Statistics
| Branch: | Revision:

root / hw / sun4m.c @ ea785922

History | View | Annotate | Download (10.9 kB)

1
/*
2
 * QEMU Sun4m System Emulator
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#define KERNEL_LOAD_ADDR     0x00004000
27
#define CMDLINE_ADDR         0x007ff000
28
#define INITRD_LOAD_ADDR     0x00800000
29
#define PROM_SIZE_MAX        (256 * 1024)
30
#define PROM_ADDR             0xffd00000
31
#define PROM_FILENAME             "openbios-sparc32"
32
#define PHYS_JJ_EEPROM        0x71200000        /* m48t08 */
33
#define PHYS_JJ_IDPROM_OFF        0x1FD8
34
#define PHYS_JJ_EEPROM_SIZE        0x2000
35
// IRQs are not PIL ones, but master interrupt controller register
36
// bits
37
#define PHYS_JJ_IOMMU        0x10000000        /* I/O MMU */
38
#define PHYS_JJ_TCX_FB        0x50000000        /* TCX frame buffer */
39
#define PHYS_JJ_SLAVIO        0x70000000        /* Slavio base */
40
#define PHYS_JJ_DMA     0x78400000      /* DMA controller */
41
#define PHYS_JJ_ESP     0x78800000      /* ESP SCSI */
42
#define PHYS_JJ_ESP_IRQ    18
43
#define PHYS_JJ_LE      0x78C00000      /* Lance ethernet */
44
#define PHYS_JJ_LE_IRQ     16
45
#define PHYS_JJ_CLOCK        0x71D00000      /* Per-CPU timer/counter, L14 */
46
#define PHYS_JJ_CLOCK_IRQ  7
47
#define PHYS_JJ_CLOCK1        0x71D10000      /* System timer/counter, L10 */
48
#define PHYS_JJ_CLOCK1_IRQ 19
49
#define PHYS_JJ_INTR0        0x71E00000        /* Per-CPU interrupt control registers */
50
#define PHYS_JJ_INTR_G        0x71E10000        /* Master interrupt control registers */
51
#define PHYS_JJ_MS_KBD        0x71000000        /* Mouse and keyboard */
52
#define PHYS_JJ_MS_KBD_IRQ    14
53
#define PHYS_JJ_SER        0x71100000        /* Serial */
54
#define PHYS_JJ_SER_IRQ    15
55
#define PHYS_JJ_FDC        0x71400000        /* Floppy */
56
#define PHYS_JJ_FLOPPY_IRQ 22
57
#define PHYS_JJ_ME_IRQ 30                /* Module error, power fail */
58
#define PHYS_JJ_CS      0x6c000000      /* Crystal CS4231 */
59
#define PHYS_JJ_CS_IRQ  5
60

    
61
#define MAX_CPUS 16
62

    
63
/* TSC handling */
64

    
65
uint64_t cpu_get_tsc()
66
{
67
    return qemu_get_clock(vm_clock);
68
}
69

    
70
int DMA_get_channel_mode (int nchan)
71
{
72
    return 0;
73
}
74
int DMA_read_memory (int nchan, void *buf, int pos, int size)
75
{
76
    return 0;
77
}
78
int DMA_write_memory (int nchan, void *buf, int pos, int size)
79
{
80
    return 0;
81
}
82
void DMA_hold_DREQ (int nchan) {}
83
void DMA_release_DREQ (int nchan) {}
84
void DMA_schedule(int nchan) {}
85
void DMA_run (void) {}
86
void DMA_init (int high_page_enable) {}
87
void DMA_register_channel (int nchan,
88
                           DMA_transfer_handler transfer_handler,
89
                           void *opaque)
90
{
91
}
92

    
93
static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
94
{
95
    m48t59_write(nvram, addr++, (value >> 8) & 0xff);
96
    m48t59_write(nvram, addr++, value & 0xff);
97
}
98

    
99
static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
100
{
101
    m48t59_write(nvram, addr++, value >> 24);
102
    m48t59_write(nvram, addr++, (value >> 16) & 0xff);
103
    m48t59_write(nvram, addr++, (value >> 8) & 0xff);
104
    m48t59_write(nvram, addr++, value & 0xff);
105
}
106

