Statistics
| Branch: | Revision:

root / hw / pxa2xx.c @ dc2a9045

History | View | Annotate | Download (69.2 kB)

1
/*
2
 * Intel XScale PXA255/270 processor support.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPL.
8
 */
9

    
10
#include "sysbus.h"
11
#include "pxa.h"
12
#include "sysemu.h"
13
#include "pc.h"
14
#include "i2c.h"
15
#include "ssi.h"
16
#include "qemu-char.h"
17
#include "blockdev.h"
18

    
19
static struct {
20
    target_phys_addr_t io_base;
21
    int irqn;
22
} pxa255_serial[] = {
23
    { 0x40100000, PXA2XX_PIC_FFUART },
24
    { 0x40200000, PXA2XX_PIC_BTUART },
25
    { 0x40700000, PXA2XX_PIC_STUART },
26
    { 0x41600000, PXA25X_PIC_HWUART },
27
    { 0, 0 }
28
}, pxa270_serial[] = {
29
    { 0x40100000, PXA2XX_PIC_FFUART },
30
    { 0x40200000, PXA2XX_PIC_BTUART },
31
    { 0x40700000, PXA2XX_PIC_STUART },
32
    { 0, 0 }
33
};
34

    
35
typedef struct PXASSPDef {
36
    target_phys_addr_t io_base;
37
    int irqn;
38
} PXASSPDef;
39

    
40
#if 0
41
static PXASSPDef pxa250_ssp[] = {
42
    { 0x41000000, PXA2XX_PIC_SSP },
43
    { 0, 0 }
44
};
45
#endif
46

    
47
static PXASSPDef pxa255_ssp[] = {
48
    { 0x41000000, PXA2XX_PIC_SSP },
49
    { 0x41400000, PXA25X_PIC_NSSP },
50
    { 0, 0 }
51
};
52

    
53
#if 0
54
static PXASSPDef pxa26x_ssp[] = {
55
    { 0x41000000, PXA2XX_PIC_SSP },
56
    { 0x41400000, PXA25X_PIC_NSSP },
57
    { 0x41500000, PXA26X_PIC_ASSP },
58
    { 0, 0 }
59
};
60
#endif
61

    
62
static PXASSPDef pxa27x_ssp[] = {
63
    { 0x41000000, PXA2XX_PIC_SSP },
64
    { 0x41700000, PXA27X_PIC_SSP2 },
65
    { 0x41900000, PXA2XX_PIC_SSP3 },
66
    { 0, 0 }
67
};
68

    
69
#define PMCR        0x00        /* Power Manager Control register */
70
#define PSSR        0x04        /* Power Manager Sleep Status register */
71
#define PSPR        0x08        /* Power Manager Scratch-Pad register */
72
#define PWER        0x0c        /* Power Manager Wake-Up Enable register */
73
#define PRER        0x10        /* Power Manager Rising-Edge Detect Enable register */
74
#define PFER        0x14        /* Power Manager Falling-Edge Detect Enable register */
75
#define PEDR        0x18        /* Power Manager Edge-Detect Status register */
76
#define PCFR        0x1c        /* Power Manager General Configuration register */
77
#define PGSR0        0x20        /* Power Manager GPIO Sleep-State register 0 */
78
#define PGSR1        0x24        /* Power Manager GPIO Sleep-State register 1 */
79
#define PGSR2        0x28        /* Power Manager GPIO Sleep-State register 2 */
80
#define PGSR3        0x2c        /* Power Manager GPIO Sleep-State register 3 */
81
#define RCSR        0x30        /* Reset Controller Status register */
82
#define PSLR        0x34        /* Power Manager Sleep Configuration register */
83
#define PTSR        0x38        /* Power Manager Standby Configuration register */
84
#define PVCR        0x40        /* Power Manager Voltage Change Control register */
85
#define PUCR        0x4c        /* Power Manager USIM Card Control/Status register */
86
#define PKWR        0x50        /* Power Manager Keyboard Wake-Up Enable register */
87
#define PKSR        0x54        /* Power Manager Keyboard Level-Detect Status */
88
#define PCMD0        0x80        /* Power Manager I2C Command register File 0 */
89
#define PCMD31        0xfc        /* Power Manager I2C Command register File 31 */
90

    
91
static uint64_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr,
92
                               unsigned size)
93
{
94
    PXA2xxState *s = (PXA2xxState *) opaque;
95

    
96
    switch (addr) {
97
    case PMCR ... PCMD31:
98
        if (addr & 3)
99
            goto fail;
100

    
101
        return s->pm_regs[addr >> 2];
102
    default:
103
    fail:
104
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105
        break;
106
    }
107
    return 0;
108
}
109

    
110
static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
111
                            uint64_t value, unsigned size)
112
{
113
    PXA2xxState *s = (PXA2xxState *) opaque;
114

    
115
    switch (addr) {
116
    case PMCR:
117
        /* Clear the write-one-to-clear bits... */
118
        s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119
        /* ...and set the plain r/w bits */
120
        s->pm_regs[addr >> 2] &= ~0x15;
121
        s->pm_regs[addr >> 2] |= value & 0x15;
122
        break;
123

    
124
    case PSSR:        /* Read-clean registers */
125
    case RCSR:
126
    case PKSR:
127
        s->pm_regs[addr >> 2] &= ~value;
128
        break;
129

    
130
    default:        /* Read-write registers */
131
        if (!(addr & 3)) {
132
            s->pm_regs[addr >> 2] = value;
133
            break;
134
        }
135

    
136
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137
        break;
138
    }
139
}
140

    
141
static const MemoryRegionOps pxa2xx_pm_ops = {
142
    .read = pxa2xx_pm_read,
143
    .write = pxa2xx_pm_write,
144
    .endianness = DEVICE_NATIVE_ENDIAN,
145
};
146

    
147
static const VMStateDescription vmstate_pxa2xx_pm = {
148
    .name = "pxa2xx_pm",
149
    .version_id = 0,
150
    .minimum_version_id = 0,
151
    .minimum_version_id_old = 0,
152
    .fields      = (VMStateField[]) {
153
        VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154
        VMSTATE_END_OF_LIST()
155
    }
156
};
157

    
158
#define CCCR        0x00        /* Core Clock Configuration register */
159
#define CKEN        0x04        /* Clock Enable register */
160
#define OSCC        0x08        /* Oscillator Configuration register */
161
#define CCSR        0x0c        /* Core Clock Status register */
162

    
163
static uint64_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr,
164
                               unsigned size)
165
{
166
    PXA2xxState *s = (PXA2xxState *) opaque;
167

    
168
    switch (addr) {
169
    case CCCR:
170
    case CKEN:
171
    case OSCC:
172
        return s->cm_regs[addr >> 2];
173

    
174
    case CCSR:
175
        return s->cm_regs[CCCR >> 2] | (3 << 28);
176

    
177
    default:
178
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179
        break;
180
    }
181
    return 0;
182
}
183

    
184
static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
185
                            uint64_t value, unsigned size)
186
{
187
    PXA2xxState *s = (PXA2xxState *) opaque;
188

    
189
    switch (addr) {
190
    case CCCR:
191
    case CKEN:
192
        s->cm_regs[addr >> 2] = value;
193
        break;
194

    
195
    case OSCC:
196
        s->cm_regs[addr >> 2] &= ~0x6c;
197
        s->cm_regs[addr >> 2] |= value & 0x6e;
198
        if ((value >> 1) & 1)                        /* OON */
199
            s->cm_regs[addr >> 2] |= 1 << 0;        /* Oscillator is now stable */
200
        break;
201

    
202
    default:
203
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204
        break;
205
    }
206
}
207

    
208
static const MemoryRegionOps pxa2xx_cm_ops = {
209
    .read = pxa2xx_cm_read,
210
    .write = pxa2xx_cm_write,
211
    .endianness = DEVICE_NATIVE_ENDIAN,
212
};
213

    
214
static const VMStateDescription vmstate_pxa2xx_cm = {
215
    .name = "pxa2xx_cm",
216
    .version_id = 0,
217
    .minimum_version_id = 0,
218
    .minimum_version_id_old = 0,
219
    .fields      = (VMStateField[]) {
220
        VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221
        VMSTATE_UINT32(clkcfg, PXA2xxState),
222
        VMSTATE_UINT32(pmnc, PXA2xxState),
223
        VMSTATE_END_OF_LIST()
224
    }
225
};
226

    
227
static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
228
{
229
    PXA2xxState *s = (PXA2xxState *) opaque;
230

    
231
    switch (reg) {
232
    case 6:        /* Clock Configuration register */
233
        return s->clkcfg;
234

    
235
    case 7:        /* Power Mode register */
236
        return 0;
237

    
238
    default:
239
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
240
        break;
241
    }
242
    return 0;
243
}
244

    
245
static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
246
                uint32_t value)
247
{
248
    PXA2xxState *s = (PXA2xxState *) opaque;
249
    static const char *pwrmode[8] = {
250
        "Normal", "Idle", "Deep-idle", "Standby",
251
        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
252
    };
253

    
254
    switch (reg) {
255
    case 6:        /* Clock Configuration register */
256
        s->clkcfg = value & 0xf;
257
        if (value & 2)
258
            printf("%s: CPU frequency change attempt\n", __FUNCTION__);
259
        break;
260

    
261
    case 7:        /* Power Mode register */
262
        if (value & 8)
263
            printf("%s: CPU voltage change attempt\n", __FUNCTION__);
264
        switch (value & 7) {
265
        case 0:
266
            /* Do nothing */
267
            break;
268

    
269
        case 1:
270
            /* Idle */
271
            if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) {        /* CPDIS */
272
                cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
273
                break;
274
            }
275
            /* Fall through.  */
276

    
277
        case 2:
278
            /* Deep-Idle */
279
            cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
280
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
281
            goto message;
282

