Statistics
| Branch: | Revision:

root / hw / net / cadence_gem.c @ 17cf2c76

History | View | Annotate | Download (41.2 kB)

1
/*
2
 * QEMU Xilinx GEM emulation
3
 *
4
 * Copyright (c) 2011 Xilinx, Inc.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <zlib.h> /* For crc32 */
26

    
27
#include "hw/sysbus.h"
28
#include "net/net.h"
29
#include "net/checksum.h"
30

    
31
#ifdef CADENCE_GEM_ERR_DEBUG
32
#define DB_PRINT(...) do { \
33
    fprintf(stderr,  ": %s: ", __func__); \
34
    fprintf(stderr, ## __VA_ARGS__); \
35
    } while (0);
36
#else
37
    #define DB_PRINT(...)
38
#endif
39

    
40
#define GEM_NWCTRL        (0x00000000/4) /* Network Control reg */
41
#define GEM_NWCFG         (0x00000004/4) /* Network Config reg */
42
#define GEM_NWSTATUS      (0x00000008/4) /* Network Status reg */
43
#define GEM_USERIO        (0x0000000C/4) /* User IO reg */
44
#define GEM_DMACFG        (0x00000010/4) /* DMA Control reg */
45
#define GEM_TXSTATUS      (0x00000014/4) /* TX Status reg */
46
#define GEM_RXQBASE       (0x00000018/4) /* RX Q Base address reg */
47
#define GEM_TXQBASE       (0x0000001C/4) /* TX Q Base address reg */
48
#define GEM_RXSTATUS      (0x00000020/4) /* RX Status reg */
49
#define GEM_ISR           (0x00000024/4) /* Interrupt Status reg */
50
#define GEM_IER           (0x00000028/4) /* Interrupt Enable reg */
51
#define GEM_IDR           (0x0000002C/4) /* Interrupt Disable reg */
52
#define GEM_IMR           (0x00000030/4) /* Interrupt Mask reg */
53
#define GEM_PHYMNTNC      (0x00000034/4) /* Phy Maintaince reg */
54
#define GEM_RXPAUSE       (0x00000038/4) /* RX Pause Time reg */
55
#define GEM_TXPAUSE       (0x0000003C/4) /* TX Pause Time reg */
56
#define GEM_TXPARTIALSF   (0x00000040/4) /* TX Partial Store and Forward */
57
#define GEM_RXPARTIALSF   (0x00000044/4) /* RX Partial Store and Forward */
58
#define GEM_HASHLO        (0x00000080/4) /* Hash Low address reg */
59
#define GEM_HASHHI        (0x00000084/4) /* Hash High address reg */
60
#define GEM_SPADDR1LO     (0x00000088/4) /* Specific addr 1 low reg */
61
#define GEM_SPADDR1HI     (0x0000008C/4) /* Specific addr 1 high reg */
62
#define GEM_SPADDR2LO     (0x00000090/4) /* Specific addr 2 low reg */
63
#define GEM_SPADDR2HI     (0x00000094/4) /* Specific addr 2 high reg */
64
#define GEM_SPADDR3LO     (0x00000098/4) /* Specific addr 3 low reg */
65
#define GEM_SPADDR3HI     (0x0000009C/4) /* Specific addr 3 high reg */
66
#define GEM_SPADDR4LO     (0x000000A0/4) /* Specific addr 4 low reg */
67
#define GEM_SPADDR4HI     (0x000000A4/4) /* Specific addr 4 high reg */
68
#define GEM_TIDMATCH1     (0x000000A8/4) /* Type ID1 Match reg */
69
#define GEM_TIDMATCH2     (0x000000AC/4) /* Type ID2 Match reg */
70
#define GEM_TIDMATCH3     (0x000000B0/4) /* Type ID3 Match reg */
71
#define GEM_TIDMATCH4     (0x000000B4/4) /* Type ID4 Match reg */
72
#define GEM_WOLAN         (0x000000B8/4) /* Wake on LAN reg */
73
#define GEM_IPGSTRETCH    (0x000000BC/4) /* IPG Stretch reg */
74
#define GEM_SVLAN         (0x000000C0/4) /* Stacked VLAN reg */
75
#define GEM_MODID         (0x000000FC/4) /* Module ID reg */
76
#define GEM_OCTTXLO       (0x00000100/4) /* Octects transmitted Low reg */
77
#define GEM_OCTTXHI       (0x00000104/4) /* Octects transmitted High reg */
78
#define GEM_TXCNT         (0x00000108/4) /* Error-free Frames transmitted */
79
#define GEM_TXBCNT        (0x0000010C/4) /* Error-free Broadcast Frames */
80
#define GEM_TXMCNT        (0x00000110/4) /* Error-free Multicast Frame */
81
#define GEM_TXPAUSECNT    (0x00000114/4) /* Pause Frames Transmitted */
82
#define GEM_TX64CNT       (0x00000118/4) /* Error-free 64 TX */
83
#define GEM_TX65CNT       (0x0000011C/4) /* Error-free 65-127 TX */
84
#define GEM_TX128CNT      (0x00000120/4) /* Error-free 128-255 TX */
85
#define GEM_TX256CNT      (0x00000124/4) /* Error-free 256-511 */
86
#define GEM_TX512CNT      (0x00000128/4) /* Error-free 512-1023 TX */
87
#define GEM_TX1024CNT     (0x0000012C/4) /* Error-free 1024-1518 TX */
88
#define GEM_TX1519CNT     (0x00000130/4) /* Error-free larger than 1519 TX */
89
#define GEM_TXURUNCNT     (0x00000134/4) /* TX under run error counter */
90
#define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
91
#define GEM_MULTCOLLCNT   (0x0000013C/4) /* Multiple Collision Frames */
92
#define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
93
#define GEM_LATECOLLCNT   (0x00000144/4) /* Late Collision Frames */
94
#define GEM_DEFERTXCNT    (0x00000148/4) /* Deferred Transmission Frames */
95
#define GEM_CSENSECNT     (0x0000014C/4) /* Carrier Sense Error Counter */
96
#define GEM_OCTRXLO       (0x00000150/4) /* Octects Received register Low */
97
#define GEM_OCTRXHI       (0x00000154/4) /* Octects Received register High */
98
#define GEM_RXCNT         (0x00000158/4) /* Error-free Frames Received */
99
#define GEM_RXBROADCNT    (0x0000015C/4) /* Error-free Broadcast Frames RX */
100
#define GEM_RXMULTICNT    (0x00000160/4) /* Error-free Multicast Frames RX */
101
#define GEM_RXPAUSECNT    (0x00000164/4) /* Pause Frames Received Counter */
102
#define GEM_RX64CNT       (0x00000168/4) /* Error-free 64 byte Frames RX */
103
#define GEM_RX65CNT       (0x0000016C/4) /* Error-free 65-127B Frames RX */
104
#define GEM_RX128CNT      (0x00000170/4) /* Error-free 128-255B Frames RX */
105
#define GEM_RX256CNT      (0x00000174/4) /* Error-free 256-512B Frames RX */
106
#define GEM_RX512CNT      (0x00000178/4) /* Error-free 512-1023B Frames RX */
107
#define GEM_RX1024CNT     (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
108
#define GEM_RX1519CNT     (0x00000180/4) /* Error-free 1519-max Frames RX */
109
#define GEM_RXUNDERCNT    (0x00000184/4) /* Undersize Frames Received */
110
#define GEM_RXOVERCNT     (0x00000188/4) /* Oversize Frames Received */
111
#define GEM_RXJABCNT      (0x0000018C/4) /* Jabbers Received Counter */
112
#define GEM_RXFCSCNT      (0x00000190/4) /* Frame Check seq. Error Counter */
113
#define GEM_RXLENERRCNT   (0x00000194/4) /* Length Field Error Counter */
114
#define GEM_RXSYMERRCNT   (0x00000198/4) /* Symbol Error Counter */
115
#define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
116
#define GEM_RXRSCERRCNT   (0x000001A0/4) /* Receive Resource Error Counter */
117
#define GEM_RXORUNCNT     (0x000001A4/4) /* Receive Overrun Counter */
118
#define GEM_RXIPCSERRCNT  (0x000001A8/4) /* IP header Checksum Error Counter */
119
#define GEM_RXTCPCCNT     (0x000001AC/4) /* TCP Checksum Error Counter */
120
#define GEM_RXUDPCCNT     (0x000001B0/4) /* UDP Checksum Error Counter */
121

