Statistics
| Branch: | Revision:

root / cputlb.c @ bdc44640

History | View | Annotate | Download (11.3 kB)

1 0cac1b66 Blue Swirl
/*
2 0cac1b66 Blue Swirl
 *  Common CPU TLB handling
3 0cac1b66 Blue Swirl
 *
4 0cac1b66 Blue Swirl
 *  Copyright (c) 2003 Fabrice Bellard
5 0cac1b66 Blue Swirl
 *
6 0cac1b66 Blue Swirl
 * This library is free software; you can redistribute it and/or
7 0cac1b66 Blue Swirl
 * modify it under the terms of the GNU Lesser General Public
8 0cac1b66 Blue Swirl
 * License as published by the Free Software Foundation; either
9 0cac1b66 Blue Swirl
 * version 2 of the License, or (at your option) any later version.
10 0cac1b66 Blue Swirl
 *
11 0cac1b66 Blue Swirl
 * This library is distributed in the hope that it will be useful,
12 0cac1b66 Blue Swirl
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 0cac1b66 Blue Swirl
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 0cac1b66 Blue Swirl
 * Lesser General Public License for more details.
15 0cac1b66 Blue Swirl
 *
16 0cac1b66 Blue Swirl
 * You should have received a copy of the GNU Lesser General Public
17 0cac1b66 Blue Swirl
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 0cac1b66 Blue Swirl
 */
19 0cac1b66 Blue Swirl
20 0cac1b66 Blue Swirl
#include "config.h"
21 0cac1b66 Blue Swirl
#include "cpu.h"
22 022c62cb Paolo Bonzini
#include "exec/exec-all.h"
23 022c62cb Paolo Bonzini
#include "exec/memory.h"
24 022c62cb Paolo Bonzini
#include "exec/address-spaces.h"
25 0cac1b66 Blue Swirl
26 022c62cb Paolo Bonzini
#include "exec/cputlb.h"
27 0cac1b66 Blue Swirl
28 022c62cb Paolo Bonzini
#include "exec/memory-internal.h"
29 0cac1b66 Blue Swirl
30 0cac1b66 Blue Swirl
//#define DEBUG_TLB
31 0cac1b66 Blue Swirl
//#define DEBUG_TLB_CHECK
32 0cac1b66 Blue Swirl
33 0cac1b66 Blue Swirl
/* statistics */
34 0cac1b66 Blue Swirl
int tlb_flush_count;
35 0cac1b66 Blue Swirl
36 0cac1b66 Blue Swirl
static const CPUTLBEntry s_cputlb_empty_entry = {
37 0cac1b66 Blue Swirl
    .addr_read  = -1,
38 0cac1b66 Blue Swirl
    .addr_write = -1,
39 0cac1b66 Blue Swirl
    .addr_code  = -1,
40 0cac1b66 Blue Swirl
    .addend     = -1,
41 0cac1b66 Blue Swirl
};
42 0cac1b66 Blue Swirl
43 0cac1b66 Blue Swirl
/* NOTE:
44 0cac1b66 Blue Swirl
 * If flush_global is true (the usual case), flush all tlb entries.
45 0cac1b66 Blue Swirl
 * If flush_global is false, flush (at least) all tlb entries not
46 0cac1b66 Blue Swirl
 * marked global.
47 0cac1b66 Blue Swirl
 *
48 0cac1b66 Blue Swirl
 * Since QEMU doesn't currently implement a global/not-global flag
49 0cac1b66 Blue Swirl
 * for tlb entries, at the moment tlb_flush() will also flush all
50 0cac1b66 Blue Swirl
 * tlb entries in the flush_global == false case. This is OK because
51 0cac1b66 Blue Swirl
 * CPU architectures generally permit an implementation to drop
52 0cac1b66 Blue Swirl
 * entries from the TLB at any time, so flushing more entries than
53 0cac1b66 Blue Swirl
 * required is only an efficiency issue, not a correctness issue.
