Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ dadd71a7

History | View | Annotate | Download (18.1 kB)

1
/*============================================================================
2

3
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4
Package, Release 2b.
5

6
Written by John R. Hauser.  This work was made possible in part by the
7
International Computer Science Institute, located at Suite 600, 1947 Center
8
Street, Berkeley, California 94704.  Funding was partially provided by the
9
National Science Foundation under grant MIP-9311980.  The original version
10
of this code was written as part of a project to build a fixed-point vector
11
processor in collaboration with the University of California at Berkeley,
12
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
13
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14
arithmetic/SoftFloat.html'.
15

16
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
17
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24

25
Derivative works are acceptable, even for commercial purposes, so long as
26
(1) the source code for the derivative work includes prominent notice that
27
the work is derivative, and (2) the source code includes prominent notice with
28
these four paragraphs for those parts of this code that are retained.
29

30
=============================================================================*/
31

    
32
#ifndef SOFTFLOAT_H
33
#define SOFTFLOAT_H
34

    
35
#if defined(HOST_SOLARIS) && defined(NEEDS_LIBSUNMATH)
36
#include <sunmath.h>
37
#endif
38

    
39
#include <inttypes.h>
40
#include "config.h"
41

    
42
/*----------------------------------------------------------------------------
43
| Each of the following `typedef's defines the most convenient type that holds
44
| integers of at least as many bits as specified.  For example, `uint8' should
45
| be the most convenient type that can hold unsigned integers of as many as
46
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
47
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48
| to the same as `int'.
49
*----------------------------------------------------------------------------*/
50
typedef uint8_t flag;
51
typedef uint8_t uint8;
52
typedef int8_t int8;
53
#ifndef _AIX
54
typedef int uint16;
55
typedef int int16;
56
#endif
57
typedef unsigned int uint32;
58
typedef signed int int32;
59
typedef uint64_t uint64;
60
typedef int64_t int64;
61

    
62
/*----------------------------------------------------------------------------
63
| Each of the following `typedef's defines a type that holds integers
64
| of _exactly_ the number of bits specified.  For instance, for most
65
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
66
| `unsigned short int' and `signed short int' (or `short int'), respectively.
67
*----------------------------------------------------------------------------*/
68
typedef uint8_t bits8;
69
typedef int8_t sbits8;
70
typedef uint16_t bits16;
71
typedef int16_t sbits16;
72
typedef uint32_t bits32;
73
typedef int32_t sbits32;
74
typedef uint64_t bits64;
75
typedef int64_t sbits64;
76

    
77
#define LIT64( a ) a##LL
78
#define INLINE static inline
79

    
80
/*----------------------------------------------------------------------------
81
| The macro `FLOATX80' must be defined to enable the extended double-precision
82
| floating-point format `floatx80'.  If this macro is not defined, the
83
| `floatx80' type will not be defined, and none of the functions that either
84
| input or output the `floatx80' type will be defined.  The same applies to
85
| the `FLOAT128' macro and the quadruple-precision format `float128'.
86
*----------------------------------------------------------------------------*/
87
#ifdef CONFIG_SOFTFLOAT
88
/* bit exact soft float support */
89
#define FLOATX80
90
#define FLOAT128
91
#else
92
/* native float support */
93
#if (defined(__i386__) || defined(__x86_64__)) && !defined(_BSD)
94
#define FLOATX80
95
#endif
96
#endif /* !CONFIG_SOFTFLOAT */
97

    
98
#define STATUS_PARAM , float_status *status
99
#define STATUS(field) status->field
100
#define STATUS_VAR , status
101

    
102
/*----------------------------------------------------------------------------
103
| Software IEC/IEEE floating-point ordering relations
104
*----------------------------------------------------------------------------*/
105
enum {
106
    float_relation_less      = -1,
107
    float_relation_equal     =  0,
108
    float_relation_greater   =  1,
109
    float_relation_unordered =  2
110
};
111