    
122
#define GEM_1588S         (0x000001D0/4) /* 1588 Timer Seconds */
123
#define GEM_1588NS        (0x000001D4/4) /* 1588 Timer Nanoseconds */
124
#define GEM_1588ADJ       (0x000001D8/4) /* 1588 Timer Adjust */
125
#define GEM_1588INC       (0x000001DC/4) /* 1588 Timer Increment */
126
#define GEM_PTPETXS       (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
127
#define GEM_PTPETXNS      (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
128
#define GEM_PTPERXS       (0x000001E8/4) /* PTP Event Frame Received (s) */
129
#define GEM_PTPERXNS      (0x000001EC/4) /* PTP Event Frame Received (ns) */
130
#define GEM_PTPPTXS       (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
131
#define GEM_PTPPTXNS      (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
132
#define GEM_PTPPRXS       (0x000001E8/4) /* PTP Peer Frame Received (s) */
133
#define GEM_PTPPRXNS      (0x000001EC/4) /* PTP Peer Frame Received (ns) */
134

    
135
/* Design Configuration Registers */
136
#define GEM_DESCONF       (0x00000280/4)
137
#define GEM_DESCONF2      (0x00000284/4)
138
#define GEM_DESCONF3      (0x00000288/4)
139
#define GEM_DESCONF4      (0x0000028C/4)
140
#define GEM_DESCONF5      (0x00000290/4)
141
#define GEM_DESCONF6      (0x00000294/4)
142
#define GEM_DESCONF7      (0x00000298/4)
143

    
144
#define GEM_MAXREG        (0x00000640/4) /* Last valid GEM address */
145

    
146
/*****************************************/
147
#define GEM_NWCTRL_TXSTART     0x00000200 /* Transmit Enable */
148
#define GEM_NWCTRL_TXENA       0x00000008 /* Transmit Enable */
149
#define GEM_NWCTRL_RXENA       0x00000004 /* Receive Enable */
150
#define GEM_NWCTRL_LOCALLOOP   0x00000002 /* Local Loopback */
151

    
152
#define GEM_NWCFG_STRIP_FCS    0x00020000 /* Strip FCS field */
153
#define GEM_NWCFG_LERR_DISC    0x00010000 /* Discard RX frames with lenth err */
154
#define GEM_NWCFG_BUFF_OFST_M  0x0000C000 /* Receive buffer offset mask */
155
#define GEM_NWCFG_BUFF_OFST_S  14         /* Receive buffer offset shift */
156
#define GEM_NWCFG_UCAST_HASH   0x00000080 /* accept unicast if hash match */
157
#define GEM_NWCFG_MCAST_HASH   0x00000040 /* accept multicast if hash match */
158
#define GEM_NWCFG_BCAST_REJ    0x00000020 /* Reject broadcast packets */
159
#define GEM_NWCFG_PROMISC      0x00000010 /* Accept all packets */
160

    
161
#define GEM_DMACFG_RBUFSZ_M    0x007F0000 /* DMA RX Buffer Size mask */
162
#define GEM_DMACFG_RBUFSZ_S    16         /* DMA RX Buffer Size shift */
163
#define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
164
#define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
165

    
166
#define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
167
#define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */
168

    
169
#define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
170
#define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */
171

    
172
/* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
173
#define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
174
#define GEM_INT_TXUSED         0x00000008
175
#define GEM_INT_RXUSED         0x00000004
176
#define GEM_INT_RXCMPL        0x00000002
177

    
178
#define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
179
#define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
180
#define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
181
#define GEM_PHYMNTNC_ADDR_SHFT 23
182
#define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
183
#define GEM_PHYMNTNC_REG_SHIFT 18
184

    
185
/* Marvell PHY definitions */
186
#define BOARD_PHY_ADDRESS    23 /* PHY address we will emulate a device at */
187

