Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ dadd71a7

History | View | Annotate | Download (18.1 kB)

1 158142c2 bellard
/*============================================================================
2 158142c2 bellard

3 158142c2 bellard
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4 158142c2 bellard
Package, Release 2b.
5 158142c2 bellard

6 158142c2 bellard
Written by John R. Hauser.  This work was made possible in part by the
7 158142c2 bellard
International Computer Science Institute, located at Suite 600, 1947 Center
8 158142c2 bellard
Street, Berkeley, California 94704.  Funding was partially provided by the
9 158142c2 bellard
National Science Foundation under grant MIP-9311980.  The original version
10 158142c2 bellard
of this code was written as part of a project to build a fixed-point vector
11 158142c2 bellard
processor in collaboration with the University of California at Berkeley,
12 158142c2 bellard
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
13 158142c2 bellard
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14 158142c2 bellard
arithmetic/SoftFloat.html'.
15 158142c2 bellard

16 158142c2 bellard
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
17 158142c2 bellard
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18 158142c2 bellard
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19 158142c2 bellard
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20 158142c2 bellard
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21 158142c2 bellard
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22 158142c2 bellard
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23 158142c2 bellard
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24 158142c2 bellard

25 158142c2 bellard
Derivative works are acceptable, even for commercial purposes, so long as
26 158142c2 bellard
(1) the source code for the derivative work includes prominent notice that
27 158142c2 bellard
the work is derivative, and (2) the source code includes prominent notice with
28 158142c2 bellard
these four paragraphs for those parts of this code that are retained.
29 158142c2 bellard

30 158142c2 bellard
=============================================================================*/
31 158142c2 bellard
32 158142c2 bellard
#ifndef SOFTFLOAT_H
33 158142c2 bellard
#define SOFTFLOAT_H
34 158142c2 bellard
35 0475a5ca ths
#if defined(HOST_SOLARIS) && defined(NEEDS_LIBSUNMATH)
36 0475a5ca ths
#include <sunmath.h>
37 0475a5ca ths
#endif
38 0475a5ca ths
39 158142c2 bellard
#include <inttypes.h>
40 158142c2 bellard
#include "config.h"
41 158142c2 bellard
42 158142c2 bellard
/*----------------------------------------------------------------------------
43 158142c2 bellard
| Each of the following `typedef's defines the most convenient type that holds
44 158142c2 bellard
| integers of at least as many bits as specified.  For example, `uint8' should
45 158142c2 bellard
| be the most convenient type that can hold unsigned integers of as many as
46 158142c2 bellard
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
47 158142c2 bellard
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48 158142c2 bellard
| to the same as `int'.
49 158142c2 bellard
*----------------------------------------------------------------------------*/
50 750afe93 bellard
typedef uint8_t flag;
51 158142c2 bellard
typedef uint8_t uint8;
52 158142c2 bellard
typedef int8_t int8;
53 b29fe3ed malc
#ifndef _AIX
54 158142c2 bellard
typedef int uint16;
55 158142c2 bellard
typedef int int16;
56 b29fe3ed malc
#endif
57 158142c2 bellard
typedef unsigned int uint32;
58 158142c2 bellard
typedef signed int int32;
59 158142c2 bellard
typedef uint64_t uint64;
60 158142c2 bellard
typedef int64_t int64;
61 158142c2 bellard
62 158142c2 bellard
/*----------------------------------------------------------------------------
63 158142c2 bellard
| Each of the following `typedef's defines a type that holds integers
64 158142c2 bellard
| of _exactly_ the number of bits specified.  For instance, for most
65 158142c2 bellard
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
66 158142c2 bellard
| `unsigned short int' and `signed short int' (or `short int'), respectively.
67 158142c2 bellard
*----------------------------------------------------------------------------*/
68 158142c2 bellard
typedef uint8_t bits8;
69 158142c2 bellard
typedef int8_t sbits8;
70 158142c2 bellard
typedef uint16_t bits16;
71 158142c2 bellard
typedef int16_t sbits16;
72 158142c2 bellard
typedef uint32_t bits32;
73 158142c2 bellard
typedef int32_t sbits32;
74 158142c2 bellard
typedef uint64_t bits64;
75 158142c2 bellard
typedef int64_t sbits64;
76 158142c2 bellard
77 158142c2 bellard
#define LIT64( a ) a##LL
78 158142c2 bellard
#define INLINE static inline
79 158142c2 bellard
80 158142c2 bellard
/*----------------------------------------------------------------------------
81 158142c2 bellard
| The macro `FLOATX80' must be defined to enable the extended double-precision
82 158142c2 bellard
| floating-point format `floatx80'.  If this macro is not defined, the
83 158142c2 bellard
| `floatx80' type will not be defined, and none of the functions that either
84 158142c2 bellard
| input or output the `floatx80' type will be defined.  The same applies to
85 158142c2 bellard
| the `FLOAT128' macro and the quadruple-precision format `float128'.