    
283
        case 3:
284
            s->cpu->env.uncached_cpsr =
285
                    ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
286
            s->cpu->env.cp15.c1_sys = 0;
287
            s->cpu->env.cp15.c1_coproc = 0;
288
            s->cpu->env.cp15.c2_base0 = 0;
289
            s->cpu->env.cp15.c3 = 0;
290
            s->pm_regs[PSSR >> 2] |= 0x8;        /* Set STS */
291
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
292

    
293
            /*
294
             * The scratch-pad register is almost universally used
295
             * for storing the return address on suspend.  For the
296
             * lack of a resuming bootloader, perform a jump
297
             * directly to that address.
298
             */
299
            memset(s->cpu->env.regs, 0, 4 * 15);
300
            s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
301

    
302
#if 0
303
            buffer = 0xe59ff000;        /* ldr     pc, [pc, #0] */
304
            cpu_physical_memory_write(0, &buffer, 4);
305
            buffer = s->pm_regs[PSPR >> 2];
306
            cpu_physical_memory_write(8, &buffer, 4);
307
#endif
308

    
309
            /* Suspend */
310
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
311

    
312
            goto message;
313

    
314
        default:
315
        message:
316
            printf("%s: machine entered %s mode\n", __FUNCTION__,
317
                            pwrmode[value & 7]);
318
        }
319
        break;
320

    
321
    default:
322
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
323
        break;
324
    }
325
}
326

    
327
static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
328
{
329
    switch (crm) {
330
    case 0:
331
        return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
332
    default:
333
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
334
        break;
335
    }
336
    return 0;
337
}
338

    
339
static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
340
                uint32_t value)
341
{
342
    switch (crm) {
343
    case 0:
344
        pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
345
        break;
346
    default:
347
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
348
        break;
349
    }
350
}
351

    
352
static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
353
                              uint64_t *value)
354
{
355
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
356
    *value = s->pmnc;
357
    return 0;
358
}
359

    
360
static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
361
                               uint64_t value)
362
{
363
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
364
    s->pmnc = value;
365
    return 0;
366
}
367

    
368
static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
369
                              uint64_t *value)
370
{
371
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
372
    if (s->pmnc & 1) {
373
        *value = qemu_get_clock_ns(vm_clock);
374
    } else {
375
        *value = 0;
376
    }
377
    return 0;
378
}
379

    
380
static const ARMCPRegInfo pxa_cp_reginfo[] = {
381
    /* cp14 crn==1: perf registers */
382
    { .name = "CPPMNC", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
383
      .access = PL1_RW,
384
      .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
385
    { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
386
      .access = PL1_RW,
387
      .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
388
    { .name = "CPINTEN", .cp = 14, .crn = 1, .crm = 4, .opc1 = 0, .opc2 = 0,
389
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
390
    { .name = "CPFLAG", .cp = 14, .crn = 1, .crm = 5, .opc1 = 0, .opc2 = 0,
391
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
392
    { .name = "CPEVTSEL", .cp = 14, .crn = 1, .crm = 8, .opc1 = 0, .opc2 = 0,
393
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
394
    /* cp14 crn==2: performance count registers */
395
    { .name = "CPPMN0", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
396
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
397
    { .name = "CPPMN1", .cp = 14, .crn = 2, .crm = 1, .opc1 = 0, .opc2 = 0,
398
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
399
    { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
400
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
401
    { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
402
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
403
    REGINFO_SENTINEL
404
};
405

    
406
static void pxa2xx_setup_cp14(PXA2xxState *s)
407
{
408
    define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
409
}
410

    
411
#define MDCNFG                0x00        /* SDRAM Configuration register */
412
#define MDREFR                0x04        /* SDRAM Refresh Control register */
413
#define MSC0                0x08        /* Static Memory Control register 0 */
414
#define MSC1                0x0c        /* Static Memory Control register 1 */
415
#define MSC2                0x10        /* Static Memory Control register 2 */
416
#define MECR                0x14        /* Expansion Memory Bus Config register */
417
#define SXCNFG                0x1c        /* Synchronous Static Memory Config register */
418
#define MCMEM0                0x28        /* PC Card Memory Socket 0 Timing register */
419
#define MCMEM1                0x2c        /* PC Card Memory Socket 1 Timing register */
420
#define MCATT0                0x30        /* PC Card Attribute Socket 0 register */
421
#define MCATT1                0x34        /* PC Card Attribute Socket 1 register */
422
#define MCIO0                0x38        /* PC Card I/O Socket 0 Timing register */
423
#define MCIO1                0x3c        /* PC Card I/O Socket 1 Timing register */
424
#define MDMRS                0x40        /* SDRAM Mode Register Set Config register */
425
#define BOOT_DEF        0x44        /* Boot-time Default Configuration register */
426
#define ARB_CNTL        0x48        /* Arbiter Control register */
427
#define BSCNTR0                0x4c        /* Memory Buffer Strength Control register 0 */
428
#define BSCNTR1                0x50        /* Memory Buffer Strength Control register 1 */
429
#define LCDBSCNTR        0x54        /* LCD Buffer Strength Control register */
430
#define MDMRSLP                0x58        /* Low Power SDRAM Mode Set Config register */
431
#define BSCNTR2                0x5c        /* Memory Buffer Strength Control register 2 */
432
#define BSCNTR3                0x60        /* Memory Buffer Strength Control register 3 */
433
#define SA1110                0x64        /* SA-1110 Memory Compatibility register */
434

    
435
static uint64_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr,
436
                               unsigned size)
437
{
438
    PXA2xxState *s = (PXA2xxState *) opaque;
439

    
440
    switch (addr) {
441
    case MDCNFG ... SA1110:
442
        if ((addr & 3) == 0)
443
            return s->mm_regs[addr >> 2];
444

    
445
    default:
446
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
447
        break;
448
    }
449
    return 0;
450
}
451

    
452
static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
453
                            uint64_t value, unsigned size)
454
{
455
    PXA2xxState *s = (PXA2xxState *) opaque;
456

    
457
    switch (addr) {
458
    case MDCNFG ... SA1110:
459
        if ((addr & 3) == 0) {
460
            s->mm_regs[addr >> 2] = value;
461
            break;
462
        }
463

    
464
    default:
465
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
466
        break;
467
    }
468
}
469

    
470
static const MemoryRegionOps pxa2xx_mm_ops = {
471
    .read = pxa2xx_mm_read,
472
    .write = pxa2xx_mm_write,
473
    .endianness = DEVICE_NATIVE_ENDIAN,
474
};
475

    
476
static const VMStateDescription vmstate_pxa2xx_mm = {
477
    .name = "pxa2xx_mm",
478
    .version_id = 0,
479
    .minimum_version_id = 0,
480
    .minimum_version_id_old = 0,
481
    .fields      = (VMStateField[]) {
482
        VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
483
        VMSTATE_END_OF_LIST()
484
    }
485
};
486

    
487
/* Synchronous Serial Ports */
488
typedef struct {
489
    SysBusDevice busdev;
490
    MemoryRegion iomem;
491
    qemu_irq irq;
492
    int enable;
493
    SSIBus *bus;
494

    
495
    uint32_t sscr[2];
496
    uint32_t sspsp;
497
    uint32_t ssto;
498
    uint32_t ssitr;
499
    uint32_t sssr;
500
    uint8_t sstsa;
501
    uint8_t ssrsa;
502
    uint8_t ssacd;
503

    
504
    uint32_t rx_fifo[16];
505
    int rx_level;
506
    int rx_start;
507
} PXA2xxSSPState;
508

    
509
#define SSCR0        0x00        /* SSP Control register 0 */
510
#define SSCR1        0x04        /* SSP Control register 1 */
511
#define SSSR        0x08        /* SSP Status register */
512
#define SSITR        0x0c        /* SSP Interrupt Test register */
513
#define SSDR        0x10        /* SSP Data register */
514
#define SSTO        0x28        /* SSP Time-Out register */
515
#define SSPSP        0x2c        /* SSP Programmable Serial Protocol register */
516
#define SSTSA        0x30        /* SSP TX Time Slot Active register */
517
#define SSRSA        0x34        /* SSP RX Time Slot Active register */
518
#define SSTSS        0x38        /* SSP Time Slot Status register */
519
#define SSACD        0x3c        /* SSP Audio Clock Divider register */
520

    
521
/* Bitfields for above registers */
522
#define SSCR0_SPI(x)        (((x) & 0x30) == 0x00)
523
#define SSCR0_SSP(x)        (((x) & 0x30) == 0x10)
524
#define SSCR0_UWIRE(x)        (((x) & 0x30) == 0x20)
525
#define SSCR0_PSP(x)        (((x) & 0x30) == 0x30)
526
#define SSCR0_SSE        (1 << 7)
527
#define SSCR0_RIM        (1 << 22)
528
#define SSCR0_TIM        (1 << 23)
529
#define SSCR0_MOD        (1 << 31)
530
#define SSCR0_DSS(x)        (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
531
#define SSCR1_RIE        (1 << 0)
532
#define SSCR1_TIE        (1 << 1)
533
#define SSCR1_LBM        (1 << 2)
534
#define SSCR1_MWDS        (1 << 5)
535
#define SSCR1_TFT(x)        ((((x) >> 6) & 0xf) + 1)
536
#define SSCR1_RFT(x)        ((((x) >> 10) & 0xf) + 1)
537
#define SSCR1_EFWR        (1 << 14)
538
#define SSCR1_PINTE        (1 << 18)
539
#define SSCR1_TINTE        (1 << 19)
540
#define SSCR1_RSRE        (1 << 20)
541
#define SSCR1_TSRE        (1 << 21)
542
#define SSCR1_EBCEI        (1 << 29)
543
#define SSITR_INT        (7 << 5)
544
#define SSSR_TNF        (1 << 2)
545
#define SSSR_RNE        (1 << 3)
546
#define SSSR_TFS        (1 << 5)
547
#define SSSR_RFS        (1 << 6)
548
#define SSSR_ROR        (1 << 7)
549
#define SSSR_PINT        (1 << 18)
550
#define SSSR_TINT        (1 << 19)
551
#define SSSR_EOC        (1 << 20)
552
#define SSSR_TUR        (1 << 21)
553
#define SSSR_BCE        (1 << 23)
554
#define SSSR_RW                0x00bc0080
555

