458
    i2c->bus = i2c_init_bus();
459
    i2c->current_addr = -1;
460

    
461
    s->wm = wm8750_init(i2c->bus, audio);
462
    if (!s->wm)
463
        return NULL;
464
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
465
    wm8750_data_req_set(s->wm, audio_callback, s);
466

    
467
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
468
                       musicpal_audio_writefn, s);
469
    cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
470

    
471
    qemu_register_reset(musicpal_audio_reset, s);
472

    
473
    return i2c;
474
}
475
#else  /* !HAS_AUDIO */
476
static i2c_interface *musicpal_audio_init(qemu_irq irq)
477
{
478
    return NULL;
479
}
480
#endif /* !HAS_AUDIO */
481

    
482
/* Ethernet register offsets */
483
#define MP_ETH_SMIR             0x010
484
#define MP_ETH_PCXR             0x408
485
#define MP_ETH_SDCMR            0x448
486
#define MP_ETH_ICR              0x450
487
#define MP_ETH_IMR              0x458
488
#define MP_ETH_FRDP0            0x480
489
#define MP_ETH_FRDP1            0x484
490
#define MP_ETH_FRDP2            0x488
491
#define MP_ETH_FRDP3            0x48C
492
#define MP_ETH_CRDP0            0x4A0
493
#define MP_ETH_CRDP1            0x4A4
494
#define MP_ETH_CRDP2            0x4A8
495
#define MP_ETH_CRDP3            0x4AC
496
#define MP_ETH_CTDP0            0x4E0
497
#define MP_ETH_CTDP1            0x4E4
498
#define MP_ETH_CTDP2            0x4E8
499
#define MP_ETH_CTDP3            0x4EC
500

    
501
/* MII PHY access */
502
#define MP_ETH_SMIR_DATA        0x0000FFFF
503
#define MP_ETH_SMIR_ADDR        0x03FF0000
504
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
505
#define MP_ETH_SMIR_RDVALID     (1 << 27)
506

    
507
/* PHY registers */
508
#define MP_ETH_PHY1_BMSR        0x00210000
509
#define MP_ETH_PHY1_PHYSID1     0x00410000
510
#define MP_ETH_PHY1_PHYSID2     0x00610000
511

    
512
#define MP_PHY_BMSR_LINK        0x0004
513
#define MP_PHY_BMSR_AUTONEG     0x0008
514

    
515
#define MP_PHY_88E3015          0x01410E20
516

    
517
/* TX descriptor status */
518
#define MP_ETH_TX_OWN           (1 << 31)
519

    
520
/* RX descriptor status */
521
#define MP_ETH_RX_OWN           (1 << 31)
522

    
523
/* Interrupt cause/mask bits */
524
#define MP_ETH_IRQ_RX_BIT       0
525
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
526
#define MP_ETH_IRQ_TXHI_BIT     2
527
#define MP_ETH_IRQ_TXLO_BIT     3
528

    
529
/* Port config bits */
530
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
531

    
532
/* SDMA command bits */
533
#define MP_ETH_CMD_TXHI         (1 << 23)
534
#define MP_ETH_CMD_TXLO         (1 << 22)
535

    
536
typedef struct mv88w8618_tx_desc {
537
    uint32_t cmdstat;
538
    uint16_t res;
539
    uint16_t bytes;
540
    uint32_t buffer;
541
    uint32_t next;
542
} mv88w8618_tx_desc;
543

    
544
typedef struct mv88w8618_rx_desc {
545
    uint32_t cmdstat;
546
    uint16_t bytes;
547
    uint16_t buffer_size;
548
    uint32_t buffer;
549
    uint32_t next;
550
} mv88w8618_rx_desc;
551

    
552
typedef struct mv88w8618_eth_state {
553
    qemu_irq irq;
554
    uint32_t smir;
555
    uint32_t icr;
556
    uint32_t imr;
557
    int vlan_header;
558
    mv88w8618_tx_desc *tx_queue[2];
559
    mv88w8618_rx_desc *rx_queue[4];
560
    mv88w8618_rx_desc *frx_queue[4];
561
    mv88w8618_rx_desc *cur_rx[4];
562
    VLANClientState *vc;
563
} mv88w8618_eth_state;
564