    
112
#ifdef CONFIG_SOFTFLOAT
113
/*----------------------------------------------------------------------------
114
| Software IEC/IEEE floating-point types.
115
*----------------------------------------------------------------------------*/
116
/* Use structures for soft-float types.  This prevents accidentally mixing
117
   them with native int/float types.  A sufficiently clever compiler and
118
   sane ABI should be able to see though these structs.  However
119
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
120
//#define USE_SOFTFLOAT_STRUCT_TYPES
121
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
122
typedef struct {
123
    uint32_t v;
124
} float32;
125
/* The cast ensures an error if the wrong type is passed.  */
126
#define float32_val(x) (((float32)(x)).v)
127
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
128
typedef struct {
129
    uint64_t v;
130
} float64;
131
#define float64_val(x) (((float64)(x)).v)
132
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
133
#else
134
typedef uint32_t float32;
135
typedef uint64_t float64;
136
#define float32_val(x) (x)
137
#define float64_val(x) (x)
138
#define make_float32(x) (x)
139
#define make_float64(x) (x)
140
#endif
141
#ifdef FLOATX80
142
typedef struct {
143
    uint64_t low;
144
    uint16_t high;
145
} floatx80;
146
#endif
147
#ifdef FLOAT128
148
typedef struct {
149
#ifdef WORDS_BIGENDIAN
150
    uint64_t high, low;
151
#else
152
    uint64_t low, high;
153
#endif
154
} float128;
155
#endif
156

    
157
/*----------------------------------------------------------------------------
158
| Software IEC/IEEE floating-point underflow tininess-detection mode.
159
*----------------------------------------------------------------------------*/
160
enum {
161
    float_tininess_after_rounding  = 0,
162
    float_tininess_before_rounding = 1
163
};
164

    
165
/*----------------------------------------------------------------------------
166
| Software IEC/IEEE floating-point rounding mode.
167
*----------------------------------------------------------------------------*/
168
enum {
169
    float_round_nearest_even = 0,
170
    float_round_down         = 1,
171
    float_round_up           = 2,
172
    float_round_to_zero      = 3
173
};
174

    
175
/*----------------------------------------------------------------------------
176
| Software IEC/IEEE floating-point exception flags.
177
*----------------------------------------------------------------------------*/
178
enum {
179
    float_flag_invalid   =  1,
180
    float_flag_divbyzero =  4,
181
    float_flag_overflow  =  8,
182
    float_flag_underflow = 16,
183
    float_flag_inexact   = 32
184
};
185

    
186
typedef struct float_status {
187
    signed char float_detect_tininess;
188
    signed char float_rounding_mode;
189
    signed char float_exception_flags;
190
#ifdef FLOATX80
191
    signed char floatx80_rounding_precision;
192
#endif
193
} float_status;
194

    
195
void set_float_rounding_mode(int val STATUS_PARAM);
196
void set_float_exception_flags(int val STATUS_PARAM);
197
INLINE int get_float_exception_flags(float_status *status)
198
{
199
    return STATUS(float_exception_flags);
200
}
201
#ifdef FLOATX80
202
void set_floatx80_rounding_precision(int val STATUS_PARAM);
203
#endif
204

    
205
/*----------------------------------------------------------------------------
206
| Routine to raise any or all of the software IEC/IEEE floating-point
207
| exception flags.
208
*----------------------------------------------------------------------------*/
209
void float_raise( int8 flags STATUS_PARAM);
210

    
211
/*----------------------------------------------------------------------------
212
| Software IEC/IEEE integer-to-floating-point conversion routines.
213
*----------------------------------------------------------------------------*/
214
float32 int32_to_float32( int STATUS_PARAM );
215
float64 int32_to_float64( int STATUS_PARAM );
216
float32 uint32_to_float32( unsigned int STATUS_PARAM );
217
float64 uint32_to_float64( unsigned int STATUS_PARAM );
218
#ifdef FLOATX80
219
floatx80 int32_to_floatx80( int STATUS_PARAM );
220
#endif
221
#ifdef FLOAT128
222
float128 int32_to_float128( int STATUS_PARAM );
223
#endif
224
float32 int64_to_float32( int64_t STATUS_PARAM );
225
float32 uint64_to_float32( uint64_t STATUS_PARAM );
226
float64 int64_to_float64( int64_t STATUS_PARAM );
227
float64 uint64_to_float64( uint64_t STATUS_PARAM );
228
#ifdef FLOATX80
229
floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
230
#endif
231
#ifdef FLOAT128
232
float128 int64_to_float128( int64_t STATUS_PARAM );
233
#endif
234

    
235
/*----------------------------------------------------------------------------
236
| Software IEC/IEEE single-precision conversion routines.
237
*----------------------------------------------------------------------------*/
238
int float32_to_int32( float32 STATUS_PARAM );
239
int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
240
unsigned int float32_to_uint32( float32 STATUS_PARAM );
241
unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
242
int64_t float32_to_int64( float32 STATUS_PARAM );
243
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
244
float64 float32_to_float64( float32 STATUS_PARAM );
245
#ifdef FLOATX80
246
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
247
#endif
248
#ifdef FLOAT128
249
float128 float32_to_float128( float32 STATUS_PARAM );
250
#endif
251

