Statistics
| Branch: | Revision:

root / hw / hpet.c @ be62a2eb

History | View | Annotate | Download (22.1 kB)

1
/*
2
 *  High Precisition Event Timer emulation
3
 *
4
 *  Copyright (c) 2007 Alexander Graf
5
 *  Copyright (c) 2008 IBM Corporation
6
 *
7
 *  Authors: Beth Kon <bkon@us.ibm.com>
8
 *
9
 * This library is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2 of the License, or (at your option) any later version.
13
 *
14
 * This library is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21
 *
22
 * *****************************************************************
23
 *
24
 * This driver attempts to emulate an HPET device in software.
25
 */
26

    
27
#include "hw.h"
28
#include "pc.h"
29
#include "console.h"
30
#include "qemu-timer.h"
31
#include "hpet_emul.h"
32
#include "sysbus.h"
33
#include "mc146818rtc.h"
34

    
35
//#define HPET_DEBUG
36
#ifdef HPET_DEBUG
37
#define DPRINTF printf
38
#else
39
#define DPRINTF(...)
40
#endif
41

    
42
#define HPET_MSI_SUPPORT        0
43

    
44
struct HPETState;
45
typedef struct HPETTimer {  /* timers */
46
    uint8_t tn;             /*timer number*/
47
    QEMUTimer *qemu_timer;
48
    struct HPETState *state;
49
    /* Memory-mapped, software visible timer registers */
50
    uint64_t config;        /* configuration/cap */
51
    uint64_t cmp;           /* comparator */
52
    uint64_t fsb;           /* FSB route */
53
    /* Hidden register state */
54
    uint64_t period;        /* Last value written to comparator */
55
    uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
56
                             * mode. Next pop will be actual timer expiration.
57
                             */
58
} HPETTimer;
59

    
60
typedef struct HPETState {
61
    SysBusDevice busdev;
62
    MemoryRegion iomem;
63
    uint64_t hpet_offset;
64
    qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
65
    uint32_t flags;
66
    uint8_t rtc_irq_level;
67
    uint8_t num_timers;
68
    HPETTimer timer[HPET_MAX_TIMERS];
69

    
70
    /* Memory-mapped, software visible registers */
71
    uint64_t capability;        /* capabilities */
72
    uint64_t config;            /* configuration */
73
    uint64_t isr;               /* interrupt status reg */
74
    uint64_t hpet_counter;      /* main counter */
75
    uint8_t  hpet_id;           /* instance id */
76
} HPETState;
77

    
78
static uint32_t hpet_in_legacy_mode(HPETState *s)
79
{
80
    return s->config & HPET_CFG_LEGACY;
81
}
82

    
83
static uint32_t timer_int_route(struct HPETTimer *timer)
84
{
85
    return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
86
}
87

    
88
static uint32_t timer_fsb_route(HPETTimer *t)
89
{
90
    return t->config & HPET_TN_FSB_ENABLE;
91
}
92

    
93
static uint32_t hpet_enabled(HPETState *s)
94
{
95
    return s->config & HPET_CFG_ENABLE;
96
}
97

    
98
static uint32_t timer_is_periodic(HPETTimer *t)
99
{
100
    return t->config & HPET_TN_PERIODIC;
101
}
102

    
103
static uint32_t timer_enabled(HPETTimer *t)
104
{
105
    return t->config & HPET_TN_ENABLE;
106
}
107

    
108
static uint32_t hpet_time_after(uint64_t a, uint64_t b)
109
{
110
    return ((int32_t)(b) - (int32_t)(a) < 0);
111
}
112

    
113
static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
114
{
115
    return ((int64_t)(b) - (int64_t)(a) < 0);
116
}
117

    
118
static uint64_t ticks_to_ns(uint64_t value)
119
{
120
    return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
121
}
122

    
123
static uint64_t ns_to_ticks(uint64_t value)
124
{
125
    return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
126
}
127

    
128
static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
129
{
130
    new &= mask;
131
    new |= old & ~mask;
132
    return new;
133
}
134

    
135
static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
136
{
137
    return (!(old & mask) && (new & mask));
138
}
139