54 0cac1b66 Blue Swirl
 */
55 0cac1b66 Blue Swirl
void tlb_flush(CPUArchState *env, int flush_global)
56 0cac1b66 Blue Swirl
{
57 d77953b9 Andreas Färber
    CPUState *cpu = ENV_GET_CPU(env);
58 0cac1b66 Blue Swirl
    int i;
59 0cac1b66 Blue Swirl
60 0cac1b66 Blue Swirl
#if defined(DEBUG_TLB)
61 0cac1b66 Blue Swirl
    printf("tlb_flush:\n");
62 0cac1b66 Blue Swirl
#endif
63 0cac1b66 Blue Swirl
    /* must reset current TB so that interrupts cannot modify the
64 0cac1b66 Blue Swirl
       links while we are modifying them */
65 d77953b9 Andreas Färber
    cpu->current_tb = NULL;
66 0cac1b66 Blue Swirl
67 0cac1b66 Blue Swirl
    for (i = 0; i < CPU_TLB_SIZE; i++) {
68 0cac1b66 Blue Swirl
        int mmu_idx;
69 0cac1b66 Blue Swirl
70 0cac1b66 Blue Swirl
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
71 0cac1b66 Blue Swirl
            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
72 0cac1b66 Blue Swirl
        }
73 0cac1b66 Blue Swirl
    }
74 0cac1b66 Blue Swirl
75 0cac1b66 Blue Swirl
    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
76 0cac1b66 Blue Swirl
77 0cac1b66 Blue Swirl
    env->tlb_flush_addr = -1;
78 0cac1b66 Blue Swirl
    env->tlb_flush_mask = 0;
79 0cac1b66 Blue Swirl
    tlb_flush_count++;
80 0cac1b66 Blue Swirl
}
81 0cac1b66 Blue Swirl
82 0cac1b66 Blue Swirl
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
83 0cac1b66 Blue Swirl
{
84 0cac1b66 Blue Swirl
    if (addr == (tlb_entry->addr_read &
85 0cac1b66 Blue Swirl
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
86 0cac1b66 Blue Swirl
        addr == (tlb_entry->addr_write &
87 0cac1b66 Blue Swirl
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
88 0cac1b66 Blue Swirl
        addr == (tlb_entry->addr_code &
89 0cac1b66 Blue Swirl
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
90 0cac1b66 Blue Swirl
        *tlb_entry = s_cputlb_empty_entry;
91 0cac1b66 Blue Swirl
    }
92 0cac1b66 Blue Swirl
}
93 0cac1b66 Blue Swirl
94 0cac1b66 Blue Swirl
void tlb_flush_page(CPUArchState *env, target_ulong addr)
95 0cac1b66 Blue Swirl
{
96 d77953b9 Andreas Färber
    CPUState *cpu = ENV_GET_CPU(env);
97 0cac1b66 Blue Swirl
    int i;
98 0cac1b66 Blue Swirl
    int mmu_idx;
99 0cac1b66 Blue Swirl
100 0cac1b66 Blue Swirl
#if defined(DEBUG_TLB)
101 0cac1b66 Blue Swirl
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
102 0cac1b66 Blue Swirl
#endif
103 0cac1b66 Blue Swirl
    /* Check if we need to flush due to large pages.  */
104 0cac1b66 Blue Swirl
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
105 0cac1b66 Blue Swirl
#if defined(DEBUG_TLB)
106 0cac1b66 Blue Swirl
        printf("tlb_flush_page: forced full flush ("
107 0cac1b66 Blue Swirl
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
108 0cac1b66 Blue Swirl
               env->tlb_flush_addr, env->tlb_flush_mask);
109 0cac1b66 Blue Swirl
#endif
110 0cac1b66 Blue Swirl
        tlb_flush(env, 1);
111 0cac1b66 Blue Swirl
        return;
112 0cac1b66 Blue Swirl
    }
113 0cac1b66 Blue Swirl
    /* must reset current TB so that interrupts cannot modify the
114 0cac1b66 Blue Swirl
       links while we are modifying them */
115 d77953b9 Andreas Färber
    cpu->current_tb = NULL;