    
565
static int eth_can_receive(void *opaque)
566
{
567
    return 1;
568
}
569

    
570
static void eth_receive(void *opaque, const uint8_t *buf, int size)
571
{
572
    mv88w8618_eth_state *s = opaque;
573
    mv88w8618_rx_desc *desc;
574
    int i;
575

    
576
    for (i = 0; i < 4; i++) {
577
        desc = s->cur_rx[i];
578
        if (!desc)
579
            continue;
580
        do {
581
            if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
582
                le16_to_cpu(desc->buffer_size) >= size) {
583
                memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
584
                                        s->vlan_header),
585
                       buf, size);
586
                desc->bytes = cpu_to_le16(size + s->vlan_header);
587
                desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
588
                s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
589

    
590
                s->icr |= MP_ETH_IRQ_RX;
591
                if (s->icr & s->imr)
592
                    qemu_irq_raise(s->irq);
593
                return;
594
            }
595
            desc = target2host_addr(le32_to_cpu(desc->next));
596
        } while (desc != s->rx_queue[i]);
597
    }
598
}
599

    
600
static void eth_send(mv88w8618_eth_state *s, int queue_index)
601
{
602
    mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
603

    
604
    do {
605
        if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
606
            qemu_send_packet(s->vc,
607
                             target2host_addr(le32_to_cpu(desc->buffer)),
608
                             le16_to_cpu(desc->bytes));
609
            desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
610
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
611
        }
612
        desc = target2host_addr(le32_to_cpu(desc->next));
613
    } while (desc != s->tx_queue[queue_index]);
614
}
615

    
616
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
617
{
618
    mv88w8618_eth_state *s = opaque;
619

    
620
    switch (offset) {
621
    case MP_ETH_SMIR:
622
        if (s->smir & MP_ETH_SMIR_OPCODE) {
623
            switch (s->smir & MP_ETH_SMIR_ADDR) {
624
            case MP_ETH_PHY1_BMSR:
625
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
626
                       MP_ETH_SMIR_RDVALID;
627
            case MP_ETH_PHY1_PHYSID1:
628
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
629
            case MP_ETH_PHY1_PHYSID2:
630
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
631
            default:
632
                return MP_ETH_SMIR_RDVALID;
633
            }
634
        }
635
        return 0;
636

    
637
    case MP_ETH_ICR:
638
        return s->icr;
639

    
640
    case MP_ETH_IMR:
641
        return s->imr;
642

    
643
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
644
        return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
645

    
646
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
647
        return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
648

    
649
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
650
        return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
651

    
652
    default:
653
        return 0;
654
    }
655
}
656

    
657
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
658
                                uint32_t value)
659
{
660
    mv88w8618_eth_state *s = opaque;
661

    
662
    switch (offset) {
663
    case MP_ETH_SMIR:
664
        s->smir = value;
665
        break;
666

    
667
    case MP_ETH_PCXR:
668
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
669
        break;
670

    
671
    case MP_ETH_SDCMR:
672
        if (value & MP_ETH_CMD_TXHI)
673
            eth_send(s, 1);
674
        if (value & MP_ETH_CMD_TXLO)
675
            eth_send(s, 0);
676
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
677
            qemu_irq_raise(s->irq);
678
        break;
679

    
680
    case MP_ETH_ICR:
681
        s->icr &= value;
682
        break;
683

    
684
    case MP_ETH_IMR:
685
        s->imr = value;
686
        if (s->icr & s->imr)
687
            qemu_irq_raise(s->irq);
688
        break;
689

    
690
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
691
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
692
        break;
693

    
694
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
695
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
696
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
697
        break;
698

    
699
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
700
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
701
        break;
702
    }
703
}
704

    
705
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
706
    mv88w8618_eth_read,
707
    mv88w8618_eth_read,
708
    mv88w8618_eth_read
709
};
710

    
711
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
712
    mv88w8618_eth_write,
713
    mv88w8618_eth_write,
714
    mv88w8618_eth_write
715
};
716

    
717
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
718
{
719
    mv88w8618_eth_state *s;
720
    int iomemtype;
721