    
556
static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
557
{
558
    int level = 0;
559

    
560
    level |= s->ssitr & SSITR_INT;
561
    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
562
    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
563
    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
564
    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
565
    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
566
    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
567
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
568
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
569
    qemu_set_irq(s->irq, !!level);
570
}
571

    
572
static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
573
{
574
    s->sssr &= ~(0xf << 12);        /* Clear RFL */
575
    s->sssr &= ~(0xf << 8);        /* Clear TFL */
576
    s->sssr &= ~SSSR_TFS;
577
    s->sssr &= ~SSSR_TNF;
578
    if (s->enable) {
579
        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
580
        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
581
            s->sssr |= SSSR_RFS;
582
        else
583
            s->sssr &= ~SSSR_RFS;
584
        if (s->rx_level)
585
            s->sssr |= SSSR_RNE;
586
        else
587
            s->sssr &= ~SSSR_RNE;
588
        /* TX FIFO is never filled, so it is always in underrun
589
           condition if SSP is enabled */
590
        s->sssr |= SSSR_TFS;
591
        s->sssr |= SSSR_TNF;
592
    }
593

    
594
    pxa2xx_ssp_int_update(s);
595
}
596

    
597
static uint64_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr,
598
                                unsigned size)
599
{
600
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
601
    uint32_t retval;
602

    
603
    switch (addr) {
604
    case SSCR0:
605
        return s->sscr[0];
606
    case SSCR1:
607
        return s->sscr[1];
608
    case SSPSP:
609
        return s->sspsp;
610
    case SSTO:
611
        return s->ssto;
612
    case SSITR:
613
        return s->ssitr;
614
    case SSSR:
615
        return s->sssr | s->ssitr;
616
    case SSDR:
617
        if (!s->enable)
618
            return 0xffffffff;
619
        if (s->rx_level < 1) {
620
            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
621
            return 0xffffffff;
622
        }
623
        s->rx_level --;
624
        retval = s->rx_fifo[s->rx_start ++];
625
        s->rx_start &= 0xf;
626
        pxa2xx_ssp_fifo_update(s);
627
        return retval;
628
    case SSTSA:
629
        return s->sstsa;
630
    case SSRSA:
631
        return s->ssrsa;
632
    case SSTSS:
633
        return 0;
634
    case SSACD:
635
        return s->ssacd;
636
    default:
637
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
638
        break;
639
    }
640
    return 0;
641
}
642

    
643
static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
644
                             uint64_t value64, unsigned size)
645
{
646
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
647
    uint32_t value = value64;
648

    
649
    switch (addr) {
650
    case SSCR0:
651
        s->sscr[0] = value & 0xc7ffffff;
652
        s->enable = value & SSCR0_SSE;
653
        if (value & SSCR0_MOD)
654
            printf("%s: Attempt to use network mode\n", __FUNCTION__);
655
        if (s->enable && SSCR0_DSS(value) < 4)
656
            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
657
                            SSCR0_DSS(value));
658
        if (!(value & SSCR0_SSE)) {
659
            s->sssr = 0;
660
            s->ssitr = 0;
661
            s->rx_level = 0;
662
        }
663
        pxa2xx_ssp_fifo_update(s);
664
        break;
665

    
666
    case SSCR1:
667
        s->sscr[1] = value;
668
        if (value & (SSCR1_LBM | SSCR1_EFWR))
669
            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
670
        pxa2xx_ssp_fifo_update(s);
671
        break;
672

    
673
    case SSPSP:
674
        s->sspsp = value;
675
        break;
676

    
677
    case SSTO:
678
        s->ssto = value;
679
        break;
680

    
681
    case SSITR:
682
        s->ssitr = value & SSITR_INT;
683
        pxa2xx_ssp_int_update(s);
684
        break;
685

    
686
    case SSSR:
687
        s->sssr &= ~(value & SSSR_RW);
688
        pxa2xx_ssp_int_update(s);
689
        break;
690

    
691
    case SSDR:
692
        if (SSCR0_UWIRE(s->sscr[0])) {
693
            if (s->sscr[1] & SSCR1_MWDS)
694
                value &= 0xffff;
695
            else
696
                value &= 0xff;
697
        } else
698
            /* Note how 32bits overflow does no harm here */
699
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
700

    
701
        /* Data goes from here to the Tx FIFO and is shifted out from
702
         * there directly to the slave, no need to buffer it.
703
         */
704
        if (s->enable) {
705
            uint32_t readval;
706
            readval = ssi_transfer(s->bus, value);
707
            if (s->rx_level < 0x10) {
708
                s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
709
            } else {
710
                s->sssr |= SSSR_ROR;
711
            }
712
        }
713
        pxa2xx_ssp_fifo_update(s);
714
        break;
715

    
716
    case SSTSA:
717
        s->sstsa = value;
718
        break;
719

    
720
    case SSRSA:
721
        s->ssrsa = value;
722
        break;
723

    
724
    case SSACD:
725
        s->ssacd = value;
726
        break;
727

    
728
    default:
729
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
730
        break;
731
    }
732
}
733

    
734
static const MemoryRegionOps pxa2xx_ssp_ops = {
735
    .read = pxa2xx_ssp_read,
736
    .write = pxa2xx_ssp_write,
737
    .endianness = DEVICE_NATIVE_ENDIAN,
738
};
739

    
740
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
741
{
742
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
743
    int i;
744

    
745
    qemu_put_be32(f, s->enable);
746

    
747
    qemu_put_be32s(f, &s->sscr[0]);
748
    qemu_put_be32s(f, &s->sscr[1]);
749
    qemu_put_be32s(f, &s->sspsp);
750
    qemu_put_be32s(f, &s->ssto);
751
    qemu_put_be32s(f, &s->ssitr);
752
    qemu_put_be32s(f, &s->sssr);
753
    qemu_put_8s(f, &s->sstsa);
754
    qemu_put_8s(f, &s->ssrsa);
755
    qemu_put_8s(f, &s->ssacd);
756

    
757
    qemu_put_byte(f, s->rx_level);
758
    for (i = 0; i < s->rx_level; i ++)
759
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
760
}
761

    
762
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
763
{
764
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
765
    int i;
766

    
767
    s->enable = qemu_get_be32(f);
768

    
769
    qemu_get_be32s(f, &s->sscr[0]);
770
    qemu_get_be32s(f, &s->sscr[1]);
771
    qemu_get_be32s(f, &s->sspsp);
772
    qemu_get_be32s(f, &s->ssto);
773
    qemu_get_be32s(f, &s->ssitr);
774
    qemu_get_be32s(f, &s->sssr);
775
    qemu_get_8s(f, &s->sstsa);
776
    qemu_get_8s(f, &s->ssrsa);
777
    qemu_get_8s(f, &s->ssacd);
778

    
779
    s->rx_level = qemu_get_byte(f);
780
    s->rx_start = 0;
781
    for (i = 0; i < s->rx_level; i ++)
782
        s->rx_fifo[i] = qemu_get_byte(f);
783

    
784
    return 0;
785
}
786

    
787
static int pxa2xx_ssp_init(SysBusDevice *dev)
788
{
789
    PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
790

    
791
    sysbus_init_irq(dev, &s->irq);
792

    
793
    memory_region_init_io(&s->iomem, &pxa2xx_ssp_ops, s, "pxa2xx-ssp", 0x1000);
794
    sysbus_init_mmio(dev, &s->iomem);
795
    register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
796
                    pxa2xx_ssp_save, pxa2xx_ssp_load, s);
797

    
798
    s->bus = ssi_create_bus(&dev->qdev, "ssi");
799
    return 0;
800
}
801

    
802
/* Real-Time Clock */
803
#define RCNR                0x00        /* RTC Counter register */
804
#define RTAR                0x04        /* RTC Alarm register */
805
#define RTSR                0x08        /* RTC Status register */
806
#define RTTR                0x0c        /* RTC Timer Trim register */
807
#define RDCR                0x10        /* RTC Day Counter register */
808
#define RYCR                0x14        /* RTC Year Counter register */
809
#define RDAR1                0x18        /* RTC Wristwatch Day Alarm register 1 */
810
#define RYAR1                0x1c        /* RTC Wristwatch Year Alarm register 1 */
811
#define RDAR2                0x20        /* RTC Wristwatch Day Alarm register 2 */
812
#define RYAR2                0x24        /* RTC Wristwatch Year Alarm register 2 */
813
#define SWCR                0x28        /* RTC Stopwatch Counter register */
814
#define SWAR1                0x2c        /* RTC Stopwatch Alarm register 1 */
815
#define SWAR2                0x30        /* RTC Stopwatch Alarm register 2 */
816
#define RTCPICR                0x34        /* RTC Periodic Interrupt Counter register */
817
#define PIAR                0x38        /* RTC Periodic Interrupt Alarm register */
818