116 0cac1b66 Blue Swirl
117 0cac1b66 Blue Swirl
    addr &= TARGET_PAGE_MASK;
118 0cac1b66 Blue Swirl
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
119 0cac1b66 Blue Swirl
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
120 0cac1b66 Blue Swirl
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
121 0cac1b66 Blue Swirl
    }
122 0cac1b66 Blue Swirl
123 0cac1b66 Blue Swirl
    tb_flush_jmp_cache(env, addr);
124 0cac1b66 Blue Swirl
}
125 0cac1b66 Blue Swirl
126 0cac1b66 Blue Swirl
/* update the TLBs so that writes to code in the virtual page 'addr'
127 0cac1b66 Blue Swirl
   can be detected */
128 0cac1b66 Blue Swirl
void tlb_protect_code(ram_addr_t ram_addr)
129 0cac1b66 Blue Swirl
{
130 0cac1b66 Blue Swirl
    cpu_physical_memory_reset_dirty(ram_addr,
131 0cac1b66 Blue Swirl
                                    ram_addr + TARGET_PAGE_SIZE,
132 0cac1b66 Blue Swirl
                                    CODE_DIRTY_FLAG);
133 0cac1b66 Blue Swirl
}
134 0cac1b66 Blue Swirl
135 0cac1b66 Blue Swirl
/* update the TLB so that writes in physical page 'phys_addr' are no longer
136 0cac1b66 Blue Swirl
   tested for self modifying code */
137 0cac1b66 Blue Swirl
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
138 0cac1b66 Blue Swirl
                             target_ulong vaddr)
139 0cac1b66 Blue Swirl
{
140 0cac1b66 Blue Swirl
    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
141 0cac1b66 Blue Swirl
}
142 0cac1b66 Blue Swirl
143 0cac1b66 Blue Swirl
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
144 0cac1b66 Blue Swirl
{
145 0cac1b66 Blue Swirl
    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
146 0cac1b66 Blue Swirl
}
147 0cac1b66 Blue Swirl
148 0cac1b66 Blue Swirl
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
149 0cac1b66 Blue Swirl
                           uintptr_t length)
150 0cac1b66 Blue Swirl
{
151 0cac1b66 Blue Swirl
    uintptr_t addr;
152 0cac1b66 Blue Swirl
153 0cac1b66 Blue Swirl
    if (tlb_is_dirty_ram(tlb_entry)) {
154 0cac1b66 Blue Swirl
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
155 0cac1b66 Blue Swirl
        if ((addr - start) < length) {
156 0cac1b66 Blue Swirl
            tlb_entry->addr_write |= TLB_NOTDIRTY;
157 0cac1b66 Blue Swirl
        }
158 0cac1b66 Blue Swirl
    }
159 0cac1b66 Blue Swirl
}
160 0cac1b66 Blue Swirl
161 7443b437 Paolo Bonzini
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
162 7443b437 Paolo Bonzini
{
163 7443b437 Paolo Bonzini
    ram_addr_t ram_addr;
164 7443b437 Paolo Bonzini
165 1b5ec234 Paolo Bonzini
    if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
166 7443b437 Paolo Bonzini
        fprintf(stderr, "Bad ram pointer %p\n", ptr);
167 7443b437 Paolo Bonzini
        abort();
168 7443b437 Paolo Bonzini
    }
169 7443b437 Paolo Bonzini
    return ram_addr;
170 7443b437 Paolo Bonzini
}
171 7443b437 Paolo Bonzini
172 0cac1b66 Blue Swirl
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
173 0cac1b66 Blue Swirl
{
174 0cac1b66 Blue Swirl
    ram_addr_t ram_addr;
175 0cac1b66 Blue Swirl
    void *p;
176 0cac1b66 Blue Swirl
177 0cac1b66 Blue Swirl
    if (tlb_is_dirty_ram(tlb_entry)) {
178 0cac1b66 Blue Swirl
        p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