    
252
/*----------------------------------------------------------------------------
253
| Software IEC/IEEE single-precision operations.
254
*----------------------------------------------------------------------------*/
255
float32 float32_round_to_int( float32 STATUS_PARAM );
256
float32 float32_add( float32, float32 STATUS_PARAM );
257
float32 float32_sub( float32, float32 STATUS_PARAM );
258
float32 float32_mul( float32, float32 STATUS_PARAM );
259
float32 float32_div( float32, float32 STATUS_PARAM );
260
float32 float32_rem( float32, float32 STATUS_PARAM );
261
float32 float32_sqrt( float32 STATUS_PARAM );
262
int float32_eq( float32, float32 STATUS_PARAM );
263
int float32_le( float32, float32 STATUS_PARAM );
264
int float32_lt( float32, float32 STATUS_PARAM );
265
int float32_eq_signaling( float32, float32 STATUS_PARAM );
266
int float32_le_quiet( float32, float32 STATUS_PARAM );
267
int float32_lt_quiet( float32, float32 STATUS_PARAM );
268
int float32_compare( float32, float32 STATUS_PARAM );
269
int float32_compare_quiet( float32, float32 STATUS_PARAM );
270
int float32_is_nan( float32 );
271
int float32_is_signaling_nan( float32 );
272
float32 float32_scalbn( float32, int STATUS_PARAM );
273

    
274
INLINE float32 float32_abs(float32 a)
275
{
276
    return make_float32(float32_val(a) & 0x7fffffff);
277
}
278

    
279
INLINE float32 float32_chs(float32 a)
280
{
281
    return make_float32(float32_val(a) ^ 0x80000000);
282
}
283

    
284
INLINE int float32_is_infinity(float32 a)
285
{
286
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
287
}
288

    
289
INLINE int float32_is_neg(float32 a)
290
{
291
    return float32_val(a) >> 31;
292
}
293

    
294
INLINE int float32_is_zero(float32 a)
295
{
296
    return (float32_val(a) & 0x7fffffff) == 0;
297
}
298

    
299
#define float32_zero make_float32(0)
300

    
301
/*----------------------------------------------------------------------------
302
| Software IEC/IEEE double-precision conversion routines.
303
*----------------------------------------------------------------------------*/
304
int float64_to_int32( float64 STATUS_PARAM );
305
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
306
unsigned int float64_to_uint32( float64 STATUS_PARAM );
307
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
308
int64_t float64_to_int64( float64 STATUS_PARAM );
309
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
310
uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
311
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
312
float32 float64_to_float32( float64 STATUS_PARAM );
313
#ifdef FLOATX80
314
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
315
#endif
316
#ifdef FLOAT128
317
float128 float64_to_float128( float64 STATUS_PARAM );
318
#endif
319

    
320
/*----------------------------------------------------------------------------
321
| Software IEC/IEEE double-precision operations.
322
*----------------------------------------------------------------------------*/
323
float64 float64_round_to_int( float64 STATUS_PARAM );
324
float64 float64_trunc_to_int( float64 STATUS_PARAM );
325
float64 float64_add( float64, float64 STATUS_PARAM );
326
float64 float64_sub( float64, float64 STATUS_PARAM );
327
float64 float64_mul( float64, float64 STATUS_PARAM );
328
float64 float64_div( float64, float64 STATUS_PARAM );
329
float64 float64_rem( float64, float64 STATUS_PARAM );
330
float64 float64_sqrt( float64 STATUS_PARAM );
331
int float64_eq( float64, float64 STATUS_PARAM );
332
int float64_le( float64, float64 STATUS_PARAM );
333
int float64_lt( float64, float64 STATUS_PARAM );
334
int float64_eq_signaling( float64, float64 STATUS_PARAM );
335
int float64_le_quiet( float64, float64 STATUS_PARAM );
336
int float64_lt_quiet( float64, float64 STATUS_PARAM );
337
int float64_compare( float64, float64 STATUS_PARAM );
338
int float64_compare_quiet( float64, float64 STATUS_PARAM );
339
int float64_is_nan( float64 a );
340
int float64_is_signaling_nan( float64 );
341
float64 float64_scalbn( float64, int STATUS_PARAM );
342

    
343
INLINE float64 float64_abs(float64 a)
344
{
345
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
346
}
347

    
348
INLINE float64 float64_chs(float64 a)
349
{
350
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
351
}
352

    
353
INLINE int float64_is_infinity(float64 a)
354
{
355
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
356
}
357

    
358
INLINE int float64_is_neg(float64 a)
359
{
360
    return float64_val(a) >> 63;
361
}
362

    
363
INLINE int float64_is_zero(float64 a)
364
{
365
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
366
}
367

    
368
#define float64_zero make_float64(0)
369

    
370
#ifdef FLOATX80
371

    
372
/*----------------------------------------------------------------------------
373
| Software IEC/IEEE extended double-precision conversion routines.
374
*----------------------------------------------------------------------------*/
375
int floatx80_to_int32( floatx80 STATUS_PARAM );
376
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
377
int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
378
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
379
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
380
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
381
#ifdef FLOAT128
382
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
383
#endif
384

    
385
/*----------------------------------------------------------------------------
386
| Software IEC/IEEE extended double-precision operations.
387
*----------------------------------------------------------------------------*/
388
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
389
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
390
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
391
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
392
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
393
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
394
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
395
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
396
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
397
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
398
int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
399
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
400
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
401
int floatx80_is_nan( floatx80 );
402
int floatx80_is_signaling_nan( floatx80 );
403
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
404

    
405
INLINE floatx80 floatx80_abs(floatx80 a)
406
{
407
    a.high &= 0x7fff;
408
    return a;
409
}
410

    
411
INLINE floatx80 floatx80_chs(floatx80 a)
412
{
413
    a.high ^= 0x8000;
414
    return a;
415
}
416

    
417
INLINE int floatx80_is_infinity(floatx80 a)
418
{
419
    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
420
}
421

    
422
INLINE int floatx80_is_neg(floatx80 a)
423
{
424
    return a.high >> 15;
425
}
426

    
427
INLINE int floatx80_is_zero(floatx80 a)
428
{
429
    return (a.high & 0x7fff) == 0 && a.low == 0;
430
}
431

    
432
#endif
433

    
434
#ifdef FLOAT128
435

    
436
/*----------------------------------------------------------------------------
437
| Software IEC/IEEE quadruple-precision conversion routines.
438
*----------------------------------------------------------------------------*/
439
int float128_to_int32( float128 STATUS_PARAM );
440
int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
441
int64_t float128_to_int64( float128 STATUS_PARAM );
442
int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
443
float32 float128_to_float32( float128 STATUS_PARAM );
444
float64 float128_to_float64( float128 STATUS_PARAM );
445
#ifdef FLOATX80
446
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
447
#endif
448

    
449
/*----------------------------------------------------------------------------
450
| Software IEC/IEEE quadruple-precision operations.
451
*----------------------------------------------------------------------------*/
452
float128 float128_round_to_int( float128 STATUS_PARAM );
453
float128 float128_add( float128, float128 STATUS_PARAM );
454
float128 float128_sub( float128, float128 STATUS_PARAM );
455
float128 float128_mul( float128, float128 STATUS_PARAM );
456
float128 float128_div( float128, float128 STATUS_PARAM );
457
float128 float128_rem( float128, float128 STATUS_PARAM );
458
float128 float128_sqrt( float128 STATUS_PARAM );
459
int float128_eq( float128, float128 STATUS_PARAM );
460
int float128_le( float128, float128 STATUS_PARAM );
461
int float128_lt( float128, float128 STATUS_PARAM );
462
int float128_eq_signaling( float128, float128 STATUS_PARAM );
463
int float128_le_quiet( float128, float128 STATUS_PARAM );
464
int float128_lt_quiet( float128, float128 STATUS_PARAM );
465
int float128_compare( float128, float128 STATUS_PARAM );
466
int float128_compare_quiet( float128, float128 STATUS_PARAM );
467
int float128_is_nan( float128 );
468
int float128_is_signaling_nan( float128 );
469
float128 float128_scalbn( float128, int STATUS_PARAM );
470

    
471
INLINE float128 float128_abs(float128 a)
472
{
473
    a.high &= 0x7fffffffffffffffLL;
474
    return a;
475
}
476

    
477
INLINE float128 float128_chs(float128 a)
478
{
479
    a.high ^= 0x8000000000000000LL;
480
    return a;
481
}
482

    
483
INLINE int float128_is_infinity(float128 a)
484
{
485
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
486
}
487

    
488
INLINE int float128_is_neg(float128 a)
489
{
490
    return a.high >> 63;
491
}
492

    
493
INLINE int float128_is_zero(float128 a)
494
{
495
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
496
}
497

    
498
#endif
499

    
500
#else /* CONFIG_SOFTFLOAT */
501

    
502
#include "softfloat-native.h"
503

    
504
#endif /* !CONFIG_SOFTFLOAT */
505

    
506
#endif /* !SOFTFLOAT_H */