86 158142c2 bellard
*----------------------------------------------------------------------------*/
87 158142c2 bellard
#ifdef CONFIG_SOFTFLOAT
88 158142c2 bellard
/* bit exact soft float support */
89 158142c2 bellard
#define FLOATX80
90 158142c2 bellard
#define FLOAT128
91 158142c2 bellard
#else
92 158142c2 bellard
/* native float support */
93 158142c2 bellard
#if (defined(__i386__) || defined(__x86_64__)) && !defined(_BSD)
94 158142c2 bellard
#define FLOATX80
95 158142c2 bellard
#endif
96 158142c2 bellard
#endif /* !CONFIG_SOFTFLOAT */
97 158142c2 bellard
98 158142c2 bellard
#define STATUS_PARAM , float_status *status
99 158142c2 bellard
#define STATUS(field) status->field
100 158142c2 bellard
#define STATUS_VAR , status
101 158142c2 bellard
102 1d6bda35 bellard
/*----------------------------------------------------------------------------
103 1d6bda35 bellard
| Software IEC/IEEE floating-point ordering relations
104 1d6bda35 bellard
*----------------------------------------------------------------------------*/
105 1d6bda35 bellard
enum {
106 1d6bda35 bellard
    float_relation_less      = -1,
107 1d6bda35 bellard
    float_relation_equal     =  0,
108 1d6bda35 bellard
    float_relation_greater   =  1,
109 1d6bda35 bellard
    float_relation_unordered =  2
110 1d6bda35 bellard
};
111 1d6bda35 bellard
112 158142c2 bellard
#ifdef CONFIG_SOFTFLOAT
113 158142c2 bellard
/*----------------------------------------------------------------------------
114 158142c2 bellard
| Software IEC/IEEE floating-point types.
115 158142c2 bellard
*----------------------------------------------------------------------------*/
116 f090c9d4 pbrook
/* Use structures for soft-float types.  This prevents accidentally mixing
117 f090c9d4 pbrook
   them with native int/float types.  A sufficiently clever compiler and
118 f090c9d4 pbrook
   sane ABI should be able to see though these structs.  However
119 f090c9d4 pbrook
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
120 f090c9d4 pbrook
//#define USE_SOFTFLOAT_STRUCT_TYPES
121 f090c9d4 pbrook
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
122 f090c9d4 pbrook
typedef struct {
123 f090c9d4 pbrook
    uint32_t v;
124 f090c9d4 pbrook
} float32;
125 f090c9d4 pbrook
/* The cast ensures an error if the wrong type is passed.  */
126 f090c9d4 pbrook
#define float32_val(x) (((float32)(x)).v)
127 f090c9d4 pbrook
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
128 f090c9d4 pbrook
typedef struct {
129 f090c9d4 pbrook
    uint64_t v;
130 f090c9d4 pbrook
} float64;
131 f090c9d4 pbrook
#define float64_val(x) (((float64)(x)).v)
132 f090c9d4 pbrook
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
133 f090c9d4 pbrook
#else
134 158142c2 bellard
typedef uint32_t float32;
135 158142c2 bellard
typedef uint64_t float64;
136 f090c9d4 pbrook
#define float32_val(x) (x)
137 f090c9d4 pbrook
#define float64_val(x) (x)
138 f090c9d4 pbrook
#define make_float32(x) (x)
139 f090c9d4 pbrook
#define make_float64(x) (x)
140 f090c9d4 pbrook
#endif
141 158142c2 bellard
#ifdef FLOATX80
142 158142c2 bellard
typedef struct {
143 158142c2 bellard
    uint64_t low;
144 158142c2 bellard
    uint16_t high;
145 158142c2 bellard
} floatx80;
146 158142c2 bellard
#endif
147 158142c2 bellard
#ifdef FLOAT128
148 158142c2 bellard
typedef struct {
149 158142c2 bellard
#ifdef WORDS_BIGENDIAN
150 158142c2 bellard
    uint64_t high, low;
151 158142c2 bellard
#else
152 158142c2 bellard
    uint64_t low, high;
153 158142c2 bellard
#endif
154 158142c2 bellard
} float128;
155 158142c2 bellard
#endif
156 158142c2 bellard
157 158142c2 bellard
/*----------------------------------------------------------------------------
158 158142c2 bellard
| Software IEC/IEEE floating-point underflow tininess-detection mode.
