Statistics
| Branch: | Revision:

root / hw / sparc32_dma.c @ f9aebe2e

History | View | Annotate | Download (8 kB)

1
/*
2
 * QEMU Sparc32 DMA controller emulation
3
 *
4
 * Copyright (c) 2006 Fabrice Bellard
5
 *
6
 * Modifications:
7
 *  2010-Feb-14 Artyom Tarasenko : reworked irq generation
8
 *
9
 * Permission is hereby granted, free of charge, to any person obtaining a copy
10
 * of this software and associated documentation files (the "Software"), to deal
11
 * in the Software without restriction, including without limitation the rights
12
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13
 * copies of the Software, and to permit persons to whom the Software is
14
 * furnished to do so, subject to the following conditions:
15
 *
16
 * The above copyright notice and this permission notice shall be included in
17
 * all copies or substantial portions of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25
 * THE SOFTWARE.
26
 */
27

    
28
#include "hw.h"
29
#include "sparc32_dma.h"
30
#include "sun4m.h"
31
#include "sysbus.h"
32

    
33
/* debug DMA */
34
//#define DEBUG_DMA
35

    
36
/*
37
 * This is the DMA controller part of chip STP2000 (Master I/O), also
38
 * produced as NCR89C100. See
39
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
40
 * and
41
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
42
 */
43

    
44
#ifdef DEBUG_DMA
45
#define DPRINTF(fmt, ...)                               \
46
    do { printf("DMA: " fmt , ## __VA_ARGS__); } while (0)
47
#else
48
#define DPRINTF(fmt, ...)
49
#endif
50

    
51
#define DMA_REGS 4
52
#define DMA_SIZE (4 * sizeof(uint32_t))
53
/* We need the mask, because one instance of the device is not page
54
   aligned (ledma, start address 0x0010) */
55
#define DMA_MASK (DMA_SIZE - 1)
56

    
57
#define DMA_VER 0xa0000000
58
#define DMA_INTR 1
59
#define DMA_INTREN 0x10
60
#define DMA_WRITE_MEM 0x100
61
#define DMA_LOADED 0x04000000
62
#define DMA_DRAIN_FIFO 0x40
63
#define DMA_RESET 0x80
64

    
65
/* XXX SCSI and ethernet should have different read-only bit masks */
66
#define DMA_CSR_RO_MASK 0xfe000007
67

    
68
typedef struct DMAState DMAState;
69

    
70
struct DMAState {
71
    SysBusDevice busdev;
72
    uint32_t dmaregs[DMA_REGS];
73
    qemu_irq irq;
74
    void *iommu;
75
    qemu_irq dev_reset;
76
};
77

    
78
/* Note: on sparc, the lance 16 bit bus is swapped */
79
void ledma_memory_read(void *opaque, target_phys_addr_t addr,
80
                       uint8_t *buf, int len, int do_bswap)
81
{
82
    DMAState *s = opaque;
83
    int i;
84

    
85
    DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
86
            s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
87
    addr |= s->dmaregs[3];
88
    if (do_bswap) {
89
        sparc_iommu_memory_read(s->iommu, addr, buf, len);
90
    } else {
91
        addr &= ~1;
92
        len &= ~1;
93
        sparc_iommu_memory_read(s->iommu, addr, buf, len);
94
        for(i = 0; i < len; i += 2) {
95
            bswap16s((uint16_t *)(buf + i));
96
        }
97
    }
98
}
99

    
100
void ledma_memory_write(void *opaque, target_phys_addr_t addr,
101
                        uint8_t *buf, int len, int do_bswap)
102
{
103
    DMAState *s = opaque;
104
    int l, i;
105
    uint16_t tmp_buf[32];
106

    
107
    DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
108
            s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
109
    addr |= s->dmaregs[3];
110
    if (do_bswap) {
111
        sparc_iommu_memory_write(s->iommu, addr, buf, len);
112
    } else {
113
        addr &= ~1;
114
        len &= ~1;
115
        while (len > 0) {
116
            l = len;
117
            if (l > sizeof(tmp_buf))
118
                l = sizeof(tmp_buf);
119
            for(i = 0; i < l; i += 2) {
120
                tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
121
            }
122
            sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
123
            len -= l;
124
            buf += l;
125
            addr += l;
126
        }
127
    }
128
}
129

    
130
static void dma_set_irq(void *opaque, int irq, int level)
131
{
132
    DMAState *s = opaque;
133
    if (level) {
134
        s->dmaregs[0] |= DMA_INTR;
135
        if (s->dmaregs[0] & DMA_INTREN) {
136
            DPRINTF("Raise IRQ\n");
137
            qemu_irq_raise(s->irq);
138
        }
139
    } else {
140
        if (s->dmaregs[0] & DMA_INTR) {
141
            s->dmaregs[0] &= ~DMA_INTR;
142
            if (s->dmaregs[0] & DMA_INTREN) {
143
                DPRINTF("Lower IRQ\n");
144
                qemu_irq_lower(s->irq);
145
            }
146
        }
147
    }
148
}
149