    
188
#define PHY_REG_CONTROL      0
189
#define PHY_REG_STATUS       1
190
#define PHY_REG_PHYID1       2
191
#define PHY_REG_PHYID2       3
192
#define PHY_REG_ANEGADV      4
193
#define PHY_REG_LINKPABIL    5
194
#define PHY_REG_ANEGEXP      6
195
#define PHY_REG_NEXTP        7
196
#define PHY_REG_LINKPNEXTP   8
197
#define PHY_REG_100BTCTRL    9
198
#define PHY_REG_1000BTSTAT   10
199
#define PHY_REG_EXTSTAT      15
200
#define PHY_REG_PHYSPCFC_CTL 16
201
#define PHY_REG_PHYSPCFC_ST  17
202
#define PHY_REG_INT_EN       18
203
#define PHY_REG_INT_ST       19
204
#define PHY_REG_EXT_PHYSPCFC_CTL  20
205
#define PHY_REG_RXERR        21
206
#define PHY_REG_EACD         22
207
#define PHY_REG_LED          24
208
#define PHY_REG_LED_OVRD     25
209
#define PHY_REG_EXT_PHYSPCFC_CTL2 26
210
#define PHY_REG_EXT_PHYSPCFC_ST   27
211
#define PHY_REG_CABLE_DIAG   28
212

    
213
#define PHY_REG_CONTROL_RST  0x8000
214
#define PHY_REG_CONTROL_LOOP 0x4000
215
#define PHY_REG_CONTROL_ANEG 0x1000
216

    
217
#define PHY_REG_STATUS_LINK     0x0004
218
#define PHY_REG_STATUS_ANEGCMPL 0x0020
219

    
220
#define PHY_REG_INT_ST_ANEGCMPL 0x0800
221
#define PHY_REG_INT_ST_LINKC    0x0400
222
#define PHY_REG_INT_ST_ENERGY   0x0010
223

    
224
/***********************************************************************/
225
#define GEM_RX_REJECT                   (-1)
226
#define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
227
#define GEM_RX_BROADCAST_ACCEPT         (-3)
228
#define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
229
#define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
230

    
231
#define GEM_RX_SAR_ACCEPT               0
232

    
233
/***********************************************************************/
234

    
235
#define DESC_1_USED 0x80000000
236
#define DESC_1_LENGTH 0x00001FFF
237

    
238
#define DESC_1_TX_WRAP 0x40000000
239
#define DESC_1_TX_LAST 0x00008000
240

    
241
#define DESC_0_RX_WRAP 0x00000002
242
#define DESC_0_RX_OWNERSHIP 0x00000001
243

    
244
#define R_DESC_1_RX_SAR_SHIFT           25
245
#define R_DESC_1_RX_SAR_LENGTH          2
246
#define R_DESC_1_RX_SAR_MATCH           (1 << 27)
247
#define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
248
#define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
249
#define R_DESC_1_RX_BROADCAST           (1 << 31)
250

    
251
#define DESC_1_RX_SOF 0x00004000
252
#define DESC_1_RX_EOF 0x00008000
253

    
254
static inline unsigned tx_desc_get_buffer(unsigned *desc)
255
{
256
    return desc[0];
257
}
258

    
259
static inline unsigned tx_desc_get_used(unsigned *desc)
260
{
261
    return (desc[1] & DESC_1_USED) ? 1 : 0;
262
}
263

    
264
static inline void tx_desc_set_used(unsigned *desc)
265
{
266
    desc[1] |= DESC_1_USED;
267
}
268

    
269
static inline unsigned tx_desc_get_wrap(unsigned *desc)
270
{
271
    return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
272
}
273

    
274
static inline unsigned tx_desc_get_last(unsigned *desc)
275
{
276
    return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
277
}
278

    
279
static inline unsigned tx_desc_get_length(unsigned *desc)
280
{
281
    return desc[1] & DESC_1_LENGTH;
282
}
283

    
284
static inline void print_gem_tx_desc(unsigned *desc)
285
{
286
    DB_PRINT("TXDESC:\n");
287
    DB_PRINT("bufaddr: 0x%08x\n", *desc);
288
    DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
289
    DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
290
    DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
291
    DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
292
}
293

    
294
static inline unsigned rx_desc_get_buffer(unsigned *desc)
295
{
296
    return desc[0] & ~0x3UL;
297
}
298

    
299
static inline unsigned rx_desc_get_wrap(unsigned *desc)
300
{
301
    return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
302
}
303

    
304
static inline unsigned rx_desc_get_ownership(unsigned *desc)
305
{
306
    return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
307
}
308

    
309
static inline void rx_desc_set_ownership(unsigned *desc)
310
{
311
    desc[0] |= DESC_0_RX_OWNERSHIP;
312
}
313

    
314
static inline void rx_desc_set_sof(unsigned *desc)
315
{
316
    desc[1] |= DESC_1_RX_SOF;
317
}
318

    
319
static inline void rx_desc_set_eof(unsigned *desc)
320
{
321
    desc[1] |= DESC_1_RX_EOF;
322
}
323

    
324
static inline void rx_desc_set_length(unsigned *desc, unsigned len)
325
{
326
    desc[1] &= ~DESC_1_LENGTH;
327
    desc[1] |= len;
328
}
329

    
330
static inline void rx_desc_set_broadcast(unsigned *desc)
331
{
332
    desc[1] |= R_DESC_1_RX_BROADCAST;
333
}
334

    
335
static inline void rx_desc_set_unicast_hash(unsigned *desc)
336
{
337
    desc[1] |= R_DESC_1_RX_UNICAST_HASH;
338
}
339

    
340
static inline void rx_desc_set_multicast_hash(unsigned *desc)
341
{
342
    desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
343
}
344

    
345
static inline void rx_desc_set_sar(unsigned *desc, int sar_idx)
346
{
347
    desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
348
                        sar_idx);
349
    desc[1] |= R_DESC_1_RX_SAR_MATCH;
350
}
351

    
352
#define TYPE_CADENCE_GEM "cadence_gem"
353
#define GEM(obj) OBJECT_CHECK(GemState, (obj), TYPE_CADENCE_GEM)
354

    
355
typedef struct GemState {
356
    SysBusDevice parent_obj;
357

    
358
    MemoryRegion iomem;
359
    NICState *nic;
360
    NICConf conf;
361
    qemu_irq irq;
362

    
363
    /* GEM registers backing store */
364
    uint32_t regs[GEM_MAXREG];
365
    /* Mask of register bits which are write only */
366
    uint32_t regs_wo[GEM_MAXREG];
367
    /* Mask of register bits which are read only */
368
    uint32_t regs_ro[GEM_MAXREG];
369
    /* Mask of register bits which are clear on read */
370
    uint32_t regs_rtc[GEM_MAXREG];
371
    /* Mask of register bits which are write 1 to clear */
372
    uint32_t regs_w1c[GEM_MAXREG];
373