159 158142c2 bellard
*----------------------------------------------------------------------------*/
160 158142c2 bellard
enum {
161 158142c2 bellard
    float_tininess_after_rounding  = 0,
162 158142c2 bellard
    float_tininess_before_rounding = 1
163 158142c2 bellard
};
164 158142c2 bellard
165 158142c2 bellard
/*----------------------------------------------------------------------------
166 158142c2 bellard
| Software IEC/IEEE floating-point rounding mode.
167 158142c2 bellard
*----------------------------------------------------------------------------*/
168 158142c2 bellard
enum {
169 158142c2 bellard
    float_round_nearest_even = 0,
170 158142c2 bellard
    float_round_down         = 1,
171 158142c2 bellard
    float_round_up           = 2,
172 158142c2 bellard
    float_round_to_zero      = 3
173 158142c2 bellard
};
174 158142c2 bellard
175 158142c2 bellard
/*----------------------------------------------------------------------------
176 158142c2 bellard
| Software IEC/IEEE floating-point exception flags.
177 158142c2 bellard
*----------------------------------------------------------------------------*/
178 158142c2 bellard
enum {
179 158142c2 bellard
    float_flag_invalid   =  1,
180 158142c2 bellard
    float_flag_divbyzero =  4,
181 158142c2 bellard
    float_flag_overflow  =  8,
182 158142c2 bellard
    float_flag_underflow = 16,
183 158142c2 bellard
    float_flag_inexact   = 32
184 158142c2 bellard
};
185 158142c2 bellard
186 158142c2 bellard
typedef struct float_status {
187 158142c2 bellard
    signed char float_detect_tininess;
188 158142c2 bellard
    signed char float_rounding_mode;
189 158142c2 bellard
    signed char float_exception_flags;
190 158142c2 bellard
#ifdef FLOATX80
191 158142c2 bellard
    signed char floatx80_rounding_precision;
192 158142c2 bellard
#endif
193 158142c2 bellard
} float_status;
194 158142c2 bellard
195 158142c2 bellard
void set_float_rounding_mode(int val STATUS_PARAM);
196 1d6bda35 bellard
void set_float_exception_flags(int val STATUS_PARAM);
197 1d6bda35 bellard
INLINE int get_float_exception_flags(float_status *status)
198 1d6bda35 bellard
{
199 1d6bda35 bellard
    return STATUS(float_exception_flags);
200 1d6bda35 bellard
}
201 158142c2 bellard
#ifdef FLOATX80
202 158142c2 bellard
void set_floatx80_rounding_precision(int val STATUS_PARAM);
203 158142c2 bellard
#endif
204 158142c2 bellard
205 158142c2 bellard
/*----------------------------------------------------------------------------
206 158142c2 bellard
| Routine to raise any or all of the software IEC/IEEE floating-point
207 158142c2 bellard
| exception flags.
208 158142c2 bellard
*----------------------------------------------------------------------------*/
209 ec530c81 bellard
void float_raise( int8 flags STATUS_PARAM);
210 158142c2 bellard
211 158142c2 bellard
/*----------------------------------------------------------------------------
212 158142c2 bellard
| Software IEC/IEEE integer-to-floating-point conversion routines.
