Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ e1ef36c4

History | View | Annotate | Download (117.3 kB)

1 e8af50a3 bellard
#include "exec.h"
2 eed152bb blueswir1
#include "host-utils.h"
3 1a2fb1c0 blueswir1
#include "helper.h"
4 b04d9890 Fabien Chouteau
#include "sysemu.h"
5 e8af50a3 bellard
6 e80cfcfc bellard
//#define DEBUG_MMU
7 952a328f blueswir1
//#define DEBUG_MXCC
8 94554550 blueswir1
//#define DEBUG_UNALIGNED
9 6c36d3fa blueswir1
//#define DEBUG_UNASSIGNED
10 8543e2cf blueswir1
//#define DEBUG_ASI
11 d81fd722 blueswir1
//#define DEBUG_PCALL
12 7e8695ed Igor V. Kovalenko
//#define DEBUG_PSTATE
13 b04d9890 Fabien Chouteau
//#define DEBUG_CACHE_CONTROL
14 e80cfcfc bellard
15 952a328f blueswir1
#ifdef DEBUG_MMU
16 001faf32 Blue Swirl
#define DPRINTF_MMU(fmt, ...)                                   \
17 001faf32 Blue Swirl
    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18 952a328f blueswir1
#else
19 001faf32 Blue Swirl
#define DPRINTF_MMU(fmt, ...) do {} while (0)
20 952a328f blueswir1
#endif
21 952a328f blueswir1
22 952a328f blueswir1
#ifdef DEBUG_MXCC
23 001faf32 Blue Swirl
#define DPRINTF_MXCC(fmt, ...)                                  \
24 001faf32 Blue Swirl
    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25 952a328f blueswir1
#else
26 001faf32 Blue Swirl
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
27 952a328f blueswir1
#endif
28 952a328f blueswir1
29 8543e2cf blueswir1
#ifdef DEBUG_ASI
30 001faf32 Blue Swirl
#define DPRINTF_ASI(fmt, ...)                                   \
31 001faf32 Blue Swirl
    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32 8543e2cf blueswir1
#endif
33 8543e2cf blueswir1
34 7e8695ed Igor V. Kovalenko
#ifdef DEBUG_PSTATE
35 7e8695ed Igor V. Kovalenko
#define DPRINTF_PSTATE(fmt, ...)                                   \
36 7e8695ed Igor V. Kovalenko
    do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
37 7e8695ed Igor V. Kovalenko
#else
38 7e8695ed Igor V. Kovalenko
#define DPRINTF_PSTATE(fmt, ...) do {} while (0)
39 7e8695ed Igor V. Kovalenko
#endif
40 7e8695ed Igor V. Kovalenko
41 b04d9890 Fabien Chouteau
#ifdef DEBUG_CACHE_CONTROL
42 b04d9890 Fabien Chouteau
#define DPRINTF_CACHE_CONTROL(fmt, ...)                                   \
43 b04d9890 Fabien Chouteau
    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
44 b04d9890 Fabien Chouteau
#else
45 b04d9890 Fabien Chouteau
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
46 b04d9890 Fabien Chouteau
#endif
47 b04d9890 Fabien Chouteau
48 2cade6a3 blueswir1
#ifdef TARGET_SPARC64
49 2cade6a3 blueswir1
#ifndef TARGET_ABI32
50 2cade6a3 blueswir1
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
51 c2bc0e38 blueswir1
#else
52 2cade6a3 blueswir1
#define AM_CHECK(env1) (1)
53 2cade6a3 blueswir1
#endif
54 c2bc0e38 blueswir1
#endif
55 c2bc0e38 blueswir1
56 21ffd181 Blue Swirl
#define DT0 (env->dt0)
57 21ffd181 Blue Swirl
#define DT1 (env->dt1)
58 21ffd181 Blue Swirl
#define QT0 (env->qt0)
59 21ffd181 Blue Swirl
#define QT1 (env->qt1)
60 21ffd181 Blue Swirl
61 b04d9890 Fabien Chouteau
/* Leon3 cache control */
62 b04d9890 Fabien Chouteau
63 b04d9890 Fabien Chouteau
/* Cache control: emulate the behavior of cache control registers but without
64 b04d9890 Fabien Chouteau
   any effect on the emulated */
65 b04d9890 Fabien Chouteau
66 b04d9890 Fabien Chouteau
#define CACHE_STATE_MASK 0x3
67 b04d9890 Fabien Chouteau
#define CACHE_DISABLED   0x0
68 b04d9890 Fabien Chouteau
#define CACHE_FROZEN     0x1
69 b04d9890 Fabien Chouteau
#define CACHE_ENABLED    0x3
70 b04d9890 Fabien Chouteau
71 b04d9890 Fabien Chouteau
/* Cache Control register fields */
72 b04d9890 Fabien Chouteau
73 b04d9890 Fabien Chouteau
#define CACHE_CTRL_IF (1 <<  4)  /* Instruction Cache Freeze on Interrupt */
74 b04d9890 Fabien Chouteau
#define CACHE_CTRL_DF (1 <<  5)  /* Data Cache Freeze on Interrupt */
75 b04d9890 Fabien Chouteau