    
107
static void nvram_set_string (m48t59_t *nvram, uint32_t addr,
108
                       const unsigned char *str, uint32_t max)
109
{
110
    unsigned int i;
111

    
112
    for (i = 0; i < max && str[i] != '\0'; i++) {
113
        m48t59_write(nvram, addr + i, str[i]);
114
    }
115
    m48t59_write(nvram, addr + max - 1, '\0');
116
}
117

    
118
static m48t59_t *nvram;
119

    
120
extern int nographic;
121

    
122
static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
123
                       int boot_device, uint32_t RAM_size,
124
                       uint32_t kernel_size,
125
                       int width, int height, int depth)
126
{
127
    unsigned char tmp = 0;
128
    int i, j;
129

    
130
    // Try to match PPC NVRAM
131
    nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
132
    nvram_set_lword(nvram,  0x10, 0x00000001); /* structure v1 */
133
    // NVRAM_size, arch not applicable
134
    m48t59_write(nvram, 0x2D, smp_cpus & 0xff);
135
    m48t59_write(nvram, 0x2E, 0);
136
    m48t59_write(nvram, 0x2F, nographic & 0xff);
137
    nvram_set_lword(nvram,  0x30, RAM_size);
138
    m48t59_write(nvram, 0x34, boot_device & 0xff);
139
    nvram_set_lword(nvram,  0x38, KERNEL_LOAD_ADDR);
140
    nvram_set_lword(nvram,  0x3C, kernel_size);
141
    if (cmdline) {
142
        strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
143
        nvram_set_lword(nvram,  0x40, CMDLINE_ADDR);
144
        nvram_set_lword(nvram,  0x44, strlen(cmdline));
145
    }
146
    // initrd_image, initrd_size passed differently
147
    nvram_set_word(nvram,   0x54, width);
148
    nvram_set_word(nvram,   0x56, height);
149
    nvram_set_word(nvram,   0x58, depth);
150

    
151
    // Sun4m specific use
152
    i = 0x1fd8;
153
    m48t59_write(nvram, i++, 0x01);
154
    m48t59_write(nvram, i++, 0x80); /* Sun4m OBP */
155
    j = 0;
156
    m48t59_write(nvram, i++, macaddr[j++]);
157
    m48t59_write(nvram, i++, macaddr[j++]);
158
    m48t59_write(nvram, i++, macaddr[j++]);
159
    m48t59_write(nvram, i++, macaddr[j++]);
160
    m48t59_write(nvram, i++, macaddr[j++]);
161
    m48t59_write(nvram, i, macaddr[j]);
162

    
163
    /* Calculate checksum */
164
    for (i = 0x1fd8; i < 0x1fe7; i++) {
165
        tmp ^= m48t59_read(nvram, i);
166
    }
167
    m48t59_write(nvram, 0x1fe7, tmp);
168
}
169

    
170
static void *slavio_intctl;
171

    
172
void pic_info()
173
{
174
    slavio_pic_info(slavio_intctl);
175
}
176

    
177
void irq_info()
178
{
179
    slavio_irq_info(slavio_intctl);
180
}
181

    
182
void pic_set_irq(int irq, int level)
183
{
184
    slavio_pic_set_irq(slavio_intctl, irq, level);
185
}
186

    
187
void pic_set_irq_new(void *opaque, int irq, int level)
188
{
189
    pic_set_irq(irq, level);
190
}
191

    
192
void pic_set_irq_cpu(int irq, int level, unsigned int cpu)
193
{
194
    slavio_pic_set_irq_cpu(slavio_intctl, irq, level, cpu);
195
}
196

    
197
static void *slavio_misc;
198

    
199
void qemu_system_powerdown(void)
200
{
201
    slavio_set_power_fail(slavio_misc, 1);
202
}
203

    
204
static void main_cpu_reset(void *opaque)
205
{
206
    CPUState *env = opaque;
207
    cpu_reset(env);
208
}
209