    
374
    /* PHY registers backing store */
375
    uint16_t phy_regs[32];
376

    
377
    uint8_t phy_loop; /* Are we in phy loopback? */
378

    
379
    /* The current DMA descriptor pointers */
380
    uint32_t rx_desc_addr;
381
    uint32_t tx_desc_addr;
382

    
383
    unsigned rx_desc[2];
384

    
385
    bool sar_active[4];
386
} GemState;
387

    
388
/* The broadcast MAC address: 0xFFFFFFFFFFFF */
389
const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
390

    
391
/*
392
 * gem_init_register_masks:
393
 * One time initialization.
394
 * Set masks to identify which register bits have magical clear properties
395
 */
396
static void gem_init_register_masks(GemState *s)
397
{
398
    /* Mask of register bits which are read only*/
399
    memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
400
    s->regs_ro[GEM_NWCTRL]   = 0xFFF80000;
401
    s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
402
    s->regs_ro[GEM_DMACFG]   = 0xFE00F000;
403
    s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
404
    s->regs_ro[GEM_RXQBASE]  = 0x00000003;
405
    s->regs_ro[GEM_TXQBASE]  = 0x00000003;
406
    s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
407
    s->regs_ro[GEM_ISR]      = 0xFFFFFFFF;
408
    s->regs_ro[GEM_IMR]      = 0xFFFFFFFF;
409
    s->regs_ro[GEM_MODID]    = 0xFFFFFFFF;
410

    
411
    /* Mask of register bits which are clear on read */
412
    memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
413
    s->regs_rtc[GEM_ISR]      = 0xFFFFFFFF;
414

    
415
    /* Mask of register bits which are write 1 to clear */
416
    memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
417
    s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
418
    s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
419

    
420
    /* Mask of register bits which are write only */
421
    memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
422
    s->regs_wo[GEM_NWCTRL]   = 0x00073E60;
423
    s->regs_wo[GEM_IER]      = 0x07FFFFFF;
424
    s->regs_wo[GEM_IDR]      = 0x07FFFFFF;
425
}
426

    
427
/*
428
 * phy_update_link:
429
 * Make the emulated PHY link state match the QEMU "interface" state.
430
 */
431
static void phy_update_link(GemState *s)
432
{
433
    DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
434

    
435
    /* Autonegotiation status mirrors link status.  */
436
    if (qemu_get_queue(s->nic)->link_down) {
437
        s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
438
                                         PHY_REG_STATUS_LINK);
439
        s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
440
    } else {
441
        s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
442
                                         PHY_REG_STATUS_LINK);
443
        s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
444
                                        PHY_REG_INT_ST_ANEGCMPL |
445
                                        PHY_REG_INT_ST_ENERGY);
446
    }
447
}
448

    
449
static int gem_can_receive(NetClientState *nc)
450
{
451
    GemState *s;
452

    
453
    s = qemu_get_nic_opaque(nc);
454

    
455
    DB_PRINT("\n");
456

    
457
    /* Do nothing if receive is not enabled. */
458
    if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
459
        return 0;
460
    }
461

    
462
    return 1;
463
}
464

    
465
/*
466
 * gem_update_int_status:
467
 * Raise or lower interrupt based on current status.
468
 */
469
static void gem_update_int_status(GemState *s)
470
{
471
    if (s->regs[GEM_ISR]) {
472
        DB_PRINT("asserting int. (0x%08x)\n", s->regs[GEM_ISR]);
473
        qemu_set_irq(s->irq, 1);
474
    }
475
}
476

    
477
/*
478
 * gem_receive_updatestats:
479
 * Increment receive statistics.
480
 */
481
static void gem_receive_updatestats(GemState *s, const uint8_t *packet,
482
                                    unsigned bytes)
483
{
484
    uint64_t octets;
485

    
486
    /* Total octets (bytes) received */
487
    octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
488
             s->regs[GEM_OCTRXHI];
489
    octets += bytes;
490
    s->regs[GEM_OCTRXLO] = octets >> 32;
491
    s->regs[GEM_OCTRXHI] = octets;
492

    
493
    /* Error-free Frames received */
494
    s->regs[GEM_RXCNT]++;
495

    
496
    /* Error-free Broadcast Frames counter */
497
    if (!memcmp(packet, broadcast_addr, 6)) {
498
        s->regs[GEM_RXBROADCNT]++;
499
    }
500

    
501
    /* Error-free Multicast Frames counter */
502
    if (packet[0] == 0x01) {
503
        s->regs[GEM_RXMULTICNT]++;
504
    }
505

    
506
    if (bytes <= 64) {
507
        s->regs[GEM_RX64CNT]++;
508
    } else if (bytes <= 127) {
509
        s->regs[GEM_RX65CNT]++;
510
    } else if (bytes <= 255) {
511
        s->regs[GEM_RX128CNT]++;
512
    } else if (bytes <= 511) {
513
        s->regs[GEM_RX256CNT]++;
514
    } else if (bytes <= 1023) {
515
        s->regs[GEM_RX512CNT]++;
516
    } else if (bytes <= 1518) {
517
        s->regs[GEM_RX1024CNT]++;
518
    } else {
519
        s->regs[GEM_RX1519CNT]++;
520
    }
521
}
522

    
523
/*
524
 * Get the MAC Address bit from the specified position
525
 */
526
static unsigned get_bit(const uint8_t *mac, unsigned bit)
527
{
528
    unsigned byte;
529

    
530
    byte = mac[bit / 8];
531
    byte >>= (bit & 0x7);
532
    byte &= 1;
533

    
534
    return byte;
535
}
536

    
537
/*
538
 * Calculate a GEM MAC Address hash index
539
 */
540
static unsigned calc_mac_hash(const uint8_t *mac)
541
{
542
    int index_bit, mac_bit;
543
    unsigned hash_index;
544