213 158142c2 bellard
*----------------------------------------------------------------------------*/
214 158142c2 bellard
float32 int32_to_float32( int STATUS_PARAM );
215 158142c2 bellard
float64 int32_to_float64( int STATUS_PARAM );
216 1d6bda35 bellard
float32 uint32_to_float32( unsigned int STATUS_PARAM );
217 1d6bda35 bellard
float64 uint32_to_float64( unsigned int STATUS_PARAM );
218 158142c2 bellard
#ifdef FLOATX80
219 158142c2 bellard
floatx80 int32_to_floatx80( int STATUS_PARAM );
220 158142c2 bellard
#endif
221 158142c2 bellard
#ifdef FLOAT128
222 158142c2 bellard
float128 int32_to_float128( int STATUS_PARAM );
223 158142c2 bellard
#endif
224 158142c2 bellard
float32 int64_to_float32( int64_t STATUS_PARAM );
225 75d62a58 j_mayer
float32 uint64_to_float32( uint64_t STATUS_PARAM );
226 158142c2 bellard
float64 int64_to_float64( int64_t STATUS_PARAM );
227 75d62a58 j_mayer
float64 uint64_to_float64( uint64_t STATUS_PARAM );
228 158142c2 bellard
#ifdef FLOATX80
229 158142c2 bellard
floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
230 158142c2 bellard
#endif
231 158142c2 bellard
#ifdef FLOAT128
232 158142c2 bellard
float128 int64_to_float128( int64_t STATUS_PARAM );
233 158142c2 bellard
#endif
234 158142c2 bellard
235 158142c2 bellard
/*----------------------------------------------------------------------------
236 158142c2 bellard
| Software IEC/IEEE single-precision conversion routines.
237 158142c2 bellard
*----------------------------------------------------------------------------*/
238 158142c2 bellard
int float32_to_int32( float32 STATUS_PARAM );
239 158142c2 bellard
int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
240 1d6bda35 bellard
unsigned int float32_to_uint32( float32 STATUS_PARAM );
241 1d6bda35 bellard
unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
242 158142c2 bellard
int64_t float32_to_int64( float32 STATUS_PARAM );
243 158142c2 bellard
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
244 158142c2 bellard
float64 float32_to_float64( float32 STATUS_PARAM );
245 158142c2 bellard
#ifdef FLOATX80
246 158142c2 bellard
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
247 158142c2 bellard
#endif
248 158142c2 bellard
#ifdef FLOAT128
249 158142c2 bellard
float128 float32_to_float128( float32 STATUS_PARAM );
250 158142c2 bellard
#endif
251 158142c2 bellard
252 158142c2 bellard
/*----------------------------------------------------------------------------
253 158142c2 bellard
| Software IEC/IEEE single-precision operations.
254 158142c2 bellard
*----------------------------------------------------------------------------*/
255 158142c2 bellard
float32 float32_round_to_int( float32 STATUS_PARAM );
256 158142c2 bellard
float32 float32_add( float32, float32 STATUS_PARAM );
257 158142c2 bellard
float32 float32_sub( float32, float32 STATUS_PARAM );
258 158142c2 bellard
float32 float32_mul( float32, float32 STATUS_PARAM );
259 158142c2 bellard
float32 float32_div( float32, float32 STATUS_PARAM );
260 158142c2 bellard
float32 float32_rem( float32, float32 STATUS_PARAM );
261 158142c2 bellard
float32 float32_sqrt( float32 STATUS_PARAM );
262 750afe93 bellard
int float32_eq( float32, float32 STATUS_PARAM );
263 750afe93 bellard
int float32_le( float32, float32 STATUS_PARAM );
264 750afe93 bellard
int float32_lt( float32, float32 STATUS_PARAM );
265 750afe93 bellard
int float32_eq_signaling( float32, float32 STATUS_PARAM );
266 750afe93 bellard
int float32_le_quiet( float32, float32 STATUS_PARAM );
267 750afe93 bellard
int float32_lt_quiet( float32, float32 STATUS_PARAM );
268 750afe93 bellard
int float32_compare( float32, float32 STATUS_PARAM );
269 750afe93 bellard
int float32_compare_quiet( float32, float32 STATUS_PARAM );
270 924b2c07 ths
int float32_is_nan( float32 );
271 750afe93 bellard
int float32_is_signaling_nan( float32 );
272 9ee6e8bb pbrook
float32 float32_scalbn( float32, int STATUS_PARAM );
273 158142c2 bellard
274 1d6bda35 bellard
INLINE float32 float32_abs(float32 a)
275 1d6bda35 bellard
{
276 f090c9d4 pbrook
    return make_float32(float32_val(a) & 0x7fffffff);
277 1d6bda35 bellard
}
278 1d6bda35 bellard
279 1d6bda35 bellard
INLINE float32 float32_chs(float32 a)
280 1d6bda35 bellard
{
281 f090c9d4 pbrook
    return make_float32(float32_val(a) ^ 0x80000000);
282 1d6bda35 bellard
}
283 1d6bda35 bellard
284 c52ab6f5 aurel32
INLINE int float32_is_infinity(float32 a)
285 c52ab6f5 aurel32
{
286 dadd71a7 aurel32
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
287 c52ab6f5 aurel32
}
288 c52ab6f5 aurel32
289 c52ab6f5 aurel32
INLINE int float32_is_neg(float32 a)
290 c52ab6f5 aurel32
{
291 c52ab6f5 aurel32
    return float32_val(a) >> 31;
292 c52ab6f5 aurel32
}
293 c52ab6f5 aurel32
294 c52ab6f5 aurel32
INLINE int float32_is_zero(float32 a)
295 c52ab6f5 aurel32
{
296 c52ab6f5 aurel32
    return (float32_val(a) & 0x7fffffff) == 0;
297 c52ab6f5 aurel32
}
298 c52ab6f5 aurel32
299 f090c9d4 pbrook
#define float32_zero make_float32(0)
300 f090c9d4 pbrook
301 158142c2 bellard
/*----------------------------------------------------------------------------
302 158142c2 bellard
| Software IEC/IEEE double-precision conversion routines.