    
140
static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
141
{
142
    return ((old & mask) && !(new & mask));
143
}
144

    
145
static uint64_t hpet_get_ticks(HPETState *s)
146
{
147
    return ns_to_ticks(qemu_get_clock_ns(vm_clock) + s->hpet_offset);
148
}
149

    
150
/*
151
 * calculate diff between comparator value and current ticks
152
 */
153
static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
154
{
155

    
156
    if (t->config & HPET_TN_32BIT) {
157
        uint32_t diff, cmp;
158

    
159
        cmp = (uint32_t)t->cmp;
160
        diff = cmp - (uint32_t)current;
161
        diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
162
        return (uint64_t)diff;
163
    } else {
164
        uint64_t diff, cmp;
165

    
166
        cmp = t->cmp;
167
        diff = cmp - current;
168
        diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
169
        return diff;
170
    }
171
}
172

    
173
static void update_irq(struct HPETTimer *timer, int set)
174
{
175
    uint64_t mask;
176
    HPETState *s;
177
    int route;
178

    
179
    if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
180
        /* if LegacyReplacementRoute bit is set, HPET specification requires
181
         * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
182
         * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
183
         */
184
        route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
185
    } else {
186
        route = timer_int_route(timer);
187
    }
188
    s = timer->state;
189
    mask = 1 << timer->tn;
190
    if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
191
        s->isr &= ~mask;
192
        if (!timer_fsb_route(timer)) {
193
            qemu_irq_lower(s->irqs[route]);
194
        }
195
    } else if (timer_fsb_route(timer)) {
196
        stl_le_phys(timer->fsb >> 32, timer->fsb & 0xffffffff);
197
    } else if (timer->config & HPET_TN_TYPE_LEVEL) {
198
        s->isr |= mask;
199
        qemu_irq_raise(s->irqs[route]);
200
    } else {
201
        s->isr &= ~mask;
202
        qemu_irq_pulse(s->irqs[route]);
203
    }
204
}
205

    
206
static void hpet_pre_save(void *opaque)
207
{
208
    HPETState *s = opaque;
209

    
210
    /* save current counter value */
211
    s->hpet_counter = hpet_get_ticks(s);
212
}
213

    
214
static int hpet_pre_load(void *opaque)
215
{
216
    HPETState *s = opaque;
217

    
218
    /* version 1 only supports 3, later versions will load the actual value */
219
    s->num_timers = HPET_MIN_TIMERS;
220
    return 0;
221
}
222

    
223
static int hpet_post_load(void *opaque, int version_id)
224
{
225
    HPETState *s = opaque;
226

    
227
    /* Recalculate the offset between the main counter and guest time */
228
    s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_get_clock_ns(vm_clock);
229

    
230
    /* Push number of timers into capability returned via HPET_ID */
231
    s->capability &= ~HPET_ID_NUM_TIM_MASK;
232
    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
233
    hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
234

    
235
    /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
236
    s->flags &= ~(1 << HPET_MSI_SUPPORT);
237
    if (s->timer[0].config & HPET_TN_FSB_CAP) {
238
        s->flags |= 1 << HPET_MSI_SUPPORT;
239
    }
240
    return 0;
241
}
242

    
243
static const VMStateDescription vmstate_hpet_timer = {
244
    .name = "hpet_timer",
245
    .version_id = 1,
246
    .minimum_version_id = 1,
247
    .minimum_version_id_old = 1,
248
    .fields      = (VMStateField []) {
249
        VMSTATE_UINT8(tn, HPETTimer),
250
        VMSTATE_UINT64(config, HPETTimer),
251
        VMSTATE_UINT64(cmp, HPETTimer),
252
        VMSTATE_UINT64(fsb, HPETTimer),
253
        VMSTATE_UINT64(period, HPETTimer),
254
        VMSTATE_UINT8(wrap_flag, HPETTimer),
255
        VMSTATE_TIMER(qemu_timer, HPETTimer),
256
        VMSTATE_END_OF_LIST()
257
    }
258
};
259

