Statistics
| Branch: | Revision:

root / hw / ne2000.c @ bc578fe0

History | View | Annotate | Download (22.4 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "net.h"
27
#include "ne2000.h"
28

    
29
/* debug NE2000 card */
30
//#define DEBUG_NE2000
31

    
32
#define MAX_ETH_FRAME_SIZE 1514
33

    
34
#define E8390_CMD        0x00  /* The command register (for all pages) */
35
/* Page 0 register offsets. */
36
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
37
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
38
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
39
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
40
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
41
#define EN0_TSR                0x04        /* Transmit status reg RD */
42
#define EN0_TPSR        0x04        /* Transmit starting page WR */
43
#define EN0_NCR                0x05        /* Number of collision reg RD */
44
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
45
#define EN0_FIFO        0x06        /* FIFO RD */
46
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
47
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
48
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
49
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
50
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
51
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
52
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
53
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
54
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
55
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
56
#define EN0_RSR                0x0c        /* rx status reg RD */
57
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
58
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
59
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
60
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
61
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
62
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
63
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
64

    
65
#define EN1_PHYS        0x11
66
#define EN1_CURPAG      0x17
67
#define EN1_MULT        0x18
68

    
69
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
70
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
71

    
72
#define EN3_CONFIG0        0x33
73
#define EN3_CONFIG1        0x34
74
#define EN3_CONFIG2        0x35
75
#define EN3_CONFIG3        0x36
76

    
77
/*  Register accessed at EN_CMD, the 8390 base addr.  */
78
#define E8390_STOP        0x01        /* Stop and reset the chip */
79
#define E8390_START        0x02        /* Start the chip, clear reset */
80
#define E8390_TRANS        0x04        /* Transmit a frame */
81
#define E8390_RREAD        0x08        /* Remote read */
82
#define E8390_RWRITE        0x10        /* Remote write  */
83
#define E8390_NODMA        0x20        /* Remote DMA */
84
#define E8390_PAGE0        0x00        /* Select page chip registers */
85
#define E8390_PAGE1        0x40        /* using the two high-order bits */
86
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
87

    
88
/* Bits in EN0_ISR - Interrupt status register */
89
#define ENISR_RX        0x01        /* Receiver, no error */
90
#define ENISR_TX        0x02        /* Transmitter, no error */
91
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
92
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
93
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
94
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
95
#define ENISR_RDC        0x40        /* remote dma complete */
96
#define ENISR_RESET        0x80        /* Reset completed */
97
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
98

    
99
/* Bits in received packet status byte and EN0_RSR*/
100
#define ENRSR_RXOK        0x01        /* Received a good packet */
101
#define ENRSR_CRC        0x02        /* CRC error */
102
#define ENRSR_FAE        0x04        /* frame alignment error */
103
#define ENRSR_FO        0x08        /* FIFO overrun */
104
#define ENRSR_MPA        0x10        /* missed pkt */
105
#define ENRSR_PHY        0x20        /* physical/multicast address */
106
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
107
#define ENRSR_DEF        0x80        /* deferring */
108

    
109
/* Transmitted packet status, EN0_TSR. */
110
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
111
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
112
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
113
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
114
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
115
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
116
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
117
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
118

    
119
typedef struct PCINE2000State {
120
    PCIDevice dev;
121
    NE2000State ne2000;
122
} PCINE2000State;
123

    
124
void ne2000_reset(NE2000State *s)
125
{
126
    int i;
127

    
128
    s->isr = ENISR_RESET;
129
    memcpy(s->mem, s->macaddr, 6);
130
    s->mem[14] = 0x57;
131
    s->mem[15] = 0x57;
132

    
133
    /* duplicate prom data */
134
    for(i = 15;i >= 0; i--) {
135
        s->mem[2 * i] = s->mem[i];
136
        s->mem[2 * i + 1] = s->mem[i];
137
    }
138
}
139