303 158142c2 bellard
*----------------------------------------------------------------------------*/
304 158142c2 bellard
int float64_to_int32( float64 STATUS_PARAM );
305 158142c2 bellard
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
306 1d6bda35 bellard
unsigned int float64_to_uint32( float64 STATUS_PARAM );
307 1d6bda35 bellard
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
308 158142c2 bellard
int64_t float64_to_int64( float64 STATUS_PARAM );
309 158142c2 bellard
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
310 75d62a58 j_mayer
uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
311 75d62a58 j_mayer
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
312 158142c2 bellard
float32 float64_to_float32( float64 STATUS_PARAM );
313 158142c2 bellard
#ifdef FLOATX80
314 158142c2 bellard
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
315 158142c2 bellard
#endif
316 158142c2 bellard
#ifdef FLOAT128
317 158142c2 bellard
float128 float64_to_float128( float64 STATUS_PARAM );
318 158142c2 bellard
#endif
319 158142c2 bellard
320 158142c2 bellard
/*----------------------------------------------------------------------------
321 158142c2 bellard
| Software IEC/IEEE double-precision operations.
322 158142c2 bellard
*----------------------------------------------------------------------------*/
323 158142c2 bellard
float64 float64_round_to_int( float64 STATUS_PARAM );
324 e6e5906b pbrook
float64 float64_trunc_to_int( float64 STATUS_PARAM );
325 158142c2 bellard
float64 float64_add( float64, float64 STATUS_PARAM );
326 158142c2 bellard
float64 float64_sub( float64, float64 STATUS_PARAM );
327 158142c2 bellard
float64 float64_mul( float64, float64 STATUS_PARAM );
328 158142c2 bellard
float64 float64_div( float64, float64 STATUS_PARAM );
329 158142c2 bellard
float64 float64_rem( float64, float64 STATUS_PARAM );
330 158142c2 bellard
float64 float64_sqrt( float64 STATUS_PARAM );
331 750afe93 bellard
int float64_eq( float64, float64 STATUS_PARAM );
332 750afe93 bellard
int float64_le( float64, float64 STATUS_PARAM );
333 750afe93 bellard
int float64_lt( float64, float64 STATUS_PARAM );
334 750afe93 bellard
int float64_eq_signaling( float64, float64 STATUS_PARAM );
335 750afe93 bellard
int float64_le_quiet( float64, float64 STATUS_PARAM );
336 750afe93 bellard
int float64_lt_quiet( float64, float64 STATUS_PARAM );
337 750afe93 bellard
int float64_compare( float64, float64 STATUS_PARAM );
338 750afe93 bellard
int float64_compare_quiet( float64, float64 STATUS_PARAM );
339 924b2c07 ths
int float64_is_nan( float64 a );
340 750afe93 bellard
int float64_is_signaling_nan( float64 );
341 9ee6e8bb pbrook
float64 float64_scalbn( float64, int STATUS_PARAM );
342 158142c2 bellard
343 1d6bda35 bellard
INLINE float64 float64_abs(float64 a)
344 1d6bda35 bellard
{
345 f090c9d4 pbrook
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
346 1d6bda35 bellard
}
347 1d6bda35 bellard
348 1d6bda35 bellard
INLINE float64 float64_chs(float64 a)
349 1d6bda35 bellard
{
350 f090c9d4 pbrook
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
351 1d6bda35 bellard
}
352 1d6bda35 bellard
353 c52ab6f5 aurel32
INLINE int float64_is_infinity(float64 a)
354 c52ab6f5 aurel32
{
355 c52ab6f5 aurel32
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
356 c52ab6f5 aurel32
}
357 c52ab6f5 aurel32
358 c52ab6f5 aurel32
INLINE int float64_is_neg(float64 a)
359 c52ab6f5 aurel32
{
360 c52ab6f5 aurel32
    return float64_val(a) >> 63;
361 c52ab6f5 aurel32
}
362 c52ab6f5 aurel32
363 c52ab6f5 aurel32
INLINE int float64_is_zero(float64 a)
364 c52ab6f5 aurel32
{
365 c52ab6f5 aurel32
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
366 c52ab6f5 aurel32
}
367 c52ab6f5 aurel32
368 f090c9d4 pbrook
#define float64_zero make_float64(0)
369 f090c9d4 pbrook
370 158142c2 bellard
#ifdef FLOATX80
371 158142c2 bellard
372 158142c2 bellard
/*----------------------------------------------------------------------------
373 158142c2 bellard
| Software IEC/IEEE extended double-precision conversion routines.