    
545
    hash_index = 0;
546
    mac_bit = 5;
547
    for (index_bit = 5; index_bit >= 0; index_bit--) {
548
        hash_index |= (get_bit(mac,  mac_bit) ^
549
                               get_bit(mac, mac_bit + 6) ^
550
                               get_bit(mac, mac_bit + 12) ^
551
                               get_bit(mac, mac_bit + 18) ^
552
                               get_bit(mac, mac_bit + 24) ^
553
                               get_bit(mac, mac_bit + 30) ^
554
                               get_bit(mac, mac_bit + 36) ^
555
                               get_bit(mac, mac_bit + 42)) << index_bit;
556
        mac_bit--;
557
    }
558

    
559
    return hash_index;
560
}
561

    
562
/*
563
 * gem_mac_address_filter:
564
 * Accept or reject this destination address?
565
 * Returns:
566
 * GEM_RX_REJECT: reject
567
 * >= 0: Specific address accept (which matched SAR is returned)
568
 * others for various other modes of accept:
569
 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
570
 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
571
 */
572
static int gem_mac_address_filter(GemState *s, const uint8_t *packet)
573
{
574
    uint8_t *gem_spaddr;
575
    int i;
576

    
577
    /* Promiscuous mode? */
578
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
579
        return GEM_RX_PROMISCUOUS_ACCEPT;
580
    }
581

    
582
    if (!memcmp(packet, broadcast_addr, 6)) {
583
        /* Reject broadcast packets? */
584
        if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
585
            return GEM_RX_REJECT;
586
        }
587
        return GEM_RX_BROADCAST_ACCEPT;
588
    }
589

    
590
    /* Accept packets -w- hash match? */
591
    if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
592
        (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
593
        unsigned hash_index;
594

    
595
        hash_index = calc_mac_hash(packet);
596
        if (hash_index < 32) {
597
            if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
598
                return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
599
                                           GEM_RX_UNICAST_HASH_ACCEPT;
600
            }
601
        } else {
602
            hash_index -= 32;
603
            if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
604
                return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
605
                                           GEM_RX_UNICAST_HASH_ACCEPT;
606
            }
607
        }
608
    }
609

    
610
    /* Check all 4 specific addresses */
611
    gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
612
    for (i = 3; i >= 0; i--) {
613
        if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
614
            return GEM_RX_SAR_ACCEPT + i;
615
        }
616
    }
617

    
618
    /* No address match; reject the packet */
619
    return GEM_RX_REJECT;
620
}
621

    
622
static void gem_get_rx_desc(GemState *s)
623
{
624
    DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr);
625
    /* read current descriptor */
626
    cpu_physical_memory_read(s->rx_desc_addr,
627
                             (uint8_t *)s->rx_desc, sizeof(s->rx_desc));
628

    
629
    /* Descriptor owned by software ? */
630
    if (rx_desc_get_ownership(s->rx_desc) == 1) {
631
        DB_PRINT("descriptor 0x%x owned by sw.\n",
632
                 (unsigned)s->rx_desc_addr);
633
        s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
634
        s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
635
        /* Handle interrupt consequences */
636
        gem_update_int_status(s);
637
    }
638
}
639

    
640
/*
641
 * gem_receive:
642
 * Fit a packet handed to us by QEMU into the receive descriptor ring.
643
 */
644
static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
645
{
646
    GemState *s;
647
    unsigned   rxbufsize, bytes_to_copy;
648
    unsigned   rxbuf_offset;
649
    uint8_t    rxbuf[2048];
650
    uint8_t   *rxbuf_ptr;
651
    bool first_desc = true;
652
    int maf;
653

    
654
    s = qemu_get_nic_opaque(nc);
655

    
656
    /* Is this destination MAC address "for us" ? */
657
    maf = gem_mac_address_filter(s, buf);
658
    if (maf == GEM_RX_REJECT) {
659
        return -1;
660
    }
661

    
662
    /* Discard packets with receive length error enabled ? */
663
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
664
        unsigned type_len;
665

    
666
        /* Fish the ethertype / length field out of the RX packet */
667
        type_len = buf[12] << 8 | buf[13];
668
        /* It is a length field, not an ethertype */
669
        if (type_len < 0x600) {
670
            if (size < type_len) {
671
                /* discard */
672
                return -1;
673
            }
674
        }
675
    }
676

    
677
    /*
678
     * Determine configured receive buffer offset (probably 0)
679
     */
680
    rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
681
                   GEM_NWCFG_BUFF_OFST_S;
682

    
683
    /* The configure size of each receive buffer.  Determines how many
684
     * buffers needed to hold this packet.
685
     */
686
    rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
687
                 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
688
    bytes_to_copy = size;
689

    
690
    /* Strip of FCS field ? (usually yes) */
691
    if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
692
        rxbuf_ptr = (void *)buf;
693
    } else {
694
        unsigned crc_val;
695
        int      crc_offset;
696

    
697
        /* The application wants the FCS field, which QEMU does not provide.
698
         * We must try and caclculate one.
699
         */
700

    
701
        memcpy(rxbuf, buf, size);
702
        memset(rxbuf + size, 0, sizeof(rxbuf) - size);
703
        rxbuf_ptr = rxbuf;
704
        crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
705
        if (size < 60) {
706
            crc_offset = 60;
707
        } else {
708
            crc_offset = size;
709
        }
710
        memcpy(rxbuf + crc_offset, &crc_val, sizeof(crc_val));
711

    
712
        bytes_to_copy += 4;
713
        size += 4;
714
    }
715

    
716
    /* Pad to minimum length */
717
    if (size < 64) {
718
        size = 64;
719
    }
720

    
721
    DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
722

    
723
    while (bytes_to_copy) {
724
        /* Do nothing if receive is not enabled. */
725
        if (!gem_can_receive(nc)) {
726
            assert(!first_desc);
727
            return -1;
728
        }
729

    
730
        DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
731
                rx_desc_get_buffer(s->rx_desc));
732

    
733
        /* Copy packet data to emulated DMA buffer */
734
        cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc) + rxbuf_offset,
735
                                  rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
736
        bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
737
        rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
738

    
739
        /* Update the descriptor.  */
740
        if (first_desc) {
741
            rx_desc_set_sof(s->rx_desc);
742
            first_desc = false;
743
        }
744
        if (bytes_to_copy == 0) {
745
            rx_desc_set_eof(s->rx_desc);
746
            rx_desc_set_length(s->rx_desc, size);
747
        }
748
        rx_desc_set_ownership(s->rx_desc);
749