    
722
    qemu_check_nic_model(nd, "mv88w8618");
723

    
724
    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
725
    s->irq = irq;
726
    s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
727
                                 eth_receive, eth_can_receive, s);
728
    iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
729
                                       mv88w8618_eth_writefn, s);
730
    cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
731
}
732

    
733
/* LCD register offsets */
734
#define MP_LCD_IRQCTRL          0x180
735
#define MP_LCD_IRQSTAT          0x184
736
#define MP_LCD_SPICTRL          0x1ac
737
#define MP_LCD_INST             0x1bc
738
#define MP_LCD_DATA             0x1c0
739

    
740
/* Mode magics */
741
#define MP_LCD_SPI_DATA         0x00100011
742
#define MP_LCD_SPI_CMD          0x00104011
743
#define MP_LCD_SPI_INVALID      0x00000000
744

    
745
/* Commmands */
746
#define MP_LCD_INST_SETPAGE0    0xB0
747
/* ... */
748
#define MP_LCD_INST_SETPAGE7    0xB7
749

    
750
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
751

    
752
typedef struct musicpal_lcd_state {
753
    uint32_t mode;
754
    uint32_t irqctrl;
755
    int page;
756
    int page_off;
757
    DisplayState *ds;
758
    uint8_t video_ram[128*64/8];
759
} musicpal_lcd_state;
760

    
761
static uint32_t lcd_brightness;
762

    
763
static uint8_t scale_lcd_color(uint8_t col)
764
{
765
    int tmp = col;
766

    
767
    switch (lcd_brightness) {
768
    case 0x00000007: /* 0 */
769
        return 0;
770

    
771
    case 0x00020000: /* 1 */
772
        return (tmp * 1) / 7;
773

    
774
    case 0x00020001: /* 2 */
775
        return (tmp * 2) / 7;
776

    
777
    case 0x00040000: /* 3 */
778
        return (tmp * 3) / 7;
779

    
780
    case 0x00010006: /* 4 */
781
        return (tmp * 4) / 7;
782

    
783
    case 0x00020005: /* 5 */
784
        return (tmp * 5) / 7;
785

    
786
    case 0x00040003: /* 6 */
787
        return (tmp * 6) / 7;
788

    
789
    case 0x00030004: /* 7 */
790
    default:
791
        return col;
792
    }
793
}
794

    
795
#define SET_LCD_PIXEL(depth, type) \
796
static inline void glue(set_lcd_pixel, depth) \
797
        (musicpal_lcd_state *s, int x, int y, type col) \
798
{ \
799
    int dx, dy; \
800
    type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
801
\
802
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
803
        for (dx = 0; dx < 3; dx++, pixel++) \
804
            *pixel = col; \
805
}
806
SET_LCD_PIXEL(8, uint8_t)
807
SET_LCD_PIXEL(16, uint16_t)
808
SET_LCD_PIXEL(32, uint32_t)
809

    
810
#include "pixel_ops.h"
811

    
812
static void lcd_refresh(void *opaque)
813
{
814
    musicpal_lcd_state *s = opaque;
815
    int x, y, col;
816

    
817
    switch (ds_get_bits_per_pixel(s->ds)) {
818
    case 0:
819
        return;
820
#define LCD_REFRESH(depth, func) \
821
    case depth: \
822
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
823
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
824
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
825
        for (x = 0; x < 128; x++) \
826
            for (y = 0; y < 64; y++) \
827
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
828
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
829
                else \
830
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
831
        break;
832
    LCD_REFRESH(8, rgb_to_pixel8)
833
    LCD_REFRESH(16, rgb_to_pixel16)
834
    LCD_REFRESH(32, (is_surface_bgr(s->ds) ? rgb_to_pixel32bgr : rgb_to_pixel32))
835
    default:
836
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
837
                  ds_get_bits_per_pixel(s->ds));
838
    }
839

    
840
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
841
}
842

    
843
static void lcd_invalidate(void *opaque)
844
{
845
}
846

    
847
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
848
{
849
    musicpal_lcd_state *s = opaque;
850

    
851
    switch (offset) {
852
    case MP_LCD_IRQCTRL:
853
        return s->irqctrl;
854