    
140
static void ne2000_update_irq(NE2000State *s)
141
{
142
    int isr;
143
    isr = (s->isr & s->imr) & 0x7f;
144
#if defined(DEBUG_NE2000)
145
    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
146
           isr ? 1 : 0, s->isr, s->imr);
147
#endif
148
    qemu_set_irq(s->irq, (isr != 0));
149
}
150

    
151
#define POLYNOMIAL 0x04c11db6
152

    
153
/* From FreeBSD */
154
/* XXX: optimize */
155
static int compute_mcast_idx(const uint8_t *ep)
156
{
157
    uint32_t crc;
158
    int carry, i, j;
159
    uint8_t b;
160

    
161
    crc = 0xffffffff;
162
    for (i = 0; i < 6; i++) {
163
        b = *ep++;
164
        for (j = 0; j < 8; j++) {
165
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
166
            crc <<= 1;
167
            b >>= 1;
168
            if (carry)
169
                crc = ((crc ^ POLYNOMIAL) | carry);
170
        }
171
    }
172
    return (crc >> 26);
173
}
174

    
175
static int ne2000_buffer_full(NE2000State *s)
176
{
177
    int avail, index, boundary;
178

    
179
    index = s->curpag << 8;
180
    boundary = s->boundary << 8;
181
    if (index < boundary)
182
        avail = boundary - index;
183
    else
184
        avail = (s->stop - s->start) - (index - boundary);
185
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
186
        return 1;
187
    return 0;
188
}
189

    
190
int ne2000_can_receive(VLANClientState *vc)
191
{
192
    NE2000State *s = vc->opaque;
193

    
194
    if (s->cmd & E8390_STOP)
195
        return 1;
196
    return !ne2000_buffer_full(s);
197
}
198

    
199
#define MIN_BUF_SIZE 60
200

    
201
ssize_t ne2000_receive(VLANClientState *vc, const uint8_t *buf, size_t size_)
202
{
203
    NE2000State *s = vc->opaque;
204
    int size = size_;
205
    uint8_t *p;
206
    unsigned int total_len, next, avail, len, index, mcast_idx;
207
    uint8_t buf1[60];
208
    static const uint8_t broadcast_macaddr[6] =
209
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
210

    
211
#if defined(DEBUG_NE2000)
212
    printf("NE2000: received len=%d\n", size);
213
#endif
214

    
215
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
216
        return -1;
217

    
218
    /* XXX: check this */
219
    if (s->rxcr & 0x10) {
220
        /* promiscuous: receive all */
221
    } else {
222
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
223
            /* broadcast address */
224
            if (!(s->rxcr & 0x04))
225
                return size;
226
        } else if (buf[0] & 0x01) {
227
            /* multicast */
228
            if (!(s->rxcr & 0x08))
229
                return size;
230
            mcast_idx = compute_mcast_idx(buf);
231
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
232
                return size;
233
        } else if (s->mem[0] == buf[0] &&
234
                   s->mem[2] == buf[1] &&
235
                   s->mem[4] == buf[2] &&
236
                   s->mem[6] == buf[3] &&
237
                   s->mem[8] == buf[4] &&
238
                   s->mem[10] == buf[5]) {
239
            /* match */
240
        } else {
241
            return size;
242
        }
243
    }
244

    
245

    
246
    /* if too small buffer, then expand it */
247
    if (size < MIN_BUF_SIZE) {
248
        memcpy(buf1, buf, size);
249
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
250
        buf = buf1;
251
        size = MIN_BUF_SIZE;
252
    }
253

    
254
    index = s->curpag << 8;
255
    /* 4 bytes for header */
256
    total_len = size + 4;
257
    /* address for next packet (4 bytes for CRC) */
258
    next = index + ((total_len + 4 + 255) & ~0xff);
259
    if (next >= s->stop)
260
        next -= (s->stop - s->start);
261
    /* prepare packet header */
262
    p = s->mem + index;
263
    s->rsr = ENRSR_RXOK; /* receive status */
264
    /* XXX: check this */
265
    if (buf[0] & 0x01)
266
        s->rsr |= ENRSR_PHY;
267
    p[0] = s->rsr;
268
    p[1] = next >> 8;
269
    p[2] = total_len;
270
    p[3] = total_len >> 8;
271
    index += 4;
272