    
750
        switch (maf) {
751
        case GEM_RX_PROMISCUOUS_ACCEPT:
752
            break;
753
        case GEM_RX_BROADCAST_ACCEPT:
754
            rx_desc_set_broadcast(s->rx_desc);
755
            break;
756
        case GEM_RX_UNICAST_HASH_ACCEPT:
757
            rx_desc_set_unicast_hash(s->rx_desc);
758
            break;
759
        case GEM_RX_MULTICAST_HASH_ACCEPT:
760
            rx_desc_set_multicast_hash(s->rx_desc);
761
            break;
762
        case GEM_RX_REJECT:
763
            abort();
764
        default: /* SAR */
765
            rx_desc_set_sar(s->rx_desc, maf);
766
        }
767

    
768
        /* Descriptor write-back.  */
769
        cpu_physical_memory_write(s->rx_desc_addr,
770
                                  (uint8_t *)s->rx_desc, sizeof(s->rx_desc));
771

    
772
        /* Next descriptor */
773
        if (rx_desc_get_wrap(s->rx_desc)) {
774
            DB_PRINT("wrapping RX descriptor list\n");
775
            s->rx_desc_addr = s->regs[GEM_RXQBASE];
776
        } else {
777
            DB_PRINT("incrementing RX descriptor list\n");
778
            s->rx_desc_addr += 8;
779
        }
780
        gem_get_rx_desc(s);
781
    }
782

    
783
    /* Count it */
784
    gem_receive_updatestats(s, buf, size);
785

    
786
    s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
787
    s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
788

    
789
    /* Handle interrupt consequences */
790
    gem_update_int_status(s);
791

    
792
    return size;
793
}
794

    
795
/*
796
 * gem_transmit_updatestats:
797
 * Increment transmit statistics.
798
 */
799
static void gem_transmit_updatestats(GemState *s, const uint8_t *packet,
800
                                     unsigned bytes)
801
{
802
    uint64_t octets;
803

    
804
    /* Total octets (bytes) transmitted */
805
    octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
806
             s->regs[GEM_OCTTXHI];
807
    octets += bytes;
808
    s->regs[GEM_OCTTXLO] = octets >> 32;
809
    s->regs[GEM_OCTTXHI] = octets;
810

    
811
    /* Error-free Frames transmitted */
812
    s->regs[GEM_TXCNT]++;
813

    
814
    /* Error-free Broadcast Frames counter */
815
    if (!memcmp(packet, broadcast_addr, 6)) {
816
        s->regs[GEM_TXBCNT]++;
817
    }
818

    
819
    /* Error-free Multicast Frames counter */
820
    if (packet[0] == 0x01) {
821
        s->regs[GEM_TXMCNT]++;
822
    }
823

    
824
    if (bytes <= 64) {
825
        s->regs[GEM_TX64CNT]++;
826
    } else if (bytes <= 127) {
827
        s->regs[GEM_TX65CNT]++;
828
    } else if (bytes <= 255) {
829
        s->regs[GEM_TX128CNT]++;
830
    } else if (bytes <= 511) {
831
        s->regs[GEM_TX256CNT]++;
832
    } else if (bytes <= 1023) {
833
        s->regs[GEM_TX512CNT]++;
834
    } else if (bytes <= 1518) {
835
        s->regs[GEM_TX1024CNT]++;
836
    } else {
837
        s->regs[GEM_TX1519CNT]++;
838
    }
839
}
840

    
841
/*
842
 * gem_transmit:
843
 * Fish packets out of the descriptor ring and feed them to QEMU
844
 */
845
static void gem_transmit(GemState *s)
846
{
847
    unsigned    desc[2];
848
    hwaddr packet_desc_addr;
849
    uint8_t     tx_packet[2048];
850
    uint8_t     *p;
851
    unsigned    total_bytes;
852

    
853
    /* Do nothing if transmit is not enabled. */
854
    if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
855
        return;
856
    }
857

    
858
    DB_PRINT("\n");
859

    
860
    /* The packet we will hand off to qemu.
861
     * Packets scattered across multiple descriptors are gathered to this
862
     * one contiguous buffer first.
863
     */
864
    p = tx_packet;
865
    total_bytes = 0;
866

    
867
    /* read current descriptor */
868
    packet_desc_addr = s->tx_desc_addr;
869
    cpu_physical_memory_read(packet_desc_addr,
870
                             (uint8_t *)&desc[0], sizeof(desc));
871
    /* Handle all descriptors owned by hardware */
872
    while (tx_desc_get_used(desc) == 0) {
873

    
874
        /* Do nothing if transmit is not enabled. */
875
        if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
876
            return;
877
        }
878
        print_gem_tx_desc(desc);
879

    
880
        /* The real hardware would eat this (and possibly crash).
881
         * For QEMU let's lend a helping hand.
882
         */
883
        if ((tx_desc_get_buffer(desc) == 0) ||
884
            (tx_desc_get_length(desc) == 0)) {
885
            DB_PRINT("Invalid TX descriptor @ 0x%x\n",
886
                     (unsigned)packet_desc_addr);
887
            break;
888
        }
889

    
890
        /* Gather this fragment of the packet from "dma memory" to our contig.
891
         * buffer.
892
         */
893
        cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
894
                                 tx_desc_get_length(desc));
895
        p += tx_desc_get_length(desc);
896
        total_bytes += tx_desc_get_length(desc);
897

    
898
        /* Last descriptor for this packet; hand the whole thing off */
899
        if (tx_desc_get_last(desc)) {
900
            /* Modify the 1st descriptor of this packet to be owned by
901
             * the processor.
902
             */
903
            cpu_physical_memory_read(s->tx_desc_addr,
904
                                     (uint8_t *)&desc[0], sizeof(desc));
905
            tx_desc_set_used(desc);
906
            cpu_physical_memory_write(s->tx_desc_addr,
907
                                      (uint8_t *)&desc[0], sizeof(desc));
908
            /* Advance the hardare current descriptor past this packet */
909
            if (tx_desc_get_wrap(desc)) {
910
                s->tx_desc_addr = s->regs[GEM_TXQBASE];
911
            } else {
912
                s->tx_desc_addr = packet_desc_addr + 8;
913
            }
914
            DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr);
915

    
916
            s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
917
            s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
918

    
919
            /* Handle interrupt consequences */
920
            gem_update_int_status(s);
921

    
922
            /* Is checksum offload enabled? */
923
            if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
924
                net_checksum_calculate(tx_packet, total_bytes);
925
            }
926