374 158142c2 bellard
*----------------------------------------------------------------------------*/
375 158142c2 bellard
int floatx80_to_int32( floatx80 STATUS_PARAM );
376 158142c2 bellard
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
377 158142c2 bellard
int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
378 158142c2 bellard
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
379 158142c2 bellard
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
380 158142c2 bellard
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
381 158142c2 bellard
#ifdef FLOAT128
382 158142c2 bellard
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
383 158142c2 bellard
#endif
384 158142c2 bellard
385 158142c2 bellard
/*----------------------------------------------------------------------------
386 158142c2 bellard
| Software IEC/IEEE extended double-precision operations.
387 158142c2 bellard
*----------------------------------------------------------------------------*/
388 158142c2 bellard
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
389 158142c2 bellard
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
390 158142c2 bellard
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
391 158142c2 bellard
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
392 158142c2 bellard
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
393 158142c2 bellard
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
394 158142c2 bellard
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
395 750afe93 bellard
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
396 750afe93 bellard
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
397 750afe93 bellard
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
398 750afe93 bellard
int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
399 750afe93 bellard
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
400 750afe93 bellard
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
401 924b2c07 ths
int floatx80_is_nan( floatx80 );
402 750afe93 bellard
int floatx80_is_signaling_nan( floatx80 );
403 9ee6e8bb pbrook
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
404 158142c2 bellard
405 1d6bda35 bellard
INLINE floatx80 floatx80_abs(floatx80 a)
406 1d6bda35 bellard
{
407 1d6bda35 bellard
    a.high &= 0x7fff;
408 1d6bda35 bellard
    return a;
409 1d6bda35 bellard
}
410 1d6bda35 bellard
411 1d6bda35 bellard
INLINE floatx80 floatx80_chs(floatx80 a)
412 1d6bda35 bellard
{
413 1d6bda35 bellard
    a.high ^= 0x8000;
414 1d6bda35 bellard
    return a;
415 1d6bda35 bellard
}
416 1d6bda35 bellard
417 c52ab6f5 aurel32
INLINE int floatx80_is_infinity(floatx80 a)
418 c52ab6f5 aurel32
{
419 c52ab6f5 aurel32
    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
420 c52ab6f5 aurel32
}
421 c52ab6f5 aurel32
422 c52ab6f5 aurel32
INLINE int floatx80_is_neg(floatx80 a)
423 c52ab6f5 aurel32
{
424 c52ab6f5 aurel32
    return a.high >> 15;
425 c52ab6f5 aurel32
}
426 c52ab6f5 aurel32
427 c52ab6f5 aurel32
INLINE int floatx80_is_zero(floatx80 a)
428 c52ab6f5 aurel32
{
429 c52ab6f5 aurel32
    return (a.high & 0x7fff) == 0 && a.low == 0;
430 c52ab6f5 aurel32
}
431 c52ab6f5 aurel32
432 158142c2 bellard
#endif
433 158142c2 bellard
434 158142c2 bellard
#ifdef FLOAT128
435 158142c2 bellard
436 158142c2 bellard
/*----------------------------------------------------------------------------
437 158142c2 bellard
| Software IEC/IEEE quadruple-precision conversion routines.