    
210
/* Sun4m hardware initialisation */
211
static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
212
                       DisplayState *ds, const char **fd_filename, int snapshot,
213
                       const char *kernel_filename, const char *kernel_cmdline,
214
                       const char *initrd_filename)
215
{
216
    CPUState *env, *envs[MAX_CPUS];
217
    char buf[1024];
218
    int ret, linux_boot;
219
    unsigned int i;
220
    long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
221
    void *iommu, *dma, *main_esp, *main_lance = NULL;
222

    
223
    linux_boot = (kernel_filename != NULL);
224

    
225
    /* init CPUs */
226
    for(i = 0; i < smp_cpus; i++) {
227
        env = cpu_init();
228
        envs[i] = env;
229
        if (i != 0)
230
            env->halted = 1;
231
        register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
232
        qemu_register_reset(main_cpu_reset, env);
233
    }
234
    /* allocate RAM */
235
    cpu_register_physical_memory(0, ram_size, 0);
236

    
237
    iommu = iommu_init(PHYS_JJ_IOMMU);
238
    slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
239
    for(i = 0; i < smp_cpus; i++) {
240
        slavio_intctl_set_cpu(slavio_intctl, i, envs[i]);
241
    }
242
    dma = sparc32_dma_init(PHYS_JJ_DMA, PHYS_JJ_ESP_IRQ, PHYS_JJ_LE_IRQ, iommu, slavio_intctl);
243

    
244
    tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
245
    if (nd_table[0].vlan) {
246
        if (nd_table[0].model == NULL
247
            || strcmp(nd_table[0].model, "lance") == 0) {
248
            main_lance = lance_init(&nd_table[0], PHYS_JJ_LE, dma);
249
        } else {
250
            fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
251
            exit (1);
252
        }
253
    }
254
    nvram = m48t59_init(0, PHYS_JJ_EEPROM, 0, PHYS_JJ_EEPROM_SIZE, 8);
255
    for (i = 0; i < MAX_CPUS; i++) {
256
        slavio_timer_init(PHYS_JJ_CLOCK + i * TARGET_PAGE_SIZE, PHYS_JJ_CLOCK_IRQ, 0, i);
257
    }
258
    slavio_timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ, 2, (unsigned int)-1);
259
    slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
260
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
261
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
262
    slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
263
    fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
264
    main_esp = esp_init(bs_table, PHYS_JJ_ESP, dma);
265

    
266
    for (i = 0; i < MAX_DISKS; i++) {
267
        if (bs_table[i]) {
268
            esp_scsi_attach(main_esp, bs_table[i], i);
269
        }
270
    }
271

    
272
    slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
273
    cs_init(PHYS_JJ_CS, PHYS_JJ_CS_IRQ, slavio_intctl);
274
    sparc32_dma_set_reset_data(dma, main_esp, main_lance);
275

    
276
    prom_offset = ram_size + vram_size;
277
    cpu_register_physical_memory(PROM_ADDR, 
278
                                 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK, 
279
                                 prom_offset | IO_MEM_ROM);
280

    
281
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
282
    ret = load_elf(buf, 0, NULL);
283
    if (ret < 0) {
284
        fprintf(stderr, "qemu: could not load prom '%s'\n", 
285
                buf);
286
        exit(1);
287
    }
288

    
289
    kernel_size = 0;
290
    if (linux_boot) {
291
        kernel_size = load_elf(kernel_filename, -0xf0000000, NULL);
292
        if (kernel_size < 0)
293
            kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
294
        if (kernel_size < 0)
295
            kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
296
        if (kernel_size < 0) {
297
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
298
                    kernel_filename);
299
            exit(1);
300
        }
301

    
302
        /* load initrd */
303
        initrd_size = 0;
304
        if (initrd_filename) {
305
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
306
            if (initrd_size < 0) {
307
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 
308
                        initrd_filename);
309
                exit(1);
310
            }
311
        }
312
        if (initrd_size > 0) {
313
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
314
                if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
315
                    == 0x48647253) { // HdrS
316
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
317
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
318
                    break;
319
                }
320
            }
321
        }
322
    }
323
    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
324
}
325

    
326
QEMUMachine sun4m_machine = {
327
    "sun4m",
328
    "Sun4m platform",
329
    sun4m_init,
330
};