    
855
    default:
856
        return 0;
857
    }
858
}
859

    
860
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
861
                               uint32_t value)
862
{
863
    musicpal_lcd_state *s = opaque;
864

    
865
    switch (offset) {
866
    case MP_LCD_IRQCTRL:
867
        s->irqctrl = value;
868
        break;
869

    
870
    case MP_LCD_SPICTRL:
871
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
872
            s->mode = value;
873
        else
874
            s->mode = MP_LCD_SPI_INVALID;
875
        break;
876

    
877
    case MP_LCD_INST:
878
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
879
            s->page = value - MP_LCD_INST_SETPAGE0;
880
            s->page_off = 0;
881
        }
882
        break;
883

    
884
    case MP_LCD_DATA:
885
        if (s->mode == MP_LCD_SPI_CMD) {
886
            if (value >= MP_LCD_INST_SETPAGE0 &&
887
                value <= MP_LCD_INST_SETPAGE7) {
888
                s->page = value - MP_LCD_INST_SETPAGE0;
889
                s->page_off = 0;
890
            }
891
        } else if (s->mode == MP_LCD_SPI_DATA) {
892
            s->video_ram[s->page*128 + s->page_off] = value;
893
            s->page_off = (s->page_off + 1) & 127;
894
        }
895
        break;
896
    }
897
}
898

    
899
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
900
    musicpal_lcd_read,
901
    musicpal_lcd_read,
902
    musicpal_lcd_read
903
};
904

    
905
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
906
    musicpal_lcd_write,
907
    musicpal_lcd_write,
908
    musicpal_lcd_write
909
};
910

    
911
static void musicpal_lcd_init(void)
912
{
913
    musicpal_lcd_state *s;
914
    int iomemtype;
915

    
916
    s = qemu_mallocz(sizeof(musicpal_lcd_state));
917
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
918
                                       musicpal_lcd_writefn, s);
919
    cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
920

    
921
    s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
922
                                 NULL, NULL, s);
923
    qemu_console_resize(s->ds, 128*3, 64*3);
924
}
925

    
926
/* PIC register offsets */
927
#define MP_PIC_STATUS           0x00
928
#define MP_PIC_ENABLE_SET       0x08
929
#define MP_PIC_ENABLE_CLR       0x0C
930

    
931
typedef struct mv88w8618_pic_state
932
{
933
    uint32_t level;
934
    uint32_t enabled;
935
    qemu_irq parent_irq;
936
} mv88w8618_pic_state;
937

    
938
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
939
{
940
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
941
}
942

    
943
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
944
{
945
    mv88w8618_pic_state *s = opaque;
946

    
947
    if (level)
948
        s->level |= 1 << irq;
949
    else
950
        s->level &= ~(1 << irq);
951
    mv88w8618_pic_update(s);
952
}
953

    
954
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
955
{
956
    mv88w8618_pic_state *s = opaque;
957

    
958
    switch (offset) {
959
    case MP_PIC_STATUS:
960
        return s->level & s->enabled;
961

    
962
    default:
963
        return 0;
964
    }
965
}
966

    
967
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
968
                                uint32_t value)
969
{
970
    mv88w8618_pic_state *s = opaque;
971

    
972
    switch (offset) {
973
    case MP_PIC_ENABLE_SET:
974
        s->enabled |= value;
975
        break;
976

    
977
    case MP_PIC_ENABLE_CLR:
978
        s->enabled &= ~value;
979
        s->level &= ~value;
980
        break;
981
    }
982
    mv88w8618_pic_update(s);
983
}
984

    
985
static void mv88w8618_pic_reset(void *opaque)
986
{
987
    mv88w8618_pic_state *s = opaque;
988

    
989
    s->level = 0;
990
    s->enabled = 0;
991
}
992

    
993
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
994
    mv88w8618_pic_read,
995
    mv88w8618_pic_read,
996
    mv88w8618_pic_read
997
};
998

    
999
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1000
    mv88w8618_pic_write,
1001
    mv88w8618_pic_write,
1002
    mv88w8618_pic_write
1003
};
1004

    
1005
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1006
{
1007
    mv88w8618_pic_state *s;
1008
    int iomemtype;
1009
    qemu_irq *qi;
1010