    
273
    /* write packet data */
274
    while (size > 0) {
275
        if (index <= s->stop)
276
            avail = s->stop - index;
277
        else
278
            avail = 0;
279
        len = size;
280
        if (len > avail)
281
            len = avail;
282
        memcpy(s->mem + index, buf, len);
283
        buf += len;
284
        index += len;
285
        if (index == s->stop)
286
            index = s->start;
287
        size -= len;
288
    }
289
    s->curpag = next >> 8;
290

    
291
    /* now we can signal we have received something */
292
    s->isr |= ENISR_RX;
293
    ne2000_update_irq(s);
294

    
295
    return size_;
296
}
297

    
298
void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
299
{
300
    NE2000State *s = opaque;
301
    int offset, page, index;
302

    
303
    addr &= 0xf;
304
#ifdef DEBUG_NE2000
305
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
306
#endif
307
    if (addr == E8390_CMD) {
308
        /* control register */
309
        s->cmd = val;
310
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
311
            s->isr &= ~ENISR_RESET;
312
            /* test specific case: zero length transfer */
313
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
314
                s->rcnt == 0) {
315
                s->isr |= ENISR_RDC;
316
                ne2000_update_irq(s);
317
            }
318
            if (val & E8390_TRANS) {
319
                index = (s->tpsr << 8);
320
                /* XXX: next 2 lines are a hack to make netware 3.11 work */
321
                if (index >= NE2000_PMEM_END)
322
                    index -= NE2000_PMEM_SIZE;
323
                /* fail safe: check range on the transmitted length  */
324
                if (index + s->tcnt <= NE2000_PMEM_END) {
325
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
326
                }
327
                /* signal end of transfer */
328
                s->tsr = ENTSR_PTX;
329
                s->isr |= ENISR_TX;
330
                s->cmd &= ~E8390_TRANS;
331
                ne2000_update_irq(s);
332
            }
333
        }
334
    } else {
335
        page = s->cmd >> 6;
336
        offset = addr | (page << 4);
337
        switch(offset) {
338
        case EN0_STARTPG:
339
            s->start = val << 8;
340
            break;
341
        case EN0_STOPPG:
342
            s->stop = val << 8;
343
            break;
344
        case EN0_BOUNDARY:
345
            s->boundary = val;
346
            break;
347
        case EN0_IMR:
348
            s->imr = val;
349
            ne2000_update_irq(s);
350
            break;
351
        case EN0_TPSR:
352
            s->tpsr = val;
353
            break;
354
        case EN0_TCNTLO:
355
            s->tcnt = (s->tcnt & 0xff00) | val;
356
            break;
357
        case EN0_TCNTHI:
358
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
359
            break;
360
        case EN0_RSARLO:
361
            s->rsar = (s->rsar & 0xff00) | val;
362
            break;
363
        case EN0_RSARHI:
364
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
365
            break;
366
        case EN0_RCNTLO:
367
            s->rcnt = (s->rcnt & 0xff00) | val;
368
            break;
369
        case EN0_RCNTHI:
370
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
371
            break;
372
        case EN0_RXCR:
373
            s->rxcr = val;
374
            break;
375
        case EN0_DCFG:
376
            s->dcfg = val;
377
            break;
378
        case EN0_ISR:
379
            s->isr &= ~(val & 0x7f);
380
            ne2000_update_irq(s);
381
            break;
382
        case EN1_PHYS ... EN1_PHYS + 5:
383
            s->phys[offset - EN1_PHYS] = val;
384
            break;
385
        case EN1_CURPAG:
386
            s->curpag = val;
387
            break;
388
        case EN1_MULT ... EN1_MULT + 7:
389
            s->mult[offset - EN1_MULT] = val;
390
            break;
391
        }
392
    }
393
}
394