    
260
static const VMStateDescription vmstate_hpet = {
261
    .name = "hpet",
262
    .version_id = 2,
263
    .minimum_version_id = 1,
264
    .minimum_version_id_old = 1,
265
    .pre_save = hpet_pre_save,
266
    .pre_load = hpet_pre_load,
267
    .post_load = hpet_post_load,
268
    .fields      = (VMStateField []) {
269
        VMSTATE_UINT64(config, HPETState),
270
        VMSTATE_UINT64(isr, HPETState),
271
        VMSTATE_UINT64(hpet_counter, HPETState),
272
        VMSTATE_UINT8_V(num_timers, HPETState, 2),
273
        VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
274
                                    vmstate_hpet_timer, HPETTimer),
275
        VMSTATE_END_OF_LIST()
276
    }
277
};
278

    
279
/*
280
 * timer expiration callback
281
 */
282
static void hpet_timer(void *opaque)
283
{
284
    HPETTimer *t = opaque;
285
    uint64_t diff;
286

    
287
    uint64_t period = t->period;
288
    uint64_t cur_tick = hpet_get_ticks(t->state);
289

    
290
    if (timer_is_periodic(t) && period != 0) {
291
        if (t->config & HPET_TN_32BIT) {
292
            while (hpet_time_after(cur_tick, t->cmp)) {
293
                t->cmp = (uint32_t)(t->cmp + t->period);
294
            }
295
        } else {
296
            while (hpet_time_after64(cur_tick, t->cmp)) {
297
                t->cmp += period;
298
            }
299
        }
300
        diff = hpet_calculate_diff(t, cur_tick);
301
        qemu_mod_timer(t->qemu_timer,
302
                       qemu_get_clock_ns(vm_clock) + (int64_t)ticks_to_ns(diff));
303
    } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
304
        if (t->wrap_flag) {
305
            diff = hpet_calculate_diff(t, cur_tick);
306
            qemu_mod_timer(t->qemu_timer, qemu_get_clock_ns(vm_clock) +
307
                           (int64_t)ticks_to_ns(diff));
308
            t->wrap_flag = 0;
309
        }
310
    }
311
    update_irq(t, 1);
312
}
313

    
314
static void hpet_set_timer(HPETTimer *t)
315
{
316
    uint64_t diff;
317
    uint32_t wrap_diff;  /* how many ticks until we wrap? */
318
    uint64_t cur_tick = hpet_get_ticks(t->state);
319

    
320
    /* whenever new timer is being set up, make sure wrap_flag is 0 */
321
    t->wrap_flag = 0;
322
    diff = hpet_calculate_diff(t, cur_tick);
323

    
324
    /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
325
     * counter wraps in addition to an interrupt with comparator match.
326
     */
327
    if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
328
        wrap_diff = 0xffffffff - (uint32_t)cur_tick;
329
        if (wrap_diff < (uint32_t)diff) {
330
            diff = wrap_diff;
331
            t->wrap_flag = 1;
332
        }
333
    }
334
    qemu_mod_timer(t->qemu_timer,
335
                   qemu_get_clock_ns(vm_clock) + (int64_t)ticks_to_ns(diff));
336
}
337

    
338
static void hpet_del_timer(HPETTimer *t)
339
{
340
    qemu_del_timer(t->qemu_timer);
341
    update_irq(t, 0);
342
}
343

    
344
#ifdef HPET_DEBUG
345
static uint32_t hpet_ram_readb(void *opaque, target_phys_addr_t addr)
346
{
347
    printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
348
    return 0;
349
}
350

    
351
static uint32_t hpet_ram_readw(void *opaque, target_phys_addr_t addr)
352
{
353
    printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
354
    return 0;
355
}
356
#endif
357

    
358
static uint64_t hpet_ram_read(void *opaque, target_phys_addr_t addr,
359
                              unsigned size)
360
{
361
    HPETState *s = opaque;
362
    uint64_t cur_tick, index;
363

    
364
    DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
365
    index = addr;
366
    /*address range of all TN regs*/
367
    if (index >= 0x100 && index <= 0x3ff) {
368
        uint8_t timer_id = (addr - 0x100) / 0x20;
369
        HPETTimer *timer = &s->timer[timer_id];
370