    
1011
    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1012
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1013
    s->parent_irq = parent_irq;
1014
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1015
                                       mv88w8618_pic_writefn, s);
1016
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1017

    
1018
    qemu_register_reset(mv88w8618_pic_reset, s);
1019

    
1020
    return qi;
1021
}
1022

    
1023
/* PIT register offsets */
1024
#define MP_PIT_TIMER1_LENGTH    0x00
1025
/* ... */
1026
#define MP_PIT_TIMER4_LENGTH    0x0C
1027
#define MP_PIT_CONTROL          0x10
1028
#define MP_PIT_TIMER1_VALUE     0x14
1029
/* ... */
1030
#define MP_PIT_TIMER4_VALUE     0x20
1031
#define MP_BOARD_RESET          0x34
1032

    
1033
/* Magic board reset value (probably some watchdog behind it) */
1034
#define MP_BOARD_RESET_MAGIC    0x10000
1035

    
1036
typedef struct mv88w8618_timer_state {
1037
    ptimer_state *timer;
1038
    uint32_t limit;
1039
    int freq;
1040
    qemu_irq irq;
1041
} mv88w8618_timer_state;
1042

    
1043
typedef struct mv88w8618_pit_state {
1044
    void *timer[4];
1045
    uint32_t control;
1046
} mv88w8618_pit_state;
1047

    
1048
static void mv88w8618_timer_tick(void *opaque)
1049
{
1050
    mv88w8618_timer_state *s = opaque;
1051

    
1052
    qemu_irq_raise(s->irq);
1053
}
1054

    
1055
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1056
{
1057
    mv88w8618_timer_state *s;
1058
    QEMUBH *bh;
1059

    
1060
    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1061
    s->irq = irq;
1062
    s->freq = freq;
1063

    
1064
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1065
    s->timer = ptimer_init(bh);
1066

    
1067
    return s;
1068
}
1069

    
1070
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1071
{
1072
    mv88w8618_pit_state *s = opaque;
1073
    mv88w8618_timer_state *t;
1074

    
1075
    switch (offset) {
1076
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1077
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1078
        return ptimer_get_count(t->timer);
1079

    
1080
    default:
1081
        return 0;
1082
    }
1083
}
1084

    
1085
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1086
                                uint32_t value)
1087
{
1088
    mv88w8618_pit_state *s = opaque;
1089
    mv88w8618_timer_state *t;
1090
    int i;
1091

    
1092
    switch (offset) {
1093
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1094
        t = s->timer[offset >> 2];
1095
        t->limit = value;
1096
        ptimer_set_limit(t->timer, t->limit, 1);
1097
        break;
1098

    
1099
    case MP_PIT_CONTROL:
1100
        for (i = 0; i < 4; i++) {
1101
            if (value & 0xf) {
1102
                t = s->timer[i];
1103
                ptimer_set_limit(t->timer, t->limit, 0);
1104
                ptimer_set_freq(t->timer, t->freq);
1105
                ptimer_run(t->timer, 0);
1106
            }
1107
            value >>= 4;
1108
        }
1109
        break;
1110

    
1111
    case MP_BOARD_RESET:
1112
        if (value == MP_BOARD_RESET_MAGIC)
1113
            qemu_system_reset_request();
1114
        break;
1115
    }
1116
}
1117

    
1118
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1119
    mv88w8618_pit_read,
1120
    mv88w8618_pit_read,
1121
    mv88w8618_pit_read
1122
};
1123

    
1124
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1125
    mv88w8618_pit_write,
1126
    mv88w8618_pit_write,
1127
    mv88w8618_pit_write
1128
};
1129

    
1130
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1131
{
1132
    int iomemtype;
1133
    mv88w8618_pit_state *s;
1134

    
1135
    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1136

    
1137
    /* Letting them all run at 1 MHz is likely just a pragmatic
1138
     * simplification. */
1139
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1140
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1141
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1142
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1143

    
1144
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1145
                                       mv88w8618_pit_writefn, s);
1146
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1147
}
1148

    
1149
/* Flash config register offsets */
1150
#define MP_FLASHCFG_CFGR0    0x04
1151