    
150
void espdma_memory_read(void *opaque, uint8_t *buf, int len)
151
{
152
    DMAState *s = opaque;
153

    
154
    DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
155
            s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
156
    sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
157
    s->dmaregs[1] += len;
158
}
159

    
160
void espdma_memory_write(void *opaque, uint8_t *buf, int len)
161
{
162
    DMAState *s = opaque;
163

    
164
    DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
165
            s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
166
    sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
167
    s->dmaregs[1] += len;
168
}
169

    
170
static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
171
{
172
    DMAState *s = opaque;
173
    uint32_t saddr;
174

    
175
    saddr = (addr & DMA_MASK) >> 2;
176
    DPRINTF("read dmareg " TARGET_FMT_plx ": 0x%8.8x\n", addr,
177
            s->dmaregs[saddr]);
178

    
179
    return s->dmaregs[saddr];
180
}
181

    
182
static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
183
{
184
    DMAState *s = opaque;
185
    uint32_t saddr;
186

    
187
    saddr = (addr & DMA_MASK) >> 2;
188
    DPRINTF("write dmareg " TARGET_FMT_plx ": 0x%8.8x -> 0x%8.8x\n", addr,
189
            s->dmaregs[saddr], val);
190
    switch (saddr) {
191
    case 0:
192
        if (val & DMA_INTREN) {
193
            if (s->dmaregs[0] & DMA_INTR) {
194
                DPRINTF("Raise IRQ\n");
195
                qemu_irq_raise(s->irq);
196
            }
197
        } else {
198
            if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
199
                DPRINTF("Lower IRQ\n");
200
                qemu_irq_lower(s->irq);
201
            }
202
        }
203
        if (val & DMA_RESET) {
204
            qemu_irq_raise(s->dev_reset);
205
            qemu_irq_lower(s->dev_reset);
206
        } else if (val & DMA_DRAIN_FIFO) {
207
            val &= ~DMA_DRAIN_FIFO;
208
        } else if (val == 0)
209
            val = DMA_DRAIN_FIFO;
210
        val &= ~DMA_CSR_RO_MASK;
211
        val |= DMA_VER;
212
        s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
213
        break;
214
    case 1:
215
        s->dmaregs[0] |= DMA_LOADED;
216
        /* fall through */
217
    default:
218
        s->dmaregs[saddr] = val;
219
        break;
220
    }
221
}
222

    
223
static CPUReadMemoryFunc * const dma_mem_read[3] = {
224
    NULL,
225
    NULL,
226
    dma_mem_readl,
227
};
228

    
229
static CPUWriteMemoryFunc * const dma_mem_write[3] = {
230
    NULL,
231
    NULL,
232
    dma_mem_writel,
233
};
234

    
235
static void dma_reset(DeviceState *d)
236
{
237
    DMAState *s = container_of(d, DMAState, busdev.qdev);
238

    
239
    memset(s->dmaregs, 0, DMA_SIZE);
240
    s->dmaregs[0] = DMA_VER;
241
}
242

    
243
static const VMStateDescription vmstate_dma = {
244
    .name ="sparc32_dma",
245
    .version_id = 2,
246
    .minimum_version_id = 2,
247
    .minimum_version_id_old = 2,
248
    .fields      = (VMStateField []) {
249
        VMSTATE_UINT32_ARRAY(dmaregs, DMAState, DMA_REGS),
250
        VMSTATE_END_OF_LIST()
251
    }
252
};
253

    
254
static int sparc32_dma_init1(SysBusDevice *dev)
255
{
256
    DMAState *s = FROM_SYSBUS(DMAState, dev);
257
    int dma_io_memory;
258

    
259
    sysbus_init_irq(dev, &s->irq);
260

    
261
    dma_io_memory = cpu_register_io_memory(dma_mem_read, dma_mem_write, s);
262
    sysbus_init_mmio(dev, DMA_SIZE, dma_io_memory);
263

    
264
    qdev_init_gpio_in(&dev->qdev, dma_set_irq, 1);
265
    qdev_init_gpio_out(&dev->qdev, &s->dev_reset, 1);
266

    
267
    return 0;
268
}
269

    
270
static SysBusDeviceInfo sparc32_dma_info = {
271
    .init = sparc32_dma_init1,
272
    .qdev.name  = "sparc32_dma",
273
    .qdev.size  = sizeof(DMAState),
274
    .qdev.vmsd  = &vmstate_dma,
275
    .qdev.reset = dma_reset,
276
    .qdev.props = (Property[]) {
277
        DEFINE_PROP_PTR("iommu_opaque", DMAState, iommu),
278
        DEFINE_PROP_END_OF_LIST(),
279
    }
280
};
281

    
282
static void sparc32_dma_register_devices(void)
283
{
284
    sysbus_register_withprop(&sparc32_dma_info);
285
}
286

    
287
device_init(sparc32_dma_register_devices)