    
395
uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
396
{
397
    NE2000State *s = opaque;
398
    int offset, page, ret;
399

    
400
    addr &= 0xf;
401
    if (addr == E8390_CMD) {
402
        ret = s->cmd;
403
    } else {
404
        page = s->cmd >> 6;
405
        offset = addr | (page << 4);
406
        switch(offset) {
407
        case EN0_TSR:
408
            ret = s->tsr;
409
            break;
410
        case EN0_BOUNDARY:
411
            ret = s->boundary;
412
            break;
413
        case EN0_ISR:
414
            ret = s->isr;
415
            break;
416
        case EN0_RSARLO:
417
            ret = s->rsar & 0x00ff;
418
            break;
419
        case EN0_RSARHI:
420
            ret = s->rsar >> 8;
421
            break;
422
        case EN1_PHYS ... EN1_PHYS + 5:
423
            ret = s->phys[offset - EN1_PHYS];
424
            break;
425
        case EN1_CURPAG:
426
            ret = s->curpag;
427
            break;
428
        case EN1_MULT ... EN1_MULT + 7:
429
            ret = s->mult[offset - EN1_MULT];
430
            break;
431
        case EN0_RSR:
432
            ret = s->rsr;
433
            break;
434
        case EN2_STARTPG:
435
            ret = s->start >> 8;
436
            break;
437
        case EN2_STOPPG:
438
            ret = s->stop >> 8;
439
            break;
440
        case EN0_RTL8029ID0:
441
            ret = 0x50;
442
            break;
443
        case EN0_RTL8029ID1:
444
            ret = 0x43;
445
            break;
446
        case EN3_CONFIG0:
447
            ret = 0;                /* 10baseT media */
448
            break;
449
        case EN3_CONFIG2:
450
            ret = 0x40;                /* 10baseT active */
451
            break;
452
        case EN3_CONFIG3:
453
            ret = 0x40;                /* Full duplex */
454
            break;
455
        default:
456
            ret = 0x00;
457
            break;
458
        }
459
    }
460
#ifdef DEBUG_NE2000
461
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
462
#endif
463
    return ret;
464
}
465

    
466
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
467
                                     uint32_t val)
468
{
469
    if (addr < 32 ||
470
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
471
        s->mem[addr] = val;
472
    }
473
}
474

    
475
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
476
                                     uint32_t val)
477
{
478
    addr &= ~1; /* XXX: check exact behaviour if not even */
479
    if (addr < 32 ||
480
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
481
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
482
    }
483
}
484

    
485
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
486
                                     uint32_t val)
487
{
488
    addr &= ~1; /* XXX: check exact behaviour if not even */
489
    if (addr < 32 ||
490
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
491
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
492
    }
493
}
494

    
495
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
496
{
497
    if (addr < 32 ||
498
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
499
        return s->mem[addr];
500
    } else {
501
        return 0xff;
502
    }
503
}
504

    
505
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
506
{
507
    addr &= ~1; /* XXX: check exact behaviour if not even */
508
    if (addr < 32 ||
509
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
510
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
511
    } else {
512
        return 0xffff;
513
    }
514
}
515

    
516
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
517
{
518
    addr &= ~1; /* XXX: check exact behaviour if not even */
519
    if (addr < 32 ||
520
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
521
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
522
    } else {
523
        return 0xffffffff;
524
    }
525
}
526

    
527
static inline void ne2000_dma_update(NE2000State *s, int len)
528
{
529
    s->rsar += len;
530
    /* wrap */
531
    /* XXX: check what to do if rsar > stop */
532
    if (s->rsar == s->stop)
533
        s->rsar = s->start;
534

    
535
    if (s->rcnt <= len) {
536
        s->rcnt = 0;
537
        /* signal end of transfer */
538
        s->isr |= ENISR_RDC;
539
        ne2000_update_irq(s);
540
    } else {
541
        s->rcnt -= len;
542
    }
543
}
544

