Statistics
| Branch: | Revision:

root / cputlb.c @ bdc44640

History | View | Annotate | Download (11.3 kB)

1
/*
2
 *  Common CPU TLB handling
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "config.h"
21
#include "cpu.h"
22
#include "exec/exec-all.h"
23
#include "exec/memory.h"
24
#include "exec/address-spaces.h"
25

    
26
#include "exec/cputlb.h"
27

    
28
#include "exec/memory-internal.h"
29

    
30
//#define DEBUG_TLB
31
//#define DEBUG_TLB_CHECK
32

    
33
/* statistics */
34
int tlb_flush_count;
35

    
36
static const CPUTLBEntry s_cputlb_empty_entry = {
37
    .addr_read  = -1,
38
    .addr_write = -1,
39
    .addr_code  = -1,
40
    .addend     = -1,
41
};
42

    
43
/* NOTE:
44
 * If flush_global is true (the usual case), flush all tlb entries.
45
 * If flush_global is false, flush (at least) all tlb entries not
46
 * marked global.
47
 *
48
 * Since QEMU doesn't currently implement a global/not-global flag
49
 * for tlb entries, at the moment tlb_flush() will also flush all
50
 * tlb entries in the flush_global == false case. This is OK because
51
 * CPU architectures generally permit an implementation to drop
52
 * entries from the TLB at any time, so flushing more entries than
53
 * required is only an efficiency issue, not a correctness issue.
54
 */
55
void tlb_flush(CPUArchState *env, int flush_global)
56
{
57
    CPUState *cpu = ENV_GET_CPU(env);
58
    int i;
59

    
60
#if defined(DEBUG_TLB)
61
    printf("tlb_flush:\n");
62
#endif
63
    /* must reset current TB so that interrupts cannot modify the
64
       links while we are modifying them */
65
    cpu->current_tb = NULL;
66

    
67
    for (i = 0; i < CPU_TLB_SIZE; i++) {
68
        int mmu_idx;
69

    
70
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
71
            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
72
        }
73
    }
74

    
75
    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
76

    
77
    env->tlb_flush_addr = -1;
78
    env->tlb_flush_mask = 0;
79
    tlb_flush_count++;
80
}
81

    
82
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
83
{
84
    if (addr == (tlb_entry->addr_read &
85
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
86
        addr == (tlb_entry->addr_write &
87
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
88
        addr == (tlb_entry->addr_code &
89
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
90
        *tlb_entry = s_cputlb_empty_entry;
91
    }
92
}
93

    
94
void tlb_flush_page(CPUArchState *env, target_ulong addr)
95
{
96
    CPUState *cpu = ENV_GET_CPU(env);
97
    int i;
98
    int mmu_idx;
99

    
100
#if defined(DEBUG_TLB)
101
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
102
#endif
103
    /* Check if we need to flush due to large pages.  */
104
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
105
#if defined(DEBUG_TLB)
106
        printf("tlb_flush_page: forced full flush ("
107
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
108
               env->tlb_flush_addr, env->tlb_flush_mask);
109
#endif
110
        tlb_flush(env, 1);
111
        return;
112
    }
113
    /* must reset current TB so that interrupts cannot modify the
114
       links while we are modifying them */
115
    cpu->current_tb = NULL;
116

    
117
    addr &= TARGET_PAGE_MASK;
118
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
119
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
120
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
121
    }
122

    
123
    tb_flush_jmp_cache(env, addr);
124
}
125

    
126
/* update the TLBs so that writes to code in the virtual page 'addr'
127
   can be detected */
128
void tlb_protect_code(ram_addr_t ram_addr)
129
{
130
    cpu_physical_memory_reset_dirty(ram_addr,
131
                                    ram_addr + TARGET_PAGE_SIZE,
132
                                    CODE_DIRTY_FLAG);
133
}
134

    
135
/* update the TLB so that writes in physical page 'phys_addr' are no longer
136
   tested for self modifying code */
137
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
138
                             target_ulong vaddr)
139
{
140
    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
141
}
142

    
143
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
144
{
145
    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
146
}
147

    
148
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
149
                           uintptr_t length)
150
{
151
    uintptr_t addr;
152

    
153
    if (tlb_is_dirty_ram(tlb_entry)) {
154
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
155
        if ((addr - start) < length) {
156
            tlb_entry->addr_write |= TLB_NOTDIRTY;
157
        }
158
    }
159
}
160

    
161
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
162
{
163
    ram_addr_t ram_addr;
164

    
165
    if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
166
        fprintf(stderr, "Bad ram pointer %p\n", ptr);
167
        abort();
168
    }
169
    return ram_addr;
170
}
171

    
172
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
173
{
174
    ram_addr_t ram_addr;
175
    void *p;
176

    
177
    if (tlb_is_dirty_ram(tlb_entry)) {
178
        p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
179
            + tlb_entry->addend);
180
        ram_addr = qemu_ram_addr_from_host_nofail(p);
181
        if (!cpu_physical_memory_is_dirty(ram_addr)) {
182
            tlb_entry->addr_write |= TLB_NOTDIRTY;
183
        }
184
    }
185
}
186

    
187
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
188
{
189
    CPUState *cpu;
190
    CPUArchState *env;
191

    
192
    CPU_FOREACH(cpu) {
193
        int mmu_idx;
194

    
195
        env = cpu->env_ptr;
196
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
197
            unsigned int i;
198