    
1152
typedef struct mv88w8618_flashcfg_state {
1153
    uint32_t cfgr0;
1154
} mv88w8618_flashcfg_state;
1155

    
1156
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1157
                                        target_phys_addr_t offset)
1158
{
1159
    mv88w8618_flashcfg_state *s = opaque;
1160

    
1161
    switch (offset) {
1162
    case MP_FLASHCFG_CFGR0:
1163
        return s->cfgr0;
1164

    
1165
    default:
1166
        return 0;
1167
    }
1168
}
1169

    
1170
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1171
                                     uint32_t value)
1172
{
1173
    mv88w8618_flashcfg_state *s = opaque;
1174

    
1175
    switch (offset) {
1176
    case MP_FLASHCFG_CFGR0:
1177
        s->cfgr0 = value;
1178
        break;
1179
    }
1180
}
1181

    
1182
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1183
    mv88w8618_flashcfg_read,
1184
    mv88w8618_flashcfg_read,
1185
    mv88w8618_flashcfg_read
1186
};
1187

    
1188
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1189
    mv88w8618_flashcfg_write,
1190
    mv88w8618_flashcfg_write,
1191
    mv88w8618_flashcfg_write
1192
};
1193

    
1194
static void mv88w8618_flashcfg_init(uint32_t base)
1195
{
1196
    int iomemtype;
1197
    mv88w8618_flashcfg_state *s;
1198

    
1199
    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1200

    
1201
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1202
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1203
                       mv88w8618_flashcfg_writefn, s);
1204
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1205
}
1206

    
1207
/* Misc register offsets */
1208
#define MP_MISC_BOARD_REVISION  0x18
1209

    
1210
#define MP_BOARD_REVISION       0x31
1211

    
1212
static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1213
{
1214
    switch (offset) {
1215
    case MP_MISC_BOARD_REVISION:
1216
        return MP_BOARD_REVISION;
1217

    
1218
    default:
1219
        return 0;
1220
    }
1221
}
1222

    
1223
static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1224
                                uint32_t value)
1225
{
1226
}
1227

    
1228
static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1229
    musicpal_misc_read,
1230
    musicpal_misc_read,
1231
    musicpal_misc_read,
1232
};
1233

    
1234
static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1235
    musicpal_misc_write,
1236
    musicpal_misc_write,
1237
    musicpal_misc_write,
1238
};
1239

    
1240
static void musicpal_misc_init(void)
1241
{
1242
    int iomemtype;
1243

    
1244
    iomemtype = cpu_register_io_memory(0, musicpal_misc_readfn,
1245
                                       musicpal_misc_writefn, NULL);
1246
    cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1247
}
1248

    
1249
/* WLAN register offsets */
1250
#define MP_WLAN_MAGIC1          0x11c
1251
#define MP_WLAN_MAGIC2          0x124
1252

    
1253
static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1254
{
1255
    switch (offset) {
1256
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1257
     * from the original Freecom firmware. */
1258
    case MP_WLAN_MAGIC1:
1259
        return ~3;
1260
    case MP_WLAN_MAGIC2:
1261
        return -1;
1262

    
1263
    default:
1264
        return 0;
1265
    }
1266
}
1267

    
1268
static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1269
                                 uint32_t value)
1270
{
1271
}
1272

    
1273
static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1274
    mv88w8618_wlan_read,
1275
    mv88w8618_wlan_read,
1276
    mv88w8618_wlan_read,
1277
};
1278

    
1279
static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1280
    mv88w8618_wlan_write,
1281
    mv88w8618_wlan_write,
1282
    mv88w8618_wlan_write,
1283
};
1284

    
1285
static void mv88w8618_wlan_init(uint32_t base)
1286
{
1287
    int iomemtype;
1288

    
1289
    iomemtype = cpu_register_io_memory(0, mv88w8618_wlan_readfn,
1290
                                       mv88w8618_wlan_writefn, NULL);
1291
    cpu_register_physical_memory(base, MP_WLAN_SIZE, iomemtype);
1292
}
1293