179 0cac1b66 Blue Swirl
            + tlb_entry->addend);
180 0cac1b66 Blue Swirl
        ram_addr = qemu_ram_addr_from_host_nofail(p);
181 0cac1b66 Blue Swirl
        if (!cpu_physical_memory_is_dirty(ram_addr)) {
182 0cac1b66 Blue Swirl
            tlb_entry->addr_write |= TLB_NOTDIRTY;
183 0cac1b66 Blue Swirl
        }
184 0cac1b66 Blue Swirl
    }
185 0cac1b66 Blue Swirl
}
186 0cac1b66 Blue Swirl
187 0cac1b66 Blue Swirl
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
188 0cac1b66 Blue Swirl
{
189 182735ef Andreas Färber
    CPUState *cpu;
190 0cac1b66 Blue Swirl
    CPUArchState *env;
191 0cac1b66 Blue Swirl
192 bdc44640 Andreas Färber
    CPU_FOREACH(cpu) {
193 0cac1b66 Blue Swirl
        int mmu_idx;
194 0cac1b66 Blue Swirl
195 182735ef Andreas Färber
        env = cpu->env_ptr;
196 0cac1b66 Blue Swirl
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
197 0cac1b66 Blue Swirl
            unsigned int i;
198 0cac1b66 Blue Swirl
199 0cac1b66 Blue Swirl
            for (i = 0; i < CPU_TLB_SIZE; i++) {
200 0cac1b66 Blue Swirl
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
201 0cac1b66 Blue Swirl
                                      start1, length);
202 0cac1b66 Blue Swirl
            }
203 0cac1b66 Blue Swirl
        }
204 0cac1b66 Blue Swirl
    }
205 0cac1b66 Blue Swirl
}
206 0cac1b66 Blue Swirl
207 0cac1b66 Blue Swirl
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
208 0cac1b66 Blue Swirl
{
209 0cac1b66 Blue Swirl
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
210 0cac1b66 Blue Swirl
        tlb_entry->addr_write = vaddr;
211 0cac1b66 Blue Swirl
    }
212 0cac1b66 Blue Swirl
}
213 0cac1b66 Blue Swirl
214 0cac1b66 Blue Swirl
/* update the TLB corresponding to virtual page vaddr
215 0cac1b66 Blue Swirl
   so that it is no longer dirty */
216 0cac1b66 Blue Swirl
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
217 0cac1b66 Blue Swirl
{
218 0cac1b66 Blue Swirl
    int i;
219 0cac1b66 Blue Swirl
    int mmu_idx;
220 0cac1b66 Blue Swirl
221 0cac1b66 Blue Swirl
    vaddr &= TARGET_PAGE_MASK;
222 0cac1b66 Blue Swirl
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
223 0cac1b66 Blue Swirl
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
224 0cac1b66 Blue Swirl
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
225 0cac1b66 Blue Swirl
    }
226 0cac1b66 Blue Swirl
}
227 0cac1b66 Blue Swirl
228 0cac1b66 Blue Swirl
/* Our TLB does not support large pages, so remember the area covered by
229 0cac1b66 Blue Swirl
   large pages and trigger a full TLB flush if these are invalidated.  */
230 0cac1b66 Blue Swirl
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
231 0cac1b66 Blue Swirl
                               target_ulong size)
232 0cac1b66 Blue Swirl
{
233 0cac1b66 Blue Swirl
    target_ulong mask = ~(size - 1);
234 0cac1b66 Blue Swirl
235 0cac1b66 Blue Swirl
    if (env->tlb_flush_addr == (target_ulong)-1) {
236 0cac1b66 Blue Swirl
        env->tlb_flush_addr = vaddr & mask;
237 0cac1b66 Blue Swirl
        env->tlb_flush_mask = mask;
238 0cac1b66 Blue Swirl
        return;
239 0cac1b66 Blue Swirl
    }
240 0cac1b66 Blue Swirl
    /* Extend the existing region to include the new page.