    
819
typedef struct {
820
    SysBusDevice busdev;
821
    MemoryRegion iomem;
822
    uint32_t rttr;
823
    uint32_t rtsr;
824
    uint32_t rtar;
825
    uint32_t rdar1;
826
    uint32_t rdar2;
827
    uint32_t ryar1;
828
    uint32_t ryar2;
829
    uint32_t swar1;
830
    uint32_t swar2;
831
    uint32_t piar;
832
    uint32_t last_rcnr;
833
    uint32_t last_rdcr;
834
    uint32_t last_rycr;
835
    uint32_t last_swcr;
836
    uint32_t last_rtcpicr;
837
    int64_t last_hz;
838
    int64_t last_sw;
839
    int64_t last_pi;
840
    QEMUTimer *rtc_hz;
841
    QEMUTimer *rtc_rdal1;
842
    QEMUTimer *rtc_rdal2;
843
    QEMUTimer *rtc_swal1;
844
    QEMUTimer *rtc_swal2;
845
    QEMUTimer *rtc_pi;
846
    qemu_irq rtc_irq;
847
} PXA2xxRTCState;
848

    
849
static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
850
{
851
    qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
852
}
853

    
854
static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
855
{
856
    int64_t rt = qemu_get_clock_ms(rtc_clock);
857
    s->last_rcnr += ((rt - s->last_hz) << 15) /
858
            (1000 * ((s->rttr & 0xffff) + 1));
859
    s->last_rdcr += ((rt - s->last_hz) << 15) /
860
            (1000 * ((s->rttr & 0xffff) + 1));
861
    s->last_hz = rt;
862
}
863

    
864
static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
865
{
866
    int64_t rt = qemu_get_clock_ms(rtc_clock);
867
    if (s->rtsr & (1 << 12))
868
        s->last_swcr += (rt - s->last_sw) / 10;
869
    s->last_sw = rt;
870
}
871

    
872
static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
873
{
874
    int64_t rt = qemu_get_clock_ms(rtc_clock);
875
    if (s->rtsr & (1 << 15))
876
        s->last_swcr += rt - s->last_pi;
877
    s->last_pi = rt;
878
}
879

    
880
static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
881
                uint32_t rtsr)
882
{
883
    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
884
        qemu_mod_timer(s->rtc_hz, s->last_hz +
885
                (((s->rtar - s->last_rcnr) * 1000 *
886
                  ((s->rttr & 0xffff) + 1)) >> 15));
887
    else
888
        qemu_del_timer(s->rtc_hz);
889

    
890
    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
891
        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
892
                (((s->rdar1 - s->last_rdcr) * 1000 *
893
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
894
    else
895
        qemu_del_timer(s->rtc_rdal1);
896

    
897
    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
898
        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
899
                (((s->rdar2 - s->last_rdcr) * 1000 *
900
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
901
    else
902
        qemu_del_timer(s->rtc_rdal2);
903

    
904
    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
905
        qemu_mod_timer(s->rtc_swal1, s->last_sw +
906
                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
907
    else
908
        qemu_del_timer(s->rtc_swal1);
909

    
910
    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
911
        qemu_mod_timer(s->rtc_swal2, s->last_sw +
912
                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
913
    else
914
        qemu_del_timer(s->rtc_swal2);
915

    
916
    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
917
        qemu_mod_timer(s->rtc_pi, s->last_pi +
918
                        (s->piar & 0xffff) - s->last_rtcpicr);
919
    else
920
        qemu_del_timer(s->rtc_pi);
921
}
922

    
923
static inline void pxa2xx_rtc_hz_tick(void *opaque)
924
{
925
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
926
    s->rtsr |= (1 << 0);
927
    pxa2xx_rtc_alarm_update(s, s->rtsr);
928
    pxa2xx_rtc_int_update(s);
929
}
930

    
931
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
932
{
933
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
934
    s->rtsr |= (1 << 4);
935
    pxa2xx_rtc_alarm_update(s, s->rtsr);
936
    pxa2xx_rtc_int_update(s);
937
}
938

    
939
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
940
{
941
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
942
    s->rtsr |= (1 << 6);
943
    pxa2xx_rtc_alarm_update(s, s->rtsr);
944
    pxa2xx_rtc_int_update(s);
945
}
946

    
947
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
948
{
949
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
950
    s->rtsr |= (1 << 8);
951
    pxa2xx_rtc_alarm_update(s, s->rtsr);
952
    pxa2xx_rtc_int_update(s);
953
}
954

    
955
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
956
{
957
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
958
    s->rtsr |= (1 << 10);
959
    pxa2xx_rtc_alarm_update(s, s->rtsr);
960
    pxa2xx_rtc_int_update(s);
961
}
962

    
963
static inline void pxa2xx_rtc_pi_tick(void *opaque)
964
{
965
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
966
    s->rtsr |= (1 << 13);
967
    pxa2xx_rtc_piupdate(s);
968
    s->last_rtcpicr = 0;
969
    pxa2xx_rtc_alarm_update(s, s->rtsr);
970
    pxa2xx_rtc_int_update(s);
971
}
972

    
973
static uint64_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr,
974
                                unsigned size)
975
{
976
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
977

    
978
    switch (addr) {
979
    case RTTR:
980
        return s->rttr;
981
    case RTSR:
982
        return s->rtsr;
983
    case RTAR:
984
        return s->rtar;
985
    case RDAR1:
986
        return s->rdar1;
987
    case RDAR2:
988
        return s->rdar2;
989
    case RYAR1:
990
        return s->ryar1;
991
    case RYAR2:
992
        return s->ryar2;
993
    case SWAR1:
994
        return s->swar1;
995
    case SWAR2:
996
        return s->swar2;
997
    case PIAR:
998
        return s->piar;
999
    case RCNR:
1000
        return s->last_rcnr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
1001
                (1000 * ((s->rttr & 0xffff) + 1));
1002
    case RDCR:
1003
        return s->last_rdcr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
1004
                (1000 * ((s->rttr & 0xffff) + 1));
1005
    case RYCR:
1006
        return s->last_rycr;
1007
    case SWCR:
1008
        if (s->rtsr & (1 << 12))
1009
            return s->last_swcr + (qemu_get_clock_ms(rtc_clock) - s->last_sw) / 10;
1010
        else
1011
            return s->last_swcr;
1012
    default:
1013
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1014
        break;
1015
    }
1016
    return 0;
1017
}
1018

    
1019
static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1020
                             uint64_t value64, unsigned size)
1021
{
1022
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1023
    uint32_t value = value64;
1024

    
1025
    switch (addr) {
1026
    case RTTR:
1027
        if (!(s->rttr & (1 << 31))) {
1028
            pxa2xx_rtc_hzupdate(s);
1029
            s->rttr = value;
1030
            pxa2xx_rtc_alarm_update(s, s->rtsr);
1031
        }
1032
        break;
1033

    
1034
    case RTSR:
1035
        if ((s->rtsr ^ value) & (1 << 15))
1036
            pxa2xx_rtc_piupdate(s);
1037

    
1038
        if ((s->rtsr ^ value) & (1 << 12))
1039
            pxa2xx_rtc_swupdate(s);
1040

    
1041
        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1042
            pxa2xx_rtc_alarm_update(s, value);
1043

    
1044
        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1045
        pxa2xx_rtc_int_update(s);
1046
        break;
1047

    
1048
    case RTAR:
1049
        s->rtar = value;
1050
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1051
        break;
1052

    
1053
    case RDAR1:
1054
        s->rdar1 = value;
1055
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1056
        break;
1057

    
1058
    case RDAR2:
1059
        s->rdar2 = value;
1060
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1061
        break;
1062

    
1063
    case RYAR1:
1064
        s->ryar1 = value;
1065
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1066
        break;
1067

    
1068
    case RYAR2:
1069
        s->ryar2 = value;
1070
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1071
        break;
1072

    
1073
    case SWAR1:
1074
        pxa2xx_rtc_swupdate(s);
1075
        s->swar1 = value;
1076
        s->last_swcr = 0;
1077
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1078
        break;
1079

    
1080
    case SWAR2:
1081
        s->swar2 = value;
1082
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1083
        break;
1084

    
1085
    case PIAR:
1086
        s->piar = value;
1087
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1088
        break;
1089

    
1090
    case RCNR:
1091
        pxa2xx_rtc_hzupdate(s);
1092
        s->last_rcnr = value;
1093
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1094
        break;
1095

    
1096
    case RDCR:
1097
        pxa2xx_rtc_hzupdate(s);
1098
        s->last_rdcr = value;
1099
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1100
        break;
1101

    
1102
    case RYCR:
1103
        s->last_rycr = value;
1104
        break;
1105

    
1106
    case SWCR:
1107
        pxa2xx_rtc_swupdate(s);
1108
        s->last_swcr = value;
1109
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1110
        break;
1111

    
1112
    case RTCPICR:
1113
        pxa2xx_rtc_piupdate(s);
1114
        s->last_rtcpicr = value & 0xffff;
1115
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1116
        break;
1117

    
1118
    default:
1119
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1120
    }
1121
}
1122

    
1123
static const MemoryRegionOps pxa2xx_rtc_ops = {
1124
    .read = pxa2xx_rtc_read,
1125
    .write = pxa2xx_rtc_write,
1126
    .endianness = DEVICE_NATIVE_ENDIAN,
1127
};
1128

    
1129
static int pxa2xx_rtc_init(SysBusDevice *dev)
1130
{
1131
    PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1132
    struct tm tm;
1133
    int wom;
1134

    
1135
    s->rttr = 0x7fff;
1136
    s->rtsr = 0;
1137

    
1138
    qemu_get_timedate(&tm, 0);
1139
    wom = ((tm.tm_mday - 1) / 7) + 1;
1140

    
1141
    s->last_rcnr = (uint32_t) mktimegm(&tm);
1142
    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1143
            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1144
    s->last_rycr = ((tm.tm_year + 1900) << 9) |
1145
            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1146
    s->last_swcr = (tm.tm_hour << 19) |
1147
            (tm.tm_min << 13) | (tm.tm_sec << 7);
1148
    s->last_rtcpicr = 0;
1149
    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rtc_clock);
1150