    
927
            /* Update MAC statistics */
928
            gem_transmit_updatestats(s, tx_packet, total_bytes);
929

    
930
            /* Send the packet somewhere */
931
            if (s->phy_loop || (s->regs[GEM_NWCTRL] & GEM_NWCTRL_LOCALLOOP)) {
932
                gem_receive(qemu_get_queue(s->nic), tx_packet, total_bytes);
933
            } else {
934
                qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
935
                                 total_bytes);
936
            }
937

    
938
            /* Prepare for next packet */
939
            p = tx_packet;
940
            total_bytes = 0;
941
        }
942

    
943
        /* read next descriptor */
944
        if (tx_desc_get_wrap(desc)) {
945
            packet_desc_addr = s->regs[GEM_TXQBASE];
946
        } else {
947
            packet_desc_addr += 8;
948
        }
949
        cpu_physical_memory_read(packet_desc_addr,
950
                                 (uint8_t *)&desc[0], sizeof(desc));
951
    }
952

    
953
    if (tx_desc_get_used(desc)) {
954
        s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
955
        s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
956
        gem_update_int_status(s);
957
    }
958
}
959

    
960
static void gem_phy_reset(GemState *s)
961
{
962
    memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
963
    s->phy_regs[PHY_REG_CONTROL] = 0x1140;
964
    s->phy_regs[PHY_REG_STATUS] = 0x7969;
965
    s->phy_regs[PHY_REG_PHYID1] = 0x0141;
966
    s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
967
    s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
968
    s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
969
    s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
970
    s->phy_regs[PHY_REG_NEXTP] = 0x2001;
971
    s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
972
    s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
973
    s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
974
    s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
975
    s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
976
    s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0xBC00;
977
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
978
    s->phy_regs[PHY_REG_LED] = 0x4100;
979
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
980
    s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
981

    
982
    phy_update_link(s);
983
}
984

    
985
static void gem_reset(DeviceState *d)
986
{
987
    int i;
988
    GemState *s = GEM(d);
989

    
990
    DB_PRINT("\n");
991

    
992
    /* Set post reset register values */
993
    memset(&s->regs[0], 0, sizeof(s->regs));
994
    s->regs[GEM_NWCFG] = 0x00080000;
995
    s->regs[GEM_NWSTATUS] = 0x00000006;
996
    s->regs[GEM_DMACFG] = 0x00020784;
997
    s->regs[GEM_IMR] = 0x07ffffff;
998
    s->regs[GEM_TXPAUSE] = 0x0000ffff;
999
    s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1000
    s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1001
    s->regs[GEM_MODID] = 0x00020118;
1002
    s->regs[GEM_DESCONF] = 0x02500111;
1003
    s->regs[GEM_DESCONF2] = 0x2ab13fff;
1004
    s->regs[GEM_DESCONF5] = 0x002f2145;
1005
    s->regs[GEM_DESCONF6] = 0x00000200;
1006

    
1007
    for (i = 0; i < 4; i++) {
1008
        s->sar_active[i] = false;
1009
    }
1010

    
1011
    gem_phy_reset(s);
1012

    
1013
    gem_update_int_status(s);
1014
}
1015

    
1016
static uint16_t gem_phy_read(GemState *s, unsigned reg_num)
1017
{
1018
    DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1019
    return s->phy_regs[reg_num];
1020
}
1021

    
1022
static void gem_phy_write(GemState *s, unsigned reg_num, uint16_t val)
1023
{
1024
    DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1025

    
1026
    switch (reg_num) {
1027
    case PHY_REG_CONTROL:
1028
        if (val & PHY_REG_CONTROL_RST) {
1029
            /* Phy reset */
1030
            gem_phy_reset(s);
1031
            val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1032
            s->phy_loop = 0;
1033
        }
1034
        if (val & PHY_REG_CONTROL_ANEG) {
1035
            /* Complete autonegotiation immediately */
1036
            val &= ~PHY_REG_CONTROL_ANEG;
1037
            s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1038
        }
1039
        if (val & PHY_REG_CONTROL_LOOP) {
1040
            DB_PRINT("PHY placed in loopback\n");
1041
            s->phy_loop = 1;
1042
        } else {
1043
            s->phy_loop = 0;
1044
        }
1045
        break;
1046
    }
1047
    s->phy_regs[reg_num] = val;
1048
}
1049

    
1050
/*
1051
 * gem_read32:
1052
 * Read a GEM register.
1053
 */
1054
static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1055
{
1056
    GemState *s;
1057
    uint32_t retval;
1058

    
1059
    s = (GemState *)opaque;
1060

    
1061
    offset >>= 2;
1062
    retval = s->regs[offset];
1063

    
1064
    DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1065

    
1066
    switch (offset) {
1067
    case GEM_ISR:
1068
        DB_PRINT("lowering irq on ISR read\n");
1069
        qemu_set_irq(s->irq, 0);
1070
        break;
1071
    case GEM_PHYMNTNC:
1072
        if (retval & GEM_PHYMNTNC_OP_R) {
1073
            uint32_t phy_addr, reg_num;
1074

    
1075
            phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1076
            if (phy_addr == BOARD_PHY_ADDRESS) {
1077
                reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1078
                retval &= 0xFFFF0000;
1079
                retval |= gem_phy_read(s, reg_num);
1080
            } else {
1081
                retval |= 0xFFFF; /* No device at this address */
1082
            }
1083
        }
1084
        break;
1085
    }
1086

    
1087
    /* Squash read to clear bits */
1088
    s->regs[offset] &= ~(s->regs_rtc[offset]);
1089

    
1090
    /* Do not provide write only bits */
1091
    retval &= ~(s->regs_wo[offset]);
1092

    
1093
    DB_PRINT("0x%08x\n", retval);
1094
    return retval;
1095
}
1096

    
1097
/*
1098
 * gem_write32:
1099
 * Write a GEM register.
1100
 */
1101
static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1102
        unsigned size)
1103
{
1104
    GemState *s = (GemState *)opaque;
1105
    uint32_t readonly;
1106

    
1107
    DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1108
    offset >>= 2;
1109

    
1110
    /* Squash bits which are read only in write value */
1111
    val &= ~(s->regs_ro[offset]);
1112
    /* Preserve (only) bits which are read only in register */
1113
    readonly = s->regs[offset];
1114
    readonly &= s->regs_ro[offset];
1115