    
371
        if (timer_id > s->num_timers) {
372
            DPRINTF("qemu: timer id out of range\n");
373
            return 0;
374
        }
375

    
376
        switch ((addr - 0x100) % 0x20) {
377
        case HPET_TN_CFG:
378
            return timer->config;
379
        case HPET_TN_CFG + 4: // Interrupt capabilities
380
            return timer->config >> 32;
381
        case HPET_TN_CMP: // comparator register
382
            return timer->cmp;
383
        case HPET_TN_CMP + 4:
384
            return timer->cmp >> 32;
385
        case HPET_TN_ROUTE:
386
            return timer->fsb;
387
        case HPET_TN_ROUTE + 4:
388
            return timer->fsb >> 32;
389
        default:
390
            DPRINTF("qemu: invalid hpet_ram_readl\n");
391
            break;
392
        }
393
    } else {
394
        switch (index) {
395
        case HPET_ID:
396
            return s->capability;
397
        case HPET_PERIOD:
398
            return s->capability >> 32;
399
        case HPET_CFG:
400
            return s->config;
401
        case HPET_CFG + 4:
402
            DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
403
            return 0;
404
        case HPET_COUNTER:
405
            if (hpet_enabled(s)) {
406
                cur_tick = hpet_get_ticks(s);
407
            } else {
408
                cur_tick = s->hpet_counter;
409
            }
410
            DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
411
            return cur_tick;
412
        case HPET_COUNTER + 4:
413
            if (hpet_enabled(s)) {
414
                cur_tick = hpet_get_ticks(s);
415
            } else {
416
                cur_tick = s->hpet_counter;
417
            }
418
            DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
419
            return cur_tick >> 32;
420
        case HPET_STATUS:
421
            return s->isr;
422
        default:
423
            DPRINTF("qemu: invalid hpet_ram_readl\n");
424
            break;
425
        }
426
    }
427
    return 0;
428
}
429

    
430
static void hpet_ram_write(void *opaque, target_phys_addr_t addr,
431
                           uint64_t value, unsigned size)
432
{
433
    int i;
434
    HPETState *s = opaque;
435
    uint64_t old_val, new_val, val, index;
436

    
437
    DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
438
    index = addr;
439
    old_val = hpet_ram_read(opaque, addr, 4);
440
    new_val = value;
441

    
442
    /*address range of all TN regs*/
443
    if (index >= 0x100 && index <= 0x3ff) {
444
        uint8_t timer_id = (addr - 0x100) / 0x20;
445
        HPETTimer *timer = &s->timer[timer_id];
446