    
1151
    s->rtc_hz    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1152
    s->rtc_rdal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1153
    s->rtc_rdal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1154
    s->rtc_swal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1155
    s->rtc_swal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1156
    s->rtc_pi    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1157

    
1158
    sysbus_init_irq(dev, &s->rtc_irq);
1159

    
1160
    memory_region_init_io(&s->iomem, &pxa2xx_rtc_ops, s, "pxa2xx-rtc", 0x10000);
1161
    sysbus_init_mmio(dev, &s->iomem);
1162

    
1163
    return 0;
1164
}
1165

    
1166
static void pxa2xx_rtc_pre_save(void *opaque)
1167
{
1168
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1169

    
1170
    pxa2xx_rtc_hzupdate(s);
1171
    pxa2xx_rtc_piupdate(s);
1172
    pxa2xx_rtc_swupdate(s);
1173
}
1174

    
1175
static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1176
{
1177
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1178

    
1179
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1180

    
1181
    return 0;
1182
}
1183

    
1184
static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1185
    .name = "pxa2xx_rtc",
1186
    .version_id = 0,
1187
    .minimum_version_id = 0,
1188
    .minimum_version_id_old = 0,
1189
    .pre_save = pxa2xx_rtc_pre_save,
1190
    .post_load = pxa2xx_rtc_post_load,
1191
    .fields = (VMStateField[]) {
1192
        VMSTATE_UINT32(rttr, PXA2xxRTCState),
1193
        VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1194
        VMSTATE_UINT32(rtar, PXA2xxRTCState),
1195
        VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1196
        VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1197
        VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1198
        VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1199
        VMSTATE_UINT32(swar1, PXA2xxRTCState),
1200
        VMSTATE_UINT32(swar2, PXA2xxRTCState),
1201
        VMSTATE_UINT32(piar, PXA2xxRTCState),
1202
        VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1203
        VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1204
        VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1205
        VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1206
        VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1207
        VMSTATE_INT64(last_hz, PXA2xxRTCState),
1208
        VMSTATE_INT64(last_sw, PXA2xxRTCState),
1209
        VMSTATE_INT64(last_pi, PXA2xxRTCState),
1210
        VMSTATE_END_OF_LIST(),
1211
    },
1212
};
1213

    
1214
static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1215
{
1216
    DeviceClass *dc = DEVICE_CLASS(klass);
1217
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1218

    
1219
    k->init = pxa2xx_rtc_init;
1220
    dc->desc = "PXA2xx RTC Controller";
1221
    dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1222
}
1223

    
1224
static TypeInfo pxa2xx_rtc_sysbus_info = {
1225
    .name          = "pxa2xx_rtc",
1226
    .parent        = TYPE_SYS_BUS_DEVICE,
1227
    .instance_size = sizeof(PXA2xxRTCState),
1228
    .class_init    = pxa2xx_rtc_sysbus_class_init,
1229
};
1230

    
1231
/* I2C Interface */
1232
typedef struct {
1233
    I2CSlave i2c;
1234
    PXA2xxI2CState *host;
1235
} PXA2xxI2CSlaveState;
1236

    
1237
struct PXA2xxI2CState {
1238
    SysBusDevice busdev;
1239
    MemoryRegion iomem;
1240
    PXA2xxI2CSlaveState *slave;
1241
    i2c_bus *bus;
1242
    qemu_irq irq;
1243
    uint32_t offset;
1244
    uint32_t region_size;
1245

    
1246
    uint16_t control;
1247
    uint16_t status;
1248
    uint8_t ibmr;
1249
    uint8_t data;
1250
};
1251

    
1252
#define IBMR        0x80        /* I2C Bus Monitor register */
1253
#define IDBR        0x88        /* I2C Data Buffer register */
1254
#define ICR        0x90        /* I2C Control register */
1255
#define ISR        0x98        /* I2C Status register */
1256
#define ISAR        0xa0        /* I2C Slave Address register */
1257

    
1258
static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1259
{
1260
    uint16_t level = 0;
1261
    level |= s->status & s->control & (1 << 10);                /* BED */
1262
    level |= (s->status & (1 << 7)) && (s->control & (1 << 9));        /* IRF */
1263
    level |= (s->status & (1 << 6)) && (s->control & (1 << 8));        /* ITE */
1264
    level |= s->status & (1 << 9);                                /* SAD */
1265
    qemu_set_irq(s->irq, !!level);
1266
}
1267

    
1268
/* These are only stubs now.  */
1269
static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1270
{
1271
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1272
    PXA2xxI2CState *s = slave->host;
1273

    
1274
    switch (event) {
1275
    case I2C_START_SEND:
1276
        s->status |= (1 << 9);                                /* set SAD */
1277
        s->status &= ~(1 << 0);                                /* clear RWM */
1278
        break;
1279
    case I2C_START_RECV:
1280
        s->status |= (1 << 9);                                /* set SAD */
1281
        s->status |= 1 << 0;                                /* set RWM */
1282
        break;
1283
    case I2C_FINISH:
1284
        s->status |= (1 << 4);                                /* set SSD */
1285
        break;
1286
    case I2C_NACK:
1287
        s->status |= 1 << 1;                                /* set ACKNAK */
1288
        break;
1289
    }
1290
    pxa2xx_i2c_update(s);
1291
}
1292

    
1293
static int pxa2xx_i2c_rx(I2CSlave *i2c)
1294
{
1295
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1296
    PXA2xxI2CState *s = slave->host;
1297
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1298
        return 0;
1299

    
1300
    if (s->status & (1 << 0)) {                        /* RWM */
1301
        s->status |= 1 << 6;                        /* set ITE */
1302
    }
1303
    pxa2xx_i2c_update(s);
1304

    
1305
    return s->data;
1306
}
1307

    
1308
static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1309
{
1310
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1311
    PXA2xxI2CState *s = slave->host;
1312
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1313
        return 1;
1314

    
1315
    if (!(s->status & (1 << 0))) {                /* RWM */
1316
        s->status |= 1 << 7;                        /* set IRF */
1317
        s->data = data;
1318
    }
1319
    pxa2xx_i2c_update(s);
1320

    
1321
    return 1;
1322
}
1323

    
1324
static uint64_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr,
1325
                                unsigned size)
1326
{
1327
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1328

    
1329
    addr -= s->offset;
1330
    switch (addr) {
1331
    case ICR:
1332
        return s->control;
1333
    case ISR:
1334
        return s->status | (i2c_bus_busy(s->bus) << 2);
1335
    case ISAR:
1336
        return s->slave->i2c.address;
1337
    case IDBR:
1338
        return s->data;
1339
    case IBMR:
1340
        if (s->status & (1 << 2))
1341
            s->ibmr ^= 3;        /* Fake SCL and SDA pin changes */
1342
        else
1343
            s->ibmr = 0;
1344
        return s->ibmr;
1345
    default:
1346
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1347
        break;
1348
    }
1349
    return 0;
1350
}
1351

    
1352
static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1353
                             uint64_t value64, unsigned size)
1354
{
1355
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1356
    uint32_t value = value64;
1357
    int ack;
1358

    
1359
    addr -= s->offset;
1360
    switch (addr) {
1361
    case ICR:
1362
        s->control = value & 0xfff7;
1363
        if ((value & (1 << 3)) && (value & (1 << 6))) {        /* TB and IUE */
1364
            /* TODO: slave mode */
1365
            if (value & (1 << 0)) {                        /* START condition */
1366
                if (s->data & 1)
1367
                    s->status |= 1 << 0;                /* set RWM */
1368
                else
1369
                    s->status &= ~(1 << 0);                /* clear RWM */
1370
                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1371
            } else {
1372
                if (s->status & (1 << 0)) {                /* RWM */
1373
                    s->data = i2c_recv(s->bus);
1374
                    if (value & (1 << 2))                /* ACKNAK */
1375
                        i2c_nack(s->bus);
1376
                    ack = 1;
1377
                } else
1378
                    ack = !i2c_send(s->bus, s->data);
1379
            }
1380

    
1381
            if (value & (1 << 1))                        /* STOP condition */
1382
                i2c_end_transfer(s->bus);
1383

    
1384
            if (ack) {
1385
                if (value & (1 << 0))                        /* START condition */
1386
                    s->status |= 1 << 6;                /* set ITE */
1387
                else
1388
                    if (s->status & (1 << 0))                /* RWM */
1389
                        s->status |= 1 << 7;                /* set IRF */
1390
                    else
1391
                        s->status |= 1 << 6;                /* set ITE */
1392
                s->status &= ~(1 << 1);                        /* clear ACKNAK */
1393
            } else {
1394
                s->status |= 1 << 6;                        /* set ITE */
1395
                s->status |= 1 << 10;                        /* set BED */
1396
                s->status |= 1 << 1;                        /* set ACKNAK */
1397
            }
1398
        }
1399
        if (!(value & (1 << 3)) && (value & (1 << 6)))        /* !TB and IUE */
1400
            if (value & (1 << 4))                        /* MA */
1401
                i2c_end_transfer(s->bus);
1402
        pxa2xx_i2c_update(s);
1403
        break;
1404

    
1405
    case ISR:
1406
        s->status &= ~(value & 0x07f0);
1407
        pxa2xx_i2c_update(s);
1408
        break;
1409

    
1410
    case ISAR:
1411
        i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1412
        break;
1413

    
1414
    case IDBR:
1415
        s->data = value & 0xff;
1416
        break;
1417

    
1418
    default:
1419
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1420
    }
1421
}
1422

    
1423
static const MemoryRegionOps pxa2xx_i2c_ops = {
1424
    .read = pxa2xx_i2c_read,
1425
    .write = pxa2xx_i2c_write,
1426
    .endianness = DEVICE_NATIVE_ENDIAN,
1427
};
1428