    
199
            for (i = 0; i < CPU_TLB_SIZE; i++) {
200
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
201
                                      start1, length);
202
            }
203
        }
204
    }
205
}
206

    
207
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
208
{
209
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
210
        tlb_entry->addr_write = vaddr;
211
    }
212
}
213

    
214
/* update the TLB corresponding to virtual page vaddr
215
   so that it is no longer dirty */
216
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
217
{
218
    int i;
219
    int mmu_idx;
220

    
221
    vaddr &= TARGET_PAGE_MASK;
222
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
223
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
224
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
225
    }
226
}
227

    
228
/* Our TLB does not support large pages, so remember the area covered by
229
   large pages and trigger a full TLB flush if these are invalidated.  */
230
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
231
                               target_ulong size)
232
{
233
    target_ulong mask = ~(size - 1);
234

    
235
    if (env->tlb_flush_addr == (target_ulong)-1) {
236
        env->tlb_flush_addr = vaddr & mask;
237
        env->tlb_flush_mask = mask;
238
        return;
239
    }
240
    /* Extend the existing region to include the new page.
241
       This is a compromise between unnecessary flushes and the cost
242
       of maintaining a full variable size TLB.  */
243
    mask &= env->tlb_flush_mask;
244
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
245
        mask <<= 1;
246
    }
247
    env->tlb_flush_addr &= mask;
248
    env->tlb_flush_mask = mask;
249
}
250

    
251
/* Add a new TLB entry. At most one entry for a given virtual address
252
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
253
   supplied size is only used by tlb_flush_page.  */
254
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
255
                  hwaddr paddr, int prot,
256
                  int mmu_idx, target_ulong size)
257
{
258
    MemoryRegionSection *section;
259
    unsigned int index;
260
    target_ulong address;
261
    target_ulong code_address;
262
    uintptr_t addend;
263
    CPUTLBEntry *te;
264
    hwaddr iotlb, xlat, sz;
265

    
266
    assert(size >= TARGET_PAGE_SIZE);
267
    if (size != TARGET_PAGE_SIZE) {
268
        tlb_add_large_page(env, vaddr, size);
269
    }
270

    
271
    sz = size;
272
    section = address_space_translate_for_iotlb(&address_space_memory, paddr,
273
                                                &xlat, &sz);
274
    assert(sz >= TARGET_PAGE_SIZE);
275

    
276
#if defined(DEBUG_TLB)
277
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
278
           " prot=%x idx=%d\n",
279
           vaddr, paddr, prot, mmu_idx);
280
#endif
281

    
282
    address = vaddr;
283
    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
284
        /* IO memory case */
285
        address |= TLB_MMIO;
286
        addend = 0;
287
    } else {
288
        /* TLB_MMIO for rom/romd handled below */
289
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
290
    }
291

    
292
    code_address = address;
293
    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
294
                                            prot, &address);
295

    
296
    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
297
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
298
    te = &env->tlb_table[mmu_idx][index];
299
    te->addend = addend - vaddr;
300
    if (prot & PAGE_READ) {
301
        te->addr_read = address;
302
    } else {
303
        te->addr_read = -1;
304
    }
305

    
306
    if (prot & PAGE_EXEC) {
307
        te->addr_code = code_address;
308
    } else {
309
        te->addr_code = -1;
310
    }
311
    if (prot & PAGE_WRITE) {
312
        if ((memory_region_is_ram(section->mr) && section->readonly)
313
            || memory_region_is_romd(section->mr)) {
314
            /* Write access calls the I/O callback.  */
315
            te->addr_write = address | TLB_MMIO;
316
        } else if (memory_region_is_ram(section->mr)
317
                   && !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
318
            te->addr_write = address | TLB_NOTDIRTY;
319
        } else {
320
            te->addr_write = address;
321
        }
322
    } else {
323
        te->addr_write = -1;
324
    }
325
}
326

    
327
/* NOTE: this function can trigger an exception */
328
/* NOTE2: the returned address is not exactly the physical address: it
329
 * is actually a ram_addr_t (in system mode; the user mode emulation
330
 * version of this function returns a guest virtual address).
331
 */
332
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
333
{
334
    int mmu_idx, page_index, pd;
335
    void *p;
336
    MemoryRegion *mr;
337

    
338
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
339
    mmu_idx = cpu_mmu_index(env1);
340
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
341
                 (addr & TARGET_PAGE_MASK))) {
342
        cpu_ldub_code(env1, addr);
343
    }
344
    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
345
    mr = iotlb_to_region(pd);
346
    if (memory_region_is_unassigned(mr)) {
347
        CPUState *cpu = ENV_GET_CPU(env1);
348
        CPUClass *cc = CPU_GET_CLASS(cpu);
349

    
350
        if (cc->do_unassigned_access) {
351
            cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
352
        } else {
353
            cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
354
                      TARGET_FMT_lx "\n", addr);
355
        }
356
    }
357
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
358
    return qemu_ram_addr_from_host_nofail(p);
359
}
360

    
361
#define MMUSUFFIX _cmmu
362
#undef GETPC
363
#define GETPC() ((uintptr_t)0)
364
#define SOFTMMU_CODE_ACCESS
365

    
366
#define SHIFT 0
367
#include "exec/softmmu_template.h"
368

    
369
#define SHIFT 1
370
#include "exec/softmmu_template.h"
371

    
372
#define SHIFT 2
373
#include "exec/softmmu_template.h"
374

    
375
#define SHIFT 3
376
#include "exec/softmmu_template.h"
377

    
378
#undef env