    
447
        DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
448
        if (timer_id > s->num_timers) {
449
            DPRINTF("qemu: timer id out of range\n");
450
            return;
451
        }
452
        switch ((addr - 0x100) % 0x20) {
453
        case HPET_TN_CFG:
454
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
455
            if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
456
                update_irq(timer, 0);
457
            }
458
            val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
459
            timer->config = (timer->config & 0xffffffff00000000ULL) | val;
460
            if (new_val & HPET_TN_32BIT) {
461
                timer->cmp = (uint32_t)timer->cmp;
462
                timer->period = (uint32_t)timer->period;
463
            }
464
            if (activating_bit(old_val, new_val, HPET_TN_ENABLE)) {
465
                hpet_set_timer(timer);
466
            } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
467
                hpet_del_timer(timer);
468
            }
469
            break;
470
        case HPET_TN_CFG + 4: // Interrupt capabilities
471
            DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
472
            break;
473
        case HPET_TN_CMP: // comparator register
474
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
475
            if (timer->config & HPET_TN_32BIT) {
476
                new_val = (uint32_t)new_val;
477
            }
478
            if (!timer_is_periodic(timer)
479
                || (timer->config & HPET_TN_SETVAL)) {
480
                timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
481
            }
482
            if (timer_is_periodic(timer)) {
483
                /*
484
                 * FIXME: Clamp period to reasonable min value?
485
                 * Clamp period to reasonable max value
486
                 */
487
                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
488
                timer->period =
489
                    (timer->period & 0xffffffff00000000ULL) | new_val;
490
            }
491
            timer->config &= ~HPET_TN_SETVAL;
492
            if (hpet_enabled(s)) {
493
                hpet_set_timer(timer);
494
            }
495
            break;
496
        case HPET_TN_CMP + 4: // comparator register high order
497
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
498
            if (!timer_is_periodic(timer)
499
                || (timer->config & HPET_TN_SETVAL)) {
500
                timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
501
            } else {
502
                /*
503
                 * FIXME: Clamp period to reasonable min value?
504
                 * Clamp period to reasonable max value
505
                 */
506
                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
507
                timer->period =
508
                    (timer->period & 0xffffffffULL) | new_val << 32;
509
                }
510
                timer->config &= ~HPET_TN_SETVAL;
511
                if (hpet_enabled(s)) {
512
                    hpet_set_timer(timer);
513
                }
514
                break;
515
        case HPET_TN_ROUTE:
516
            timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
517
            break;
518
        case HPET_TN_ROUTE + 4:
519
            timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
520
            break;
521
        default:
522
            DPRINTF("qemu: invalid hpet_ram_writel\n");
523
            break;
524
        }
525
        return;
526
    } else {
527
        switch (index) {
528
        case HPET_ID:
529
            return;
530
        case HPET_CFG:
531
            val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
532
            s->config = (s->config & 0xffffffff00000000ULL) | val;
533
            if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
534
                /* Enable main counter and interrupt generation. */
535
                s->hpet_offset =
536
                    ticks_to_ns(s->hpet_counter) - qemu_get_clock_ns(vm_clock);
537
                for (i = 0; i < s->num_timers; i++) {
538
                    if ((&s->timer[i])->cmp != ~0ULL) {
539
                        hpet_set_timer(&s->timer[i]);
540
                    }
541
                }
542
            } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
543
                /* Halt main counter and disable interrupt generation. */
544
                s->hpet_counter = hpet_get_ticks(s);
545
                for (i = 0; i < s->num_timers; i++) {
546
                    hpet_del_timer(&s->timer[i]);
547
                }
548
            }
549
            /* i8254 and RTC are disabled when HPET is in legacy mode */
550
            if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
551
                hpet_pit_disable();
552
                qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
553
            } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
554
                hpet_pit_enable();
555
                qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
556
            }
557
            break;
558
        case HPET_CFG + 4:
559
            DPRINTF("qemu: invalid HPET_CFG+4 write\n");
560
            break;
561
        case HPET_STATUS:
562
            val = new_val & s->isr;
563
            for (i = 0; i < s->num_timers; i++) {
564
                if (val & (1 << i)) {
565
                    update_irq(&s->timer[i], 0);
566
                }
567
            }
568
            break;
569
        case HPET_COUNTER:
570
            if (hpet_enabled(s)) {
571
                DPRINTF("qemu: Writing counter while HPET enabled!\n");
572
            }
573
            s->hpet_counter =
574
                (s->hpet_counter & 0xffffffff00000000ULL) | value;
575
            DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
576
                    value, s->hpet_counter);
577
            break;
578
        case HPET_COUNTER + 4:
579
            if (hpet_enabled(s)) {
580
                DPRINTF("qemu: Writing counter while HPET enabled!\n");
581
            }
582
            s->hpet_counter =
583
                (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
584
            DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
585
                    value, s->hpet_counter);
586
            break;
587
        default:
588
            DPRINTF("qemu: invalid hpet_ram_writel\n");
589
            break;
590
        }
591
    }
592
}
593

    
594
static const MemoryRegionOps hpet_ram_ops = {
595
    .read = hpet_ram_read,
596
    .write = hpet_ram_write,
597
    .valid = {
598
        .min_access_size = 4,
599
        .max_access_size = 4,
600
    },
601
    .endianness = DEVICE_NATIVE_ENDIAN,
602
};
603

    
604
static void hpet_reset(DeviceState *d)
605
{
606
    HPETState *s = FROM_SYSBUS(HPETState, sysbus_from_qdev(d));
607
    int i;
608
    static int count = 0;
609