    
1429
static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1430
    .name = "pxa2xx_i2c_slave",
1431
    .version_id = 1,
1432
    .minimum_version_id = 1,
1433
    .minimum_version_id_old = 1,
1434
    .fields      = (VMStateField []) {
1435
        VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1436
        VMSTATE_END_OF_LIST()
1437
    }
1438
};
1439

    
1440
static const VMStateDescription vmstate_pxa2xx_i2c = {
1441
    .name = "pxa2xx_i2c",
1442
    .version_id = 1,
1443
    .minimum_version_id = 1,
1444
    .minimum_version_id_old = 1,
1445
    .fields      = (VMStateField []) {
1446
        VMSTATE_UINT16(control, PXA2xxI2CState),
1447
        VMSTATE_UINT16(status, PXA2xxI2CState),
1448
        VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1449
        VMSTATE_UINT8(data, PXA2xxI2CState),
1450
        VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1451
                               vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1452
        VMSTATE_END_OF_LIST()
1453
    }
1454
};
1455

    
1456
static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1457
{
1458
    /* Nothing to do.  */
1459
    return 0;
1460
}
1461

    
1462
static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1463
{
1464
    I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1465

    
1466
    k->init = pxa2xx_i2c_slave_init;
1467
    k->event = pxa2xx_i2c_event;
1468
    k->recv = pxa2xx_i2c_rx;
1469
    k->send = pxa2xx_i2c_tx;
1470
}
1471

    
1472
static TypeInfo pxa2xx_i2c_slave_info = {
1473
    .name          = "pxa2xx-i2c-slave",
1474
    .parent        = TYPE_I2C_SLAVE,
1475
    .instance_size = sizeof(PXA2xxI2CSlaveState),
1476
    .class_init    = pxa2xx_i2c_slave_class_init,
1477
};
1478

    
1479
PXA2xxI2CState *pxa2xx_i2c_init(target_phys_addr_t base,
1480
                qemu_irq irq, uint32_t region_size)
1481
{
1482
    DeviceState *dev;
1483
    SysBusDevice *i2c_dev;
1484
    PXA2xxI2CState *s;
1485

    
1486
    i2c_dev = sysbus_from_qdev(qdev_create(NULL, "pxa2xx_i2c"));
1487
    qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1488
    qdev_prop_set_uint32(&i2c_dev->qdev, "offset", base & region_size);
1489

    
1490
    qdev_init_nofail(&i2c_dev->qdev);
1491

    
1492
    sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1493
    sysbus_connect_irq(i2c_dev, 0, irq);
1494

    
1495
    s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1496
    /* FIXME: Should the slave device really be on a separate bus?  */
1497
    dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1498
    s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE_FROM_QDEV(dev));
1499
    s->slave->host = s;
1500

    
1501
    return s;
1502
}
1503

    
1504
static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1505
{
1506
    PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1507

    
1508
    s->bus = i2c_init_bus(&dev->qdev, "i2c");
1509

    
1510
    memory_region_init_io(&s->iomem, &pxa2xx_i2c_ops, s,
1511
                          "pxa2xx-i2x", s->region_size);
1512
    sysbus_init_mmio(dev, &s->iomem);
1513
    sysbus_init_irq(dev, &s->irq);
1514

    
1515
    return 0;
1516
}
1517

    
1518
i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1519
{
1520
    return s->bus;
1521
}
1522

    
1523
static Property pxa2xx_i2c_properties[] = {
1524
    DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1525
    DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1526
    DEFINE_PROP_END_OF_LIST(),
1527
};
1528

    
1529
static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1530
{
1531
    DeviceClass *dc = DEVICE_CLASS(klass);
1532
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1533

    
1534
    k->init = pxa2xx_i2c_initfn;
1535
    dc->desc = "PXA2xx I2C Bus Controller";
1536
    dc->vmsd = &vmstate_pxa2xx_i2c;
1537
    dc->props = pxa2xx_i2c_properties;
1538
}
1539

    
1540
static TypeInfo pxa2xx_i2c_info = {
1541
    .name          = "pxa2xx_i2c",
1542
    .parent        = TYPE_SYS_BUS_DEVICE,
1543
    .instance_size = sizeof(PXA2xxI2CState),
1544
    .class_init    = pxa2xx_i2c_class_init,
1545
};
1546

    
1547
/* PXA Inter-IC Sound Controller */
1548
static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1549
{
1550
    i2s->rx_len = 0;
1551
    i2s->tx_len = 0;
1552
    i2s->fifo_len = 0;
1553
    i2s->clk = 0x1a;
1554
    i2s->control[0] = 0x00;
1555
    i2s->control[1] = 0x00;
1556
    i2s->status = 0x00;
1557
    i2s->mask = 0x00;
1558
}
1559

    
1560
#define SACR_TFTH(val)        ((val >> 8) & 0xf)
1561
#define SACR_RFTH(val)        ((val >> 12) & 0xf)
1562
#define SACR_DREC(val)        (val & (1 << 3))
1563
#define SACR_DPRL(val)        (val & (1 << 4))
1564

    
1565
static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1566
{
1567
    int rfs, tfs;
1568
    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1569
            !SACR_DREC(i2s->control[1]);
1570
    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1571
            i2s->enable && !SACR_DPRL(i2s->control[1]);
1572

    
1573
    qemu_set_irq(i2s->rx_dma, rfs);
1574
    qemu_set_irq(i2s->tx_dma, tfs);
1575

    
1576
    i2s->status &= 0xe0;
1577
    if (i2s->fifo_len < 16 || !i2s->enable)
1578
        i2s->status |= 1 << 0;                        /* TNF */
1579
    if (i2s->rx_len)
1580
        i2s->status |= 1 << 1;                        /* RNE */
1581
    if (i2s->enable)
1582
        i2s->status |= 1 << 2;                        /* BSY */
1583
    if (tfs)
1584
        i2s->status |= 1 << 3;                        /* TFS */
1585
    if (rfs)
1586
        i2s->status |= 1 << 4;                        /* RFS */
1587
    if (!(i2s->tx_len && i2s->enable))
1588
        i2s->status |= i2s->fifo_len << 8;        /* TFL */
1589
    i2s->status |= MAX(i2s->rx_len, 0xf) << 12;        /* RFL */
1590

    
1591
    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1592
}
1593

    
1594
#define SACR0        0x00        /* Serial Audio Global Control register */
1595
#define SACR1        0x04        /* Serial Audio I2S/MSB-Justified Control register */
1596
#define SASR0        0x0c        /* Serial Audio Interface and FIFO Status register */
1597
#define SAIMR        0x14        /* Serial Audio Interrupt Mask register */
1598
#define SAICR        0x18        /* Serial Audio Interrupt Clear register */
1599
#define SADIV        0x60        /* Serial Audio Clock Divider register */
1600
#define SADR        0x80        /* Serial Audio Data register */
1601

    
1602
static uint64_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr,
1603
                                unsigned size)
1604
{
1605
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1606

    
1607
    switch (addr) {
1608
    case SACR0:
1609
        return s->control[0];
1610
    case SACR1:
1611
        return s->control[1];
1612
    case SASR0:
1613
        return s->status;
1614
    case SAIMR:
1615
        return s->mask;
1616
    case SAICR:
1617
        return 0;
1618
    case SADIV:
1619
        return s->clk;
1620
    case SADR:
1621
        if (s->rx_len > 0) {
1622
            s->rx_len --;
1623
            pxa2xx_i2s_update(s);
1624
            return s->codec_in(s->opaque);
1625
        }
1626
        return 0;
1627
    default:
1628
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1629
        break;
1630
    }
1631
    return 0;
1632
}
1633

    
1634
static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1635
                             uint64_t value, unsigned size)
1636
{
1637
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1638
    uint32_t *sample;
1639

    
1640
    switch (addr) {
1641
    case SACR0:
1642
        if (value & (1 << 3))                                /* RST */
1643
            pxa2xx_i2s_reset(s);
1644
        s->control[0] = value & 0xff3d;
1645
        if (!s->enable && (value & 1) && s->tx_len) {        /* ENB */
1646
            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1647
                s->codec_out(s->opaque, *sample);
1648
            s->status &= ~(1 << 7);                        /* I2SOFF */
1649
        }
1650
        if (value & (1 << 4))                                /* EFWR */
1651
            printf("%s: Attempt to use special function\n", __FUNCTION__);
1652
        s->enable = (value & 9) == 1;                        /* ENB && !RST*/
1653
        pxa2xx_i2s_update(s);
1654
        break;
1655
    case SACR1:
1656
        s->control[1] = value & 0x0039;
1657
        if (value & (1 << 5))                                /* ENLBF */
1658
            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1659
        if (value & (1 << 4))                                /* DPRL */
1660
            s->fifo_len = 0;
1661
        pxa2xx_i2s_update(s);
1662
        break;
1663
    case SAIMR:
1664
        s->mask = value & 0x0078;
1665
        pxa2xx_i2s_update(s);
1666
        break;
1667
    case SAICR:
1668
        s->status &= ~(value & (3 << 5));
1669
        pxa2xx_i2s_update(s);
1670
        break;
1671
    case SADIV:
1672
        s->clk = value & 0x007f;
1673
        break;
1674
    case SADR:
1675
        if (s->tx_len && s->enable) {
1676
            s->tx_len --;
1677
            pxa2xx_i2s_update(s);
1678
            s->codec_out(s->opaque, value);
1679
        } else if (s->fifo_len < 16) {
1680
            s->fifo[s->fifo_len ++] = value;
1681
            pxa2xx_i2s_update(s);
1682
        }
1683
        break;
1684
    default:
1685
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1686
    }
1687
}
1688