#define CACHE_CTRL_DP (1 << 14)  /* Data cache flush pending */
76 b04d9890 Fabien Chouteau
#define CACHE_CTRL_IP (1 << 15)  /* Instruction cache flush pending */
77 b04d9890 Fabien Chouteau
#define CACHE_CTRL_IB (1 << 16)  /* Instruction burst fetch */
78 b04d9890 Fabien Chouteau
#define CACHE_CTRL_FI (1 << 21)  /* Flush Instruction cache (Write only) */
79 b04d9890 Fabien Chouteau
#define CACHE_CTRL_FD (1 << 22)  /* Flush Data cache (Write only) */
80 b04d9890 Fabien Chouteau
#define CACHE_CTRL_DS (1 << 23)  /* Data cache snoop enable */
81 b04d9890 Fabien Chouteau
82 3c7b48b7 Paul Brook
#if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
83 3c7b48b7 Paul Brook
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
84 3c7b48b7 Paul Brook
                          int is_asi, int size);
85 3c7b48b7 Paul Brook
#endif
86 3c7b48b7 Paul Brook
87 9c22a623 Blue Swirl
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
88 697a77e6 Igor Kovalenko
// Calculates TSB pointer value for fault page size 8k or 64k
89 697a77e6 Igor Kovalenko
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
90 697a77e6 Igor Kovalenko
                                       uint64_t tag_access_register,
91 697a77e6 Igor Kovalenko
                                       int page_size)
92 697a77e6 Igor Kovalenko
{
93 697a77e6 Igor Kovalenko
    uint64_t tsb_base = tsb_register & ~0x1fffULL;
94 6e8e7d4c Igor Kovalenko
    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95 6e8e7d4c Igor Kovalenko
    int tsb_size  = tsb_register & 0xf;
96 697a77e6 Igor Kovalenko
97 697a77e6 Igor Kovalenko
    // discard lower 13 bits which hold tag access context
98 697a77e6 Igor Kovalenko
    uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
99 697a77e6 Igor Kovalenko
100 697a77e6 Igor Kovalenko
    // now reorder bits
101 697a77e6 Igor Kovalenko
    uint64_t tsb_base_mask = ~0x1fffULL;
102 697a77e6 Igor Kovalenko
    uint64_t va = tag_access_va;
103 697a77e6 Igor Kovalenko
104 697a77e6 Igor Kovalenko
    // move va bits to correct position
105 697a77e6 Igor Kovalenko
    if (page_size == 8*1024) {
106 697a77e6 Igor Kovalenko
        va >>= 9;
107 697a77e6 Igor Kovalenko
    } else if (page_size == 64*1024) {
108 697a77e6 Igor Kovalenko
        va >>= 12;
109 697a77e6 Igor Kovalenko
    }
110 697a77e6 Igor Kovalenko
111 697a77e6 Igor Kovalenko
    if (tsb_size) {
112 697a77e6 Igor Kovalenko
        tsb_base_mask <<= tsb_size;
113 697a77e6 Igor Kovalenko
    }
114 697a77e6 Igor Kovalenko
115 697a77e6 Igor Kovalenko
    // calculate tsb_base mask and adjust va if split is in use
116 697a77e6 Igor Kovalenko
    if (tsb_split) {
117 697a77e6 Igor Kovalenko
        if (page_size == 8*1024) {
118 697a77e6 Igor Kovalenko
            va &= ~(1ULL << (13 + tsb_size));
119 697a77e6 Igor Kovalenko
        } else if (page_size == 64*1024) {
120 697a77e6 Igor Kovalenko
            va |= (1ULL << (13 + tsb_size));
121 697a77e6 Igor Kovalenko
        }
122 697a77e6 Igor Kovalenko
        tsb_base_mask <<= 1;
123 697a77e6 Igor Kovalenko
    }
124 697a77e6 Igor Kovalenko
125 697a77e6 Igor Kovalenko
    return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
126 697a77e6 Igor Kovalenko
}
127 697a77e6 Igor Kovalenko
128 697a77e6 Igor Kovalenko
// Calculates tag target register value by reordering bits
129 697a77e6 Igor Kovalenko
// in tag access register
130 697a77e6 Igor Kovalenko
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
131 697a77e6 Igor Kovalenko
{
132 697a77e6 Igor Kovalenko
    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
133 697a77e6 Igor Kovalenko
}
134 697a77e6 Igor Kovalenko
135 f707726e Igor Kovalenko
static void replace_tlb_entry(SparcTLBEntry *tlb,
136 f707726e Igor Kovalenko
                              uint64_t tlb_tag, uint64_t tlb_tte,
137 f707726e Igor Kovalenko
                              CPUState *env1)
138 6e8e7d4c Igor Kovalenko
{
139 6e8