    
610
    for (i = 0; i < s->num_timers; i++) {
611
        HPETTimer *timer = &s->timer[i];
612

    
613
        hpet_del_timer(timer);
614
        timer->cmp = ~0ULL;
615
        timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
616
        if (s->flags & (1 << HPET_MSI_SUPPORT)) {
617
            timer->config |= HPET_TN_FSB_CAP;
618
        }
619
        /* advertise availability of ioapic inti2 */
620
        timer->config |=  0x00000004ULL << 32;
621
        timer->period = 0ULL;
622
        timer->wrap_flag = 0;
623
    }
624

    
625
    s->hpet_counter = 0ULL;
626
    s->hpet_offset = 0ULL;
627
    s->config = 0ULL;
628
    if (count > 0) {
629
        /* we don't enable pit when hpet_reset is first called (by hpet_init)
630
         * because hpet is taking over for pit here. On subsequent invocations,
631
         * hpet_reset is called due to system reset. At this point control must
632
         * be returned to pit until SW reenables hpet.
633
         */
634
        hpet_pit_enable();
635
    }
636
    hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
637
    hpet_cfg.hpet[s->hpet_id].address = sysbus_from_qdev(d)->mmio[0].addr;
638
    count = 1;
639
}
640

    
641
static void hpet_handle_rtc_irq(void *opaque, int n, int level)
642
{
643
    HPETState *s = FROM_SYSBUS(HPETState, opaque);
644

    
645
    s->rtc_irq_level = level;
646
    if (!hpet_in_legacy_mode(s)) {
647
        qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
648
    }
649
}
650

    
651
static int hpet_init(SysBusDevice *dev)
652
{
653
    HPETState *s = FROM_SYSBUS(HPETState, dev);
654
    int i;
655
    HPETTimer *timer;
656

    
657
    if (hpet_cfg.count == UINT8_MAX) {
658
        /* first instance */
659
        hpet_cfg.count = 0;
660
    }
661

    
662
    if (hpet_cfg.count == 8) {
663
        fprintf(stderr, "Only 8 instances of HPET is allowed\n");
664
        return -1;
665
    }
666

    
667
    s->hpet_id = hpet_cfg.count++;
668

    
669
    for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
670
        sysbus_init_irq(dev, &s->irqs[i]);
671
    }
672

    
673
    if (s->num_timers < HPET_MIN_TIMERS) {
674
        s->num_timers = HPET_MIN_TIMERS;
675
    } else if (s->num_timers > HPET_MAX_TIMERS) {
676
        s->num_timers = HPET_MAX_TIMERS;
677
    }
678
    for (i = 0; i < HPET_MAX_TIMERS; i++) {
679
        timer = &s->timer[i];
680
        timer->qemu_timer = qemu_new_timer_ns(vm_clock, hpet_timer, timer);
681
        timer->tn = i;
682
        timer->state = s;
683
    }
684

    
685
    /* 64-bit main counter; LegacyReplacementRoute. */
686
    s->capability = 0x8086a001ULL;
687
    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
688
    s->capability |= ((HPET_CLK_PERIOD) << 32);
689

    
690
    qdev_init_gpio_in(&dev->qdev, hpet_handle_rtc_irq, 1);
691

    
692
    /* HPET Area */
693
    memory_region_init_io(&s->iomem, &hpet_ram_ops, s, "hpet", 0x400);
694
    sysbus_init_mmio(dev, &s->iomem);
695
    return 0;
696
}
697

    
698
static SysBusDeviceInfo hpet_device_info = {
699
    .qdev.name    = "hpet",
700
    .qdev.size    = sizeof(HPETState),
701
    .qdev.no_user = 1,
702
    .qdev.vmsd    = &vmstate_hpet,
703
    .qdev.reset   = hpet_reset,
704
    .init         = hpet_init,
705
    .qdev.props = (Property[]) {
706
        DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
707
        DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
708
        DEFINE_PROP_END_OF_LIST(),
709
    },
710
};
711

    
712
static void hpet_register_device(void)
713
{
714
    sysbus_register_withprop(&hpet_device_info);
715
}
716

    
717
device_init(hpet_register_device)