    
1116
    /* Squash bits which are write 1 to clear */
1117
    val &= ~(s->regs_w1c[offset] & val);
1118

    
1119
    /* Copy register write to backing store */
1120
    s->regs[offset] = val | readonly;
1121

    
1122
    /* Handle register write side effects */
1123
    switch (offset) {
1124
    case GEM_NWCTRL:
1125
        if (val & GEM_NWCTRL_RXENA) {
1126
            gem_get_rx_desc(s);
1127
        }
1128
        if (val & GEM_NWCTRL_TXSTART) {
1129
            gem_transmit(s);
1130
        }
1131
        if (!(val & GEM_NWCTRL_TXENA)) {
1132
            /* Reset to start of Q when transmit disabled. */
1133
            s->tx_desc_addr = s->regs[GEM_TXQBASE];
1134
        }
1135
        if (val & GEM_NWCTRL_RXENA) {
1136
            qemu_flush_queued_packets(qemu_get_queue(s->nic));
1137
        }
1138
        break;
1139

    
1140
    case GEM_TXSTATUS:
1141
        gem_update_int_status(s);
1142
        break;
1143
    case GEM_RXQBASE:
1144
        s->rx_desc_addr = val;
1145
        break;
1146
    case GEM_TXQBASE:
1147
        s->tx_desc_addr = val;
1148
        break;
1149
    case GEM_RXSTATUS:
1150
        gem_update_int_status(s);
1151
        break;
1152
    case GEM_IER:
1153
        s->regs[GEM_IMR] &= ~val;
1154
        gem_update_int_status(s);
1155
        break;
1156
    case GEM_IDR:
1157
        s->regs[GEM_IMR] |= val;
1158
        gem_update_int_status(s);
1159
        break;
1160
    case GEM_SPADDR1LO:
1161
    case GEM_SPADDR2LO:
1162
    case GEM_SPADDR3LO:
1163
    case GEM_SPADDR4LO:
1164
        s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1165
        break;
1166
    case GEM_SPADDR1HI:
1167
    case GEM_SPADDR2HI:
1168
    case GEM_SPADDR3HI:
1169
    case GEM_SPADDR4HI:
1170
        s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1171
        break;
1172
    case GEM_PHYMNTNC:
1173
        if (val & GEM_PHYMNTNC_OP_W) {
1174
            uint32_t phy_addr, reg_num;
1175

    
1176
            phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1177
            if (phy_addr == BOARD_PHY_ADDRESS) {
1178
                reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1179
                gem_phy_write(s, reg_num, val);
1180
            }
1181
        }
1182
        break;
1183
    }
1184

    
1185
    DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1186
}
1187

    
1188
static const MemoryRegionOps gem_ops = {
1189
    .read = gem_read,
1190
    .write = gem_write,
1191
    .endianness = DEVICE_LITTLE_ENDIAN,
1192
};
1193

    
1194
static void gem_cleanup(NetClientState *nc)
1195
{
1196
    GemState *s = qemu_get_nic_opaque(nc);
1197

    
1198
    DB_PRINT("\n");
1199
    s->nic = NULL;
1200
}
1201

    
1202
static void gem_set_link(NetClientState *nc)
1203
{
1204
    DB_PRINT("\n");
1205
    phy_update_link(qemu_get_nic_opaque(nc));
1206
}
1207

    
1208
static NetClientInfo net_gem_info = {
1209
    .type = NET_CLIENT_OPTIONS_KIND_NIC,
1210
    .size = sizeof(NICState),
1211
    .can_receive = gem_can_receive,
1212
    .receive = gem_receive,
1213
    .cleanup = gem_cleanup,
1214
    .link_status_changed = gem_set_link,
1215
};
1216

    
1217
static int gem_init(SysBusDevice *sbd)
1218
{
1219
    DeviceState *dev = DEVICE(sbd);
1220
    GemState *s = GEM(dev);
1221

    
1222
    DB_PRINT("\n");
1223

    
1224
    gem_init_register_masks(s);
1225
    memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1226
                          "enet", sizeof(s->regs));
1227
    sysbus_init_mmio(sbd, &s->iomem);
1228
    sysbus_init_irq(sbd, &s->irq);
1229
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
1230

    
1231
    s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1232
            object_get_typename(OBJECT(dev)), dev->id, s);
1233

    
1234
    return 0;
1235
}
1236

    
1237
static const VMStateDescription vmstate_cadence_gem = {
1238
    .name = "cadence_gem",
1239
    .version_id = 2,
1240
    .minimum_version_id = 2,
1241
    .minimum_version_id_old = 2,
1242
    .fields      = (VMStateField[]) {
1243
        VMSTATE_UINT32_ARRAY(regs, GemState, GEM_MAXREG),
1244
        VMSTATE_UINT16_ARRAY(phy_regs, GemState, 32),
1245
        VMSTATE_UINT8(phy_loop, GemState),
1246
        VMSTATE_UINT32(rx_desc_addr, GemState),
1247
        VMSTATE_UINT32(tx_desc_addr, GemState),
1248
        VMSTATE_BOOL_ARRAY(sar_active, GemState, 4),
1249
        VMSTATE_END_OF_LIST(),
1250
    }
1251
};
1252

    
1253
static Property gem_properties[] = {
1254
    DEFINE_NIC_PROPERTIES(GemState, conf),
1255
    DEFINE_PROP_END_OF_LIST(),
1256
};
1257

    
1258
static void gem_class_init(ObjectClass *klass, void *data)
1259
{
1260
    DeviceClass *dc = DEVICE_CLASS(klass);
1261
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1262

    
1263
    sdc->init = gem_init;
1264
    dc->props = gem_properties;
1265
    dc->vmsd = &vmstate_cadence_gem;
1266
    dc->reset = gem_reset;
1267
}
1268

    
1269
static const TypeInfo gem_info = {
1270
    .name  = TYPE_CADENCE_GEM,
1271
    .parent = TYPE_SYS_BUS_DEVICE,
1272
    .instance_size  = sizeof(GemState),
1273
    .class_init = gem_class_init,
1274
};
1275

    
1276
static void gem_register_types(void)
1277
{
1278
    type_register_static(&gem_info);
1279
}
1280

    
1281
type_init(gem_register_types)