    
1294
/* GPIO register offsets */
1295
#define MP_GPIO_OE_LO           0x008
1296
#define MP_GPIO_OUT_LO          0x00c
1297
#define MP_GPIO_IN_LO           0x010
1298
#define MP_GPIO_ISR_LO          0x020
1299
#define MP_GPIO_OE_HI           0x508
1300
#define MP_GPIO_OUT_HI          0x50c
1301
#define MP_GPIO_IN_HI           0x510
1302
#define MP_GPIO_ISR_HI          0x520
1303

    
1304
/* GPIO bits & masks */
1305
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1306
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1307
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1308
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1309
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1310
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1311
#define MP_GPIO_BTN_MENU        (1 << 20)
1312
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1313
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1314
#define MP_GPIO_I2C_DATA_BIT    29
1315
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1316
#define MP_GPIO_I2C_CLOCK_BIT   30
1317

    
1318
/* LCD brightness bits in GPIO_OE_HI */
1319
#define MP_OE_LCD_BRIGHTNESS    0x0007
1320

    
1321
static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1322
{
1323
    switch (offset) {
1324
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1325
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1326

    
1327
    case MP_GPIO_OUT_LO:
1328
        return gpio_out_state & 0xFFFF;
1329
    case MP_GPIO_OUT_HI:
1330
        return gpio_out_state >> 16;
1331

    
1332
    case MP_GPIO_IN_LO:
1333
        return gpio_in_state & 0xFFFF;
1334
    case MP_GPIO_IN_HI:
1335
        /* Update received I2C data */
1336
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1337
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1338
        return gpio_in_state >> 16;
1339

    
1340
    case MP_GPIO_ISR_LO:
1341
        return gpio_isr & 0xFFFF;
1342
    case MP_GPIO_ISR_HI:
1343
        return gpio_isr >> 16;
1344

    
1345
    default:
1346
        return 0;
1347
    }
1348
}
1349

    
1350
static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1351
                                uint32_t value)
1352
{
1353
    switch (offset) {
1354
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1355
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1356
                         (value & MP_OE_LCD_BRIGHTNESS);
1357
        break;
1358

    
1359
    case MP_GPIO_OUT_LO:
1360
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1361
        break;
1362
    case MP_GPIO_OUT_HI:
1363
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1364
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1365
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1366
        i2c_state_update(mixer_i2c,
1367
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1368
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1369
        break;
1370

    
1371
    }
1372
}
1373

    
1374
static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1375
    musicpal_gpio_read,
1376
    musicpal_gpio_read,
1377
    musicpal_gpio_read,
1378
};
1379

    
1380
static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1381
    musicpal_gpio_write,
1382
    musicpal_gpio_write,
1383
    musicpal_gpio_write,
1384
};
1385

    
1386
static void musicpal_gpio_init(void)
1387
{
1388
    int iomemtype;
1389

    
1390
    iomemtype = cpu_register_io_memory(0, musicpal_gpio_readfn,
1391
                                       musicpal_gpio_writefn, NULL);
1392
    cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1393
}
1394

    
1395
/* Keyboard codes & masks */
1396
#define KEY_RELEASED            0x80
1397
#define KEY_CODE                0x7f
1398

    
1399
#define KEYCODE_TAB             0x0f
1400
#define KEYCODE_ENTER           0x1c
1401
#define KEYCODE_F               0x21
1402
#define KEYCODE_M               0x32
1403

    
1404
#define KEYCODE_EXTENDED        0xe0
1405
#define KEYCODE_UP              0x48
1406
#define KEYCODE_DOWN            0x50
1407
#define KEYCODE_LEFT            0x4b
1408
#define KEYCODE_RIGHT           0x4d
1409

    
1410
static void musicpal_key_event(void *opaque, int keycode)
1411
{
1412
    qemu_irq irq = opaque;
1413
    uint32_t event = 0;
1414
    static int kbd_extended;
1415

    
1416
    if (keycode == KEYCODE_EXTENDED) {
1417
        kbd_extended = 1;
1418
        return;
1419
    }
1420

    
1421
    if (kbd_extended)
1422
        switch (keycode & KEY_CODE) {
1423
        case KEYCODE_UP:
1424
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1425
            break;
1426