241 0cac1b66 Blue Swirl
       This is a compromise between unnecessary flushes and the cost
242 0cac1b66 Blue Swirl
       of maintaining a full variable size TLB.  */
243 0cac1b66 Blue Swirl
    mask &= env->tlb_flush_mask;
244 0cac1b66 Blue Swirl
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
245 0cac1b66 Blue Swirl
        mask <<= 1;
246 0cac1b66 Blue Swirl
    }
247 0cac1b66 Blue Swirl
    env->tlb_flush_addr &= mask;
248 0cac1b66 Blue Swirl
    env->tlb_flush_mask = mask;
249 0cac1b66 Blue Swirl
}
250 0cac1b66 Blue Swirl
251 0cac1b66 Blue Swirl
/* Add a new TLB entry. At most one entry for a given virtual address
252 0cac1b66 Blue Swirl
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
253 0cac1b66 Blue Swirl
   supplied size is only used by tlb_flush_page.  */
254 0cac1b66 Blue Swirl
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
255 a8170e5e Avi Kivity
                  hwaddr paddr, int prot,
256 0cac1b66 Blue Swirl
                  int mmu_idx, target_ulong size)
257 0cac1b66 Blue Swirl
{
258 0cac1b66 Blue Swirl
    MemoryRegionSection *section;
259 0cac1b66 Blue Swirl
    unsigned int index;
260 0cac1b66 Blue Swirl
    target_ulong address;
261 0cac1b66 Blue Swirl
    target_ulong code_address;
262 0cac1b66 Blue Swirl
    uintptr_t addend;
263 0cac1b66 Blue Swirl
    CPUTLBEntry *te;
264 149f54b5 Paolo Bonzini
    hwaddr iotlb, xlat, sz;
265 0cac1b66 Blue Swirl
266 0cac1b66 Blue Swirl
    assert(size >= TARGET_PAGE_SIZE);
267 0cac1b66 Blue Swirl
    if (size != TARGET_PAGE_SIZE) {
268 0cac1b66 Blue Swirl
        tlb_add_large_page(env, vaddr, size);
269 0cac1b66 Blue Swirl
    }
270 149f54b5 Paolo Bonzini
271 149f54b5 Paolo Bonzini
    sz = size;
272 90260c6c Jan Kiszka
    section = address_space_translate_for_iotlb(&address_space_memory, paddr,
273 90260c6c Jan Kiszka
                                                &xlat, &sz);
274 149f54b5 Paolo Bonzini
    assert(sz >= TARGET_PAGE_SIZE);
275 149f54b5 Paolo Bonzini
276 0cac1b66 Blue Swirl
#if defined(DEBUG_TLB)
277 0cac1b66 Blue Swirl
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
278 54b949d2 Hervé Poussineau
           " prot=%x idx=%d\n",
279 54b949d2 Hervé Poussineau
           vaddr, paddr, prot, mmu_idx);
280 0cac1b66 Blue Swirl
#endif
281 0cac1b66 Blue Swirl
282 0cac1b66 Blue Swirl
    address = vaddr;
283 8f3e03cb Paolo Bonzini
    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
284 8f3e03cb Paolo Bonzini
        /* IO memory case */
285 0cac1b66 Blue Swirl
        address |= TLB_MMIO;
286 8f3e03cb Paolo Bonzini
        addend = 0;
287 8f3e03cb Paolo Bonzini
    } else {
288 8f3e03cb Paolo Bonzini
        /* TLB_MMIO for rom/romd handled below */
289 149f54b5 Paolo Bonzini
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
290 0cac1b66 Blue Swirl
    }
291 0cac1b66 Blue Swirl
292 0cac1b66 Blue Swirl
    code_address = address;
293 149f54b5 Paolo Bonzini
    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
294 149f54b5 Paolo Bonzini
                                            prot, &address);
295 0cac1b66 Blue Swirl
296 0cac1b66 Blue Swirl
    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
297 0cac1b66 Blue Swirl
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
298 0cac1b66 Blue Swirl
    te = &env->tlb_table[mmu_idx][index];
299 0cac1b66 Blue Swirl
    te->addend = addend - vaddr;
300 0cac1b66 Blue Swirl
    if (prot & PAGE_READ) {
301 0cac1b66 Blue Swirl
        te->addr_read = address;
302 0cac1b66 Blue Swirl
    } else {
303 0cac1b66 Blue Swirl
        te->addr_read = -1;
304 0cac1b66 Blue Swirl
    }
305 0cac1b66 Blue Swirl
306 0cac1b66 Blue Swirl
    if (prot & PAGE_EXEC) {
307 0cac1b66 Blue Swirl
        te->addr_code = code_address;
308 0cac1b66 Blue Swirl
    } else {
309 0cac1b66 Blue Swirl
        te->addr_code = -1;
310 0cac1b66 Blue Swirl
    }
311 0cac1b66 Blue Swirl
    if (prot & PAGE_WRITE) {
312 0cac1b66 Blue Swirl
        if ((memory_region_is_ram(section->mr) && section->readonly)
313 cc5bea60 Blue Swirl
            || memory_region_is_romd(section->mr)) {
314 0cac1b66 Blue Swirl
            /* Write access calls the I/O callback.  */
315 0cac1b66 Blue Swirl
            te->addr_write = address | TLB_MMIO;
316 0cac1b66 Blue Swirl
        } else if (memory_region_is_ram(section->mr)
317 149f54b5 Paolo Bonzini
                   && !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
318 0cac1b66 Blue Swirl
            te->addr_write = address | TLB_NOTDIRTY;
319 0cac1b66 Blue Swirl
        } else {
320 0cac1b66 Blue Swirl
            te->addr_write = address;
321 0cac1b66 Blue Swirl
        }
322 0cac1b66 Blue Swirl
    } else {
323 0cac1b66 Blue Swirl
        te->addr_write = -1;
324 0cac1b66 Blue Swirl
    }
325 0cac1b66 Blue Swirl
}
326 0cac1b66 Blue Swirl
327 0cac1b66 Blue Swirl
/* NOTE: this function can trigger an exception */
328 0cac1b66 Blue Swirl
/* NOTE2: the returned address is not exactly the physical address: it
329 116aae36 Peter Maydell
 * is actually a ram_addr_t (in system mode; the user mode emulation
330 116aae36 Peter Maydell
 * version of this function returns a guest virtual address).