    
545
void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
546
{
547
    NE2000State *s = opaque;
548

    
549
#ifdef DEBUG_NE2000
550
    printf("NE2000: asic write val=0x%04x\n", val);
551
#endif
552
    if (s->rcnt == 0)
553
        return;
554
    if (s->dcfg & 0x01) {
555
        /* 16 bit access */
556
        ne2000_mem_writew(s, s->rsar, val);
557
        ne2000_dma_update(s, 2);
558
    } else {
559
        /* 8 bit access */
560
        ne2000_mem_writeb(s, s->rsar, val);
561
        ne2000_dma_update(s, 1);
562
    }
563
}
564

    
565
uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
566
{
567
    NE2000State *s = opaque;
568
    int ret;
569

    
570
    if (s->dcfg & 0x01) {
571
        /* 16 bit access */
572
        ret = ne2000_mem_readw(s, s->rsar);
573
        ne2000_dma_update(s, 2);
574
    } else {
575
        /* 8 bit access */
576
        ret = ne2000_mem_readb(s, s->rsar);
577
        ne2000_dma_update(s, 1);
578
    }
579
#ifdef DEBUG_NE2000
580
    printf("NE2000: asic read val=0x%04x\n", ret);
581
#endif
582
    return ret;
583
}
584

    
585
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
586
{
587
    NE2000State *s = opaque;
588

    
589
#ifdef DEBUG_NE2000
590
    printf("NE2000: asic writel val=0x%04x\n", val);
591
#endif
592
    if (s->rcnt == 0)
593
        return;
594
    /* 32 bit access */
595
    ne2000_mem_writel(s, s->rsar, val);
596
    ne2000_dma_update(s, 4);
597
}
598

    
599
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
600
{
601
    NE2000State *s = opaque;
602
    int ret;
603

    
604
    /* 32 bit access */
605
    ret = ne2000_mem_readl(s, s->rsar);
606
    ne2000_dma_update(s, 4);
607
#ifdef DEBUG_NE2000
608
    printf("NE2000: asic readl val=0x%04x\n", ret);
609
#endif
610
    return ret;
611
}
612

    
613
void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
614
{
615
    /* nothing to do (end of reset pulse) */
616
}
617

    
618
uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
619
{
620
    NE2000State *s = opaque;
621
    ne2000_reset(s);
622
    return 0;
623
}
624

    
625
void ne2000_save(QEMUFile* f, void* opaque)
626
{
627
        NE2000State* s = opaque;
628
        uint32_t tmp;
629

    
630
        qemu_put_8s(f, &s->rxcr);
631

    
632
        qemu_put_8s(f, &s->cmd);
633
        qemu_put_be32s(f, &s->start);
634
        qemu_put_be32s(f, &s->stop);
635
        qemu_put_8s(f, &s->boundary);
636
        qemu_put_8s(f, &s->tsr);
637
        qemu_put_8s(f, &s->tpsr);
638
        qemu_put_be16s(f, &s->tcnt);
639
        qemu_put_be16s(f, &s->rcnt);
640
        qemu_put_be32s(f, &s->rsar);
641
        qemu_put_8s(f, &s->rsr);
642
        qemu_put_8s(f, &s->isr);
643
        qemu_put_8s(f, &s->dcfg);
644
        qemu_put_8s(f, &s->imr);
645
        qemu_put_buffer(f, s->phys, 6);
646
        qemu_put_8s(f, &s->curpag);
647
        qemu_put_buffer(f, s->mult, 8);
648
        tmp = 0;
649
        qemu_put_be32s(f, &tmp); /* ignored, was irq */
650
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
651
}
652

    
653
int ne2000_load(QEMUFile* f, void* opaque, int version_id)
654
{
655
        NE2000State* s = opaque;
656
        uint32_t tmp;
657

    
658
        if (version_id > 3)
659
            return -EINVAL;
660

    
661
        if (version_id >= 2) {
662
            qemu_get_8s(f, &s->rxcr);
663
        } else {
664
            s->rxcr = 0x0c;
665
        }
666