    
1427
        case KEYCODE_DOWN:
1428
            event = MP_GPIO_WHEEL_NAV;
1429
            break;
1430

    
1431
        case KEYCODE_LEFT:
1432
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1433
            break;
1434

    
1435
        case KEYCODE_RIGHT:
1436
            event = MP_GPIO_WHEEL_VOL;
1437
            break;
1438
        }
1439
    else {
1440
        switch (keycode & KEY_CODE) {
1441
        case KEYCODE_F:
1442
            event = MP_GPIO_BTN_FAVORITS;
1443
            break;
1444

    
1445
        case KEYCODE_TAB:
1446
            event = MP_GPIO_BTN_VOLUME;
1447
            break;
1448

    
1449
        case KEYCODE_ENTER:
1450
            event = MP_GPIO_BTN_NAVIGATION;
1451
            break;
1452

    
1453
        case KEYCODE_M:
1454
            event = MP_GPIO_BTN_MENU;
1455
            break;
1456
        }
1457
        /* Do not repeat already pressed buttons */
1458
        if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1459
            event = 0;
1460
    }
1461

    
1462
    if (event) {
1463
        if (keycode & KEY_RELEASED) {
1464
            gpio_in_state |= event;
1465
        } else {
1466
            gpio_in_state &= ~event;
1467
            gpio_isr = event;
1468
            qemu_irq_raise(irq);
1469
        }
1470
    }
1471

    
1472
    kbd_extended = 0;
1473
}
1474

    
1475
static struct arm_boot_info musicpal_binfo = {
1476
    .loader_start = 0x0,
1477
    .board_id = 0x20e,
1478
};
1479

    
1480
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1481
               const char *boot_device,
1482
               const char *kernel_filename, const char *kernel_cmdline,
1483
               const char *initrd_filename, const char *cpu_model)
1484
{
1485
    CPUState *env;
1486
    qemu_irq *pic;
1487
    int index;
1488
    unsigned long flash_size;
1489

    
1490
    if (!cpu_model)
1491
        cpu_model = "arm926";
1492

    
1493
    env = cpu_init(cpu_model);
1494
    if (!env) {
1495
        fprintf(stderr, "Unable to find CPU definition\n");
1496
        exit(1);
1497
    }
1498
    pic = arm_pic_init_cpu(env);
1499

    
1500
    /* For now we use a fixed - the original - RAM size */
1501
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1502
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1503

    
1504
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1505
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1506

    
1507
    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1508
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1509

    
1510
    if (serial_hds[0])
1511
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1512
                   serial_hds[0], 1);
1513
    if (serial_hds[1])
1514
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1515
                   serial_hds[1], 1);
1516

    
1517
    /* Register flash */
1518
    index = drive_get_index(IF_PFLASH, 0, 0);
1519
    if (index != -1) {
1520
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1521
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1522
            flash_size != 32*1024*1024) {
1523
            fprintf(stderr, "Invalid flash image size\n");
1524
            exit(1);
1525
        }
1526

    
1527
        /*
1528
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1529
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1530
         * image is smaller than 32 MB.
1531
         */
1532
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1533
                              drives_table[index].bdrv, 0x10000,
1534
                              (flash_size + 0xffff) >> 16,
1535
                              MP_FLASH_SIZE_MAX / flash_size,
1536
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1537
                              0x5555, 0x2AAA);
1538
    }
1539
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1540

    
1541
    musicpal_lcd_init();
1542

    
1543
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1544

    
1545
    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1546

    
1547
    mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1548

    
1549
    mv88w8618_wlan_init(MP_WLAN_BASE);
1550

    
1551
    musicpal_misc_init();
1552
    musicpal_gpio_init();
1553

    
1554
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1555
    musicpal_binfo.kernel_filename = kernel_filename;
1556
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1557
    musicpal_binfo.initrd_filename = initrd_filename;
1558
    arm_load_kernel(env, &musicpal_binfo);
1559
}
1560

    
1561
QEMUMachine musicpal_machine = {
1562
    .name = "musicpal",
1563
    .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1564
    .init = musicpal_init,
1565
    .ram_require = MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE +
1566
            MP_FLASH_SIZE_MAX + RAMSIZE_FIXED,
1567
};