331 116aae36 Peter Maydell
 */
332 0cac1b66 Blue Swirl
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
333 0cac1b66 Blue Swirl
{
334 0cac1b66 Blue Swirl
    int mmu_idx, page_index, pd;
335 0cac1b66 Blue Swirl
    void *p;
336 0cac1b66 Blue Swirl
    MemoryRegion *mr;
337 0cac1b66 Blue Swirl
338 0cac1b66 Blue Swirl
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
339 0cac1b66 Blue Swirl
    mmu_idx = cpu_mmu_index(env1);
340 0cac1b66 Blue Swirl
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
341 0cac1b66 Blue Swirl
                 (addr & TARGET_PAGE_MASK))) {
342 0cac1b66 Blue Swirl
        cpu_ldub_code(env1, addr);
343 0cac1b66 Blue Swirl
    }
344 0cac1b66 Blue Swirl
    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
345 0cac1b66 Blue Swirl
    mr = iotlb_to_region(pd);
346 0cac1b66 Blue Swirl
    if (memory_region_is_unassigned(mr)) {
347 c658b94f Andreas Färber
        CPUState *cpu = ENV_GET_CPU(env1);
348 c658b94f Andreas Färber
        CPUClass *cc = CPU_GET_CLASS(cpu);
349 c658b94f Andreas Färber
350 c658b94f Andreas Färber
        if (cc->do_unassigned_access) {
351 c658b94f Andreas Färber
            cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
352 c658b94f Andreas Färber
        } else {
353 c658b94f Andreas Färber
            cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
354 c658b94f Andreas Färber
                      TARGET_FMT_lx "\n", addr);
355 c658b94f Andreas Färber
        }
356 0cac1b66 Blue Swirl
    }
357 0cac1b66 Blue Swirl
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
358 0cac1b66 Blue Swirl
    return qemu_ram_addr_from_host_nofail(p);
359 0cac1b66 Blue Swirl
}
360 0cac1b66 Blue Swirl
361 0cac1b66 Blue Swirl
#define MMUSUFFIX _cmmu
362 0cac1b66 Blue Swirl
#undef GETPC
363 0cac1b66 Blue Swirl
#define GETPC() ((uintptr_t)0)
364 0cac1b66 Blue Swirl
#define SOFTMMU_CODE_ACCESS
365 0cac1b66 Blue Swirl
366 0cac1b66 Blue Swirl
#define SHIFT 0
367 022c62cb Paolo Bonzini
#include "exec/softmmu_template.h"
368 0cac1b66 Blue Swirl
369 0cac1b66 Blue Swirl
#define SHIFT 1
370 022c62cb Paolo Bonzini
#include "exec/softmmu_template.h"
371 0cac1b66 Blue Swirl
372 0cac1b66 Blue Swirl
#define SHIFT 2
373 022c62cb Paolo Bonzini
#include "exec/softmmu_template.h"
374 0cac1b66 Blue Swirl
375 0cac1b66 Blue Swirl
#define SHIFT 3
376 022c62cb Paolo Bonzini
#include "exec/softmmu_template.h"
377 0cac1b66 Blue Swirl
378 0cac1b66 Blue Swirl
#undef env