438 158142c2 bellard
*----------------------------------------------------------------------------*/
439 158142c2 bellard
int float128_to_int32( float128 STATUS_PARAM );
440 158142c2 bellard
int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
441 158142c2 bellard
int64_t float128_to_int64( float128 STATUS_PARAM );
442 158142c2 bellard
int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
443 158142c2 bellard
float32 float128_to_float32( float128 STATUS_PARAM );
444 158142c2 bellard
float64 float128_to_float64( float128 STATUS_PARAM );
445 158142c2 bellard
#ifdef FLOATX80
446 158142c2 bellard
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
447 158142c2 bellard
#endif
448 158142c2 bellard
449 158142c2 bellard
/*----------------------------------------------------------------------------
450 158142c2 bellard
| Software IEC/IEEE quadruple-precision operations.
451 158142c2 bellard
*----------------------------------------------------------------------------*/
452 158142c2 bellard
float128 float128_round_to_int( float128 STATUS_PARAM );
453 158142c2 bellard
float128 float128_add( float128, float128 STATUS_PARAM );
454 158142c2 bellard
float128 float128_sub( float128, float128 STATUS_PARAM );
455 158142c2 bellard
float128 float128_mul( float128, float128 STATUS_PARAM );
456 158142c2 bellard
float128 float128_div( float128, float128 STATUS_PARAM );
457 158142c2 bellard
float128 float128_rem( float128, float128 STATUS_PARAM );
458 158142c2 bellard
float128 float128_sqrt( float128 STATUS_PARAM );
459 750afe93 bellard
int float128_eq( float128, float128 STATUS_PARAM );
460 750afe93 bellard
int float128_le( float128, float128 STATUS_PARAM );
461 750afe93 bellard
int float128_lt( float128, float128 STATUS_PARAM );
462 750afe93 bellard
int float128_eq_signaling( float128, float128 STATUS_PARAM );
463 750afe93 bellard
int float128_le_quiet( float128, float128 STATUS_PARAM );
464 750afe93 bellard
int float128_lt_quiet( float128, float128 STATUS_PARAM );
465 1f587329 blueswir1
int float128_compare( float128, float128 STATUS_PARAM );
466 1f587329 blueswir1
int float128_compare_quiet( float128, float128 STATUS_PARAM );
467 924b2c07 ths
int float128_is_nan( float128 );
468 750afe93 bellard
int float128_is_signaling_nan( float128 );
469 9ee6e8bb pbrook
float128 float128_scalbn( float128, int STATUS_PARAM );
470 158142c2 bellard
471 1d6bda35 bellard
INLINE float128 float128_abs(float128 a)
472 1d6bda35 bellard
{
473 1d6bda35 bellard
    a.high &= 0x7fffffffffffffffLL;
474 1d6bda35 bellard
    return a;
475 1d6bda35 bellard
}
476 1d6bda35 bellard
477 1d6bda35 bellard
INLINE float128 float128_chs(float128 a)
478 1d6bda35 bellard
{
479 1d6bda35 bellard
    a.high ^= 0x8000000000000000LL;
480 1d6bda35 bellard
    return a;
481 1d6bda35 bellard
}
482 1d6bda35 bellard
483 c52ab6f5 aurel32
INLINE int float128_is_infinity(float128 a)
484 c52ab6f5 aurel32
{
485 c52ab6f5 aurel32
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
486 c52ab6f5 aurel32
}
487 c52ab6f5 aurel32
488 c52ab6f5 aurel32
INLINE int float128_is_neg(float128 a)
489 c52ab6f5 aurel32
{
490 c52ab6f5 aurel32
    return a.high >> 63;
491 c52ab6f5 aurel32
}
492 c52ab6f5 aurel32
493 c52ab6f5 aurel32
INLINE int float128_is_zero(float128 a)
494 c52ab6f5 aurel32
{
495 c52ab6f5 aurel32
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
496 c52ab6f5 aurel32
}
497 c52ab6f5 aurel32
498 158142c2 bellard
#endif
499 158142c2 bellard
500 158142c2 bellard
#else /* CONFIG_SOFTFLOAT */
501 158142c2 bellard
502 158142c2 bellard
#include "softfloat-native.h"
503 158142c2 bellard
504 158142c2 bellard
#endif /* !CONFIG_SOFTFLOAT */
505 158142c2 bellard
506 158142c2 bellard
#endif /* !SOFTFLOAT_H */