    
1689
static const MemoryRegionOps pxa2xx_i2s_ops = {
1690
    .read = pxa2xx_i2s_read,
1691
    .write = pxa2xx_i2s_write,
1692
    .endianness = DEVICE_NATIVE_ENDIAN,
1693
};
1694

    
1695
static const VMStateDescription vmstate_pxa2xx_i2s = {
1696
    .name = "pxa2xx_i2s",
1697
    .version_id = 0,
1698
    .minimum_version_id = 0,
1699
    .minimum_version_id_old = 0,
1700
    .fields      = (VMStateField[]) {
1701
        VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1702
        VMSTATE_UINT32(status, PXA2xxI2SState),
1703
        VMSTATE_UINT32(mask, PXA2xxI2SState),
1704
        VMSTATE_UINT32(clk, PXA2xxI2SState),
1705
        VMSTATE_INT32(enable, PXA2xxI2SState),
1706
        VMSTATE_INT32(rx_len, PXA2xxI2SState),
1707
        VMSTATE_INT32(tx_len, PXA2xxI2SState),
1708
        VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1709
        VMSTATE_END_OF_LIST()
1710
    }
1711
};
1712

    
1713
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1714
{
1715
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1716
    uint32_t *sample;
1717

    
1718
    /* Signal FIFO errors */
1719
    if (s->enable && s->tx_len)
1720
        s->status |= 1 << 5;                /* TUR */
1721
    if (s->enable && s->rx_len)
1722
        s->status |= 1 << 6;                /* ROR */
1723

    
1724
    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1725
     * handle the cases where it makes a difference.  */
1726
    s->tx_len = tx - s->fifo_len;
1727
    s->rx_len = rx;
1728
    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1729
    if (s->enable)
1730
        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1731
            s->codec_out(s->opaque, *sample);
1732
    pxa2xx_i2s_update(s);
1733
}
1734

    
1735
static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1736
                target_phys_addr_t base,
1737
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1738
{
1739
    PXA2xxI2SState *s = (PXA2xxI2SState *)
1740
            g_malloc0(sizeof(PXA2xxI2SState));
1741

    
1742
    s->irq = irq;
1743
    s->rx_dma = rx_dma;
1744
    s->tx_dma = tx_dma;
1745
    s->data_req = pxa2xx_i2s_data_req;
1746

    
1747
    pxa2xx_i2s_reset(s);
1748

    
1749
    memory_region_init_io(&s->iomem, &pxa2xx_i2s_ops, s,
1750
                          "pxa2xx-i2s", 0x100000);
1751
    memory_region_add_subregion(sysmem, base, &s->iomem);
1752

    
1753
    vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1754

    
1755
    return s;
1756
}
1757

    
1758
/* PXA Fast Infra-red Communications Port */
1759
struct PXA2xxFIrState {
1760
    MemoryRegion iomem;
1761
    qemu_irq irq;
1762
    qemu_irq rx_dma;
1763
    qemu_irq tx_dma;
1764
    int enable;
1765
    CharDriverState *chr;
1766

    
1767
    uint8_t control[3];
1768
    uint8_t status[2];
1769

    
1770
    int rx_len;
1771
    int rx_start;
1772
    uint8_t rx_fifo[64];
1773
};
1774

    
1775
static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1776
{
1777
    s->control[0] = 0x00;
1778
    s->control[1] = 0x00;
1779
    s->control[2] = 0x00;
1780
    s->status[0] = 0x00;
1781
    s->status[1] = 0x00;
1782
    s->enable = 0;
1783
}
1784

    
1785
static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1786
{
1787
    static const int tresh[4] = { 8, 16, 32, 0 };
1788
    int intr = 0;
1789
    if ((s->control[0] & (1 << 4)) &&                        /* RXE */
1790
                    s->rx_len >= tresh[s->control[2] & 3])        /* TRIG */
1791
        s->status[0] |= 1 << 4;                                /* RFS */
1792
    else
1793
        s->status[0] &= ~(1 << 4);                        /* RFS */
1794
    if (s->control[0] & (1 << 3))                        /* TXE */
1795
        s->status[0] |= 1 << 3;                                /* TFS */
1796
    else
1797
        s->status[0] &= ~(1 << 3);                        /* TFS */
1798
    if (s->rx_len)
1799
        s->status[1] |= 1 << 2;                                /* RNE */
1800
    else
1801
        s->status[1] &= ~(1 << 2);                        /* RNE */
1802
    if (s->control[0] & (1 << 4))                        /* RXE */
1803
        s->status[1] |= 1 << 0;                                /* RSY */
1804
    else
1805
        s->status[1] &= ~(1 << 0);                        /* RSY */
1806

    
1807
    intr |= (s->control[0] & (1 << 5)) &&                /* RIE */
1808
            (s->status[0] & (1 << 4));                        /* RFS */
1809
    intr |= (s->control[0] & (1 << 6)) &&                /* TIE */
1810
            (s->status[0] & (1 << 3));                        /* TFS */
1811
    intr |= (s->control[2] & (1 << 4)) &&                /* TRAIL */
1812
            (s->status[0] & (1 << 6));                        /* EOC */
1813
    intr |= (s->control[0] & (1 << 2)) &&                /* TUS */
1814
            (s->status[0] & (1 << 1));                        /* TUR */
1815
    intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1816

    
1817
    qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1818
    qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1819

    
1820
    qemu_set_irq(s->irq, intr && s->enable);
1821
}
1822

    
1823
#define ICCR0        0x00        /* FICP Control register 0 */
1824
#define ICCR1        0x04        /* FICP Control register 1 */
1825
#define ICCR2        0x08        /* FICP Control register 2 */
1826
#define ICDR        0x0c        /* FICP Data register */
1827
#define ICSR0        0x14        /* FICP Status register 0 */
1828
#define ICSR1        0x18        /* FICP Status register 1 */
1829
#define ICFOR        0x1c        /* FICP FIFO Occupancy Status register */
1830

    
1831
static uint64_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr,
1832
                                unsigned size)
1833
{
1834
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1835
    uint8_t ret;
1836

    
1837
    switch (addr) {
1838
    case ICCR0:
1839
        return s->control[0];
1840
    case ICCR1:
1841
        return s->control[1];
1842
    case ICCR2:
1843
        return s->control[2];
1844
    case ICDR:
1845
        s->status[0] &= ~0x01;
1846
        s->status[1] &= ~0x72;
1847
        if (s->rx_len) {
1848
            s->rx_len --;
1849
            ret = s->rx_fifo[s->rx_start ++];
1850
            s->rx_start &= 63;
1851
            pxa2xx_fir_update(s);
1852
            return ret;
1853
        }
1854
        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1855
        break;
1856
    case ICSR0:
1857
        return s->status[0];
1858
    case ICSR1:
1859
        return s->status[1] | (1 << 3);                        /* TNF */
1860
    case ICFOR:
1861
        return s->rx_len;
1862
    default:
1863
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1864
        break;
1865
    }
1866
    return 0;
1867
}
1868

    
1869
static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1870
                             uint64_t value64, unsigned size)
1871
{
1872
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1873
    uint32_t value = value64;
1874
    uint8_t ch;
1875

    
1876
    switch (addr) {
1877
    case ICCR0:
1878
        s->control[0] = value;
1879
        if (!(value & (1 << 4)))                        /* RXE */
1880
            s->rx_len = s->rx_start = 0;
1881
        if (!(value & (1 << 3))) {                      /* TXE */
1882
            /* Nop */
1883
        }
1884
        s->enable = value & 1;                                /* ITR */
1885
        if (!s->enable)
1886
            s->status[0] = 0;
1887
        pxa2xx_fir_update(s);
1888
        break;
1889
    case ICCR1:
1890
        s->control[1] = value;
1891
        break;
1892
    case ICCR2:
1893
        s->control[2] = value & 0x3f;
1894
        pxa2xx_fir_update(s);
1895
        break;
1896
    case ICDR:
1897
        if (s->control[2] & (1 << 2))                        /* TXP */
1898
            ch = value;
1899
        else
1900
            ch = ~value;
1901
        if (s->chr && s->enable && (s->control[0] & (1 << 3)))        /* TXE */
1902
            qemu_chr_fe_write(s->chr, &ch, 1);
1903
        break;
1904
    case ICSR0:
1905
        s->status[0] &= ~(value & 0x66);
1906
        pxa2xx_fir_update(s);
1907
        break;
1908
    case ICFOR:
1909
        break;
1910
    default:
1911
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1912
    }
1913
}
1914

    
1915
static const MemoryRegionOps pxa2xx_fir_ops = {
1916
    .read = pxa2xx_fir_read,
1917
    .write = pxa2xx_fir_write,
1918
    .endianness = DEVICE_NATIVE_ENDIAN,
1919
};
1920

    
1921
static int pxa2xx_fir_is_empty(void *opaque)
1922
{
1923
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1924
    return (s->rx_len < 64);
1925
}
1926

    
1927
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1928
{
1929
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1930
    if (!(s->control[0] & (1 << 4)))                        /* RXE */
1931
        return;
1932

    
1933
    while (size --) {
1934
        s->status[1] |= 1 << 4;                                /* EOF */
1935
        if (s->rx_len >= 64) {
1936
            s->status[1] |= 1 << 6;                        /* ROR */
1937
            break;
1938
        }
1939

    
1940
        if (s->control[2] & (1 << 3))                        /* RXP */
1941
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1942
        else
1943
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1944
    }
1945

    
1946
    pxa2xx_fir_update(s);
1947
}
1948

    
1949
static void pxa2xx_fir_event(void *opaque, int event)
1950
{
1951
}
1952

    
1953
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1954
{
1955
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1956
    int i;
1957