    
667
        qemu_get_8s(f, &s->cmd);
668
        qemu_get_be32s(f, &s->start);
669
        qemu_get_be32s(f, &s->stop);
670
        qemu_get_8s(f, &s->boundary);
671
        qemu_get_8s(f, &s->tsr);
672
        qemu_get_8s(f, &s->tpsr);
673
        qemu_get_be16s(f, &s->tcnt);
674
        qemu_get_be16s(f, &s->rcnt);
675
        qemu_get_be32s(f, &s->rsar);
676
        qemu_get_8s(f, &s->rsr);
677
        qemu_get_8s(f, &s->isr);
678
        qemu_get_8s(f, &s->dcfg);
679
        qemu_get_8s(f, &s->imr);
680
        qemu_get_buffer(f, s->phys, 6);
681
        qemu_get_8s(f, &s->curpag);
682
        qemu_get_buffer(f, s->mult, 8);
683
        qemu_get_be32s(f, &tmp); /* ignored */
684
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
685

    
686
        return 0;
687
}
688

    
689
static void pci_ne2000_save(QEMUFile* f, void* opaque)
690
{
691
        PCINE2000State* s = opaque;
692

    
693
        pci_device_save(&s->dev, f);
694
        ne2000_save(f, &s->ne2000);
695
}
696

    
697
static int pci_ne2000_load(QEMUFile* f, void* opaque, int version_id)
698
{
699
        PCINE2000State* s = opaque;
700
        int ret;
701

    
702
        if (version_id > 3)
703
            return -EINVAL;
704

    
705
        if (version_id >= 3) {
706
            ret = pci_device_load(&s->dev, f);
707
            if (ret < 0)
708
                return ret;
709
        }
710

    
711
        return ne2000_load(f, &s->ne2000, version_id);
712
}
713

    
714
/***********************************************************/
715
/* PCI NE2000 definitions */
716

    
717
static void ne2000_map(PCIDevice *pci_dev, int region_num,
718
                       uint32_t addr, uint32_t size, int type)
719
{
720
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
721
    NE2000State *s = &d->ne2000;
722

    
723
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
724
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
725

    
726
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
727
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
728
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
729
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
730
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
731
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
732

    
733
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
734
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
735
}
736

    
737
static void ne2000_cleanup(VLANClientState *vc)
738
{
739
    NE2000State *s = vc->opaque;
740

    
741
    unregister_savevm("ne2000", s);
742
}
743

    
744
static int pci_ne2000_init(PCIDevice *pci_dev)
745
{
746
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
747
    NE2000State *s;
748
    uint8_t *pci_conf;
749

    
750
    pci_conf = d->dev.config;
751
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
752
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
753
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
754
    pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
755
    pci_conf[0x3d] = 1; // interrupt pin 0
756

    
757
    pci_register_bar(&d->dev, 0, 0x100,
758
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
759
    s = &d->ne2000;
760
    s->irq = d->dev.irq[0];
761
    qdev_get_macaddr(&d->dev.qdev, s->macaddr);
762
    ne2000_reset(s);
763
    s->vc = qdev_get_vlan_client(&d->dev.qdev,
764
                                 ne2000_can_receive, ne2000_receive, NULL,
765
                                 ne2000_cleanup, s);
766

    
767
    qemu_format_nic_info_str(s->vc, s->macaddr);
768

    
769
    register_savevm("ne2000", -1, 3, pci_ne2000_save, pci_ne2000_load, d);
770
    return 0;
771
}
772

    
773
static PCIDeviceInfo ne2000_info = {
774
    .qdev.name = "ne2k_pci",
775
    .qdev.size = sizeof(PCINE2000State),
776
    .init      = pci_ne2000_init,
777
};
778

    
779
static void ne2000_register_devices(void)
780
{
781
    pci_qdev_register(&ne2000_info);
782
}
783

    
784
device_init(ne2000_register_devices)