    
1958
    qemu_put_be32(f, s->enable);
1959

    
1960
    qemu_put_8s(f, &s->control[0]);
1961
    qemu_put_8s(f, &s->control[1]);
1962
    qemu_put_8s(f, &s->control[2]);
1963
    qemu_put_8s(f, &s->status[0]);
1964
    qemu_put_8s(f, &s->status[1]);
1965

    
1966
    qemu_put_byte(f, s->rx_len);
1967
    for (i = 0; i < s->rx_len; i ++)
1968
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1969
}
1970

    
1971
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1972
{
1973
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1974
    int i;
1975

    
1976
    s->enable = qemu_get_be32(f);
1977

    
1978
    qemu_get_8s(f, &s->control[0]);
1979
    qemu_get_8s(f, &s->control[1]);
1980
    qemu_get_8s(f, &s->control[2]);
1981
    qemu_get_8s(f, &s->status[0]);
1982
    qemu_get_8s(f, &s->status[1]);
1983

    
1984
    s->rx_len = qemu_get_byte(f);
1985
    s->rx_start = 0;
1986
    for (i = 0; i < s->rx_len; i ++)
1987
        s->rx_fifo[i] = qemu_get_byte(f);
1988

    
1989
    return 0;
1990
}
1991

    
1992
static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1993
                target_phys_addr_t base,
1994
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1995
                CharDriverState *chr)
1996
{
1997
    PXA2xxFIrState *s = (PXA2xxFIrState *)
1998
            g_malloc0(sizeof(PXA2xxFIrState));
1999

    
2000
    s->irq = irq;
2001
    s->rx_dma = rx_dma;
2002
    s->tx_dma = tx_dma;
2003
    s->chr = chr;
2004

    
2005
    pxa2xx_fir_reset(s);
2006

    
2007
    memory_region_init_io(&s->iomem, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
2008
    memory_region_add_subregion(sysmem, base, &s->iomem);
2009

    
2010
    if (chr)
2011
        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2012
                        pxa2xx_fir_rx, pxa2xx_fir_event, s);
2013

    
2014
    register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2015
                    pxa2xx_fir_load, s);
2016

    
2017
    return s;
2018
}
2019

    
2020
static void pxa2xx_reset(void *opaque, int line, int level)
2021
{
2022
    PXA2xxState *s = (PXA2xxState *) opaque;
2023

    
2024
    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {        /* GPR_EN */
2025
        cpu_reset(CPU(s->cpu));
2026
        /* TODO: reset peripherals */
2027
    }
2028
}
2029

    
2030
/* Initialise a PXA270 integrated chip (ARM based core).  */
2031
PXA2xxState *pxa270_init(MemoryRegion *address_space,
2032
                         unsigned int sdram_size, const char *revision)
2033
{
2034
    PXA2xxState *s;
2035
    int i;
2036
    DriveInfo *dinfo;
2037
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2038

    
2039
    if (revision && strncmp(revision, "pxa27", 5)) {
2040
        fprintf(stderr, "Machine requires a PXA27x processor.\n");
2041
        exit(1);
2042
    }
2043
    if (!revision)
2044
        revision = "pxa270";
2045
    
2046
    s->cpu = cpu_arm_init(revision);
2047
    if (s->cpu == NULL) {
2048
        fprintf(stderr, "Unable to find CPU definition\n");
2049
        exit(1);
2050
    }
2051
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2052

    
2053
    /* SDRAM & Internal Memory Storage */
2054
    memory_region_init_ram(&s->sdram, "pxa270.sdram", sdram_size);
2055
    vmstate_register_ram_global(&s->sdram);
2056
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2057
    memory_region_init_ram(&s->internal, "pxa270.internal", 0x40000);
2058
    vmstate_register_ram_global(&s->internal);
2059
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2060
                                &s->internal);
2061

    
2062
    s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2063

    
2064
    s->dma = pxa27x_dma_init(0x40000000,
2065
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2066

    
2067
    sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2068
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2069
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2070
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2071
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2072
                    qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2073
                    NULL);
2074

    
2075
    s->gpio = pxa2xx_gpio_init(0x40e00000, &s->cpu->env, s->pic, 121);
2076

    
2077
    dinfo = drive_get(IF_SD, 0, 0);
2078
    if (!dinfo) {
2079
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2080
        exit(1);
2081
    }
2082
    s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2083
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2084
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2085
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2086

    
2087
    for (i = 0; pxa270_serial[i].io_base; i++) {
2088
        if (serial_hds[i]) {
2089
            serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2090
                           qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2091
                           14857000 / 16, serial_hds[i],
2092
                           DEVICE_NATIVE_ENDIAN);
2093
        } else {
2094
            break;
2095
        }
2096
    }
2097
    if (serial_hds[i])
2098
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2099
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2100
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2101
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2102
                        serial_hds[i]);
2103

    
2104
    s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2105
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2106

    
2107
    s->cm_base = 0x41300000;
2108
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2109
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2110
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2111
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2112
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2113

    
2114
    cpu_arm_set_cp_io(&s->cpu->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2115
    pxa2xx_setup_cp14(s);
2116

    
2117
    s->mm_base = 0x48000000;
2118
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2119
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2120
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2121
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2122
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2123
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2124

    
2125
    s->pm_base = 0x40f00000;
2126
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2127
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2128
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2129

    
2130
    for (i = 0; pxa27x_ssp[i].io_base; i ++);
2131
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2132
    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2133
        DeviceState *dev;
2134
        dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2135
                        qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2136
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2137
    }
2138

    
2139
    if (usb_enabled) {
2140
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2141
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2142
    }
2143

    
2144
    s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2145
    s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2146

    
2147
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2148
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2149

    
2150
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2151
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2152
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2153
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2154

    
2155
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2156
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2157
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2158
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2159

    
2160
    s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2161
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2162

    
2163
    /* GPIO1 resets the processor */
2164
    /* The handler can be overridden by board-specific code */
2165
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2166
    return s;
2167
}
2168

    
2169
/* Initialise a PXA255 integrated chip (ARM based core).  */
2170
PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2171
{
2172
    PXA2xxState *s;
2173
    int i;
2174
    DriveInfo *dinfo;
2175

    
2176
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2177

    
2178
    s->cpu = cpu_arm_init("pxa255");
2179
    if (s->cpu == NULL) {
2180
        fprintf(stderr, "Unable to find CPU definition\n");
2181
        exit(1);
2182
    }
2183
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2184

    
2185
    /* SDRAM & Internal Memory Storage */
2186
    memory_region_init_ram(&s->sdram, "pxa255.sdram", sdram_size);
2187
    vmstate_register_ram_global(&s->sdram);
2188
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2189
    memory_region_init_ram(&s->internal, "pxa255.internal",
2190
                           PXA2XX_INTERNAL_SIZE);
2191
    vmstate_register_ram_global(&s->internal);
2192
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2193
                                &s->internal);
2194

    
2195
    s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2196

    
2197
    s->dma = pxa255_dma_init(0x40000000,
2198
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2199

    
2200
    sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2201
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2202
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2203
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2204
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2205
                    NULL);
2206

    
2207
    s->gpio = pxa2xx_gpio_init(0x40e00000, &s->cpu->env, s->pic, 85);
2208

    
2209
    dinfo = drive_get(IF_SD, 0, 0);
2210
    if (!dinfo) {
2211
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2212
        exit(1);
2213
    }
2214
    s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2215
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2216
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2217
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2218

    
2219
    for (i = 0; pxa255_serial[i].io_base; i++) {
2220
        if (serial_hds[i]) {
2221
            serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2222
                           qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2223
                           14745600 / 16, serial_hds[i],
2224
                           DEVICE_NATIVE_ENDIAN);
2225
        } else {
2226
            break;
2227
        }
2228
    }
2229
    if (serial_hds[i])
2230
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2231
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2232
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2233
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2234
                        serial_hds[i]);
2235

    
2236
    s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2237
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2238

    
2239
    s->cm_base = 0x41300000;
2240
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2241
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2242
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2243
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2244
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2245

    
2246
    cpu_arm_set_cp_io(&s->cpu->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2247
    pxa2xx_setup_cp14(s);
2248

    
2249
    s->mm_base = 0x48000000;
2250
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2251
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2252
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2253
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2254
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2255
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2256

    
2257
    s->pm_base = 0x40f00000;
2258
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2259
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2260
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2261

    
2262
    for (i = 0; pxa255_ssp[i].io_base; i ++);
2263
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2264
    for (i = 0; pxa255_ssp[i].io_base; i ++) {
2265
        DeviceState *dev;
2266
        dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2267
                        qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2268
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2269
    }
2270

    
2271
    if (usb_enabled) {
2272
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2273
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2274
    }
2275

    
2276
    s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2277
    s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2278

    
2279
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2280
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2281

    
2282
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2283
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2284
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2285
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2286

    
2287
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2288
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2289
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2290
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2291

    
2292
    /* GPIO1 resets the processor */
2293
    /* The handler can be overridden by board-specific code */
2294
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2295
    return s;
2296
}
2297

    
2298
static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2299
{
2300
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2301

    
2302
    sdc->init = pxa2xx_ssp_init;
2303
}
2304

    
2305
static TypeInfo pxa2xx_ssp_info = {
2306
    .name          = "pxa2xx-ssp",
2307
    .parent        = TYPE_SYS_BUS_DEVICE,
2308
    .instance_size = sizeof(PXA2xxSSPState),
2309
    .class_init    = pxa2xx_ssp_class_init,
2310
};
2311

    
2312
static void pxa2xx_register_types(void)
2313
{
2314
    type_register_static(&pxa2xx_i2c_slave_info);
2315
    type_register_static(&pxa2xx_ssp_info);
2316
    type_register_static(&pxa2xx_i2c_info);
2317
    type_register_static(&pxa2xx_rtc_sysbus_info);
2318
}
2319

    
2320
type_init(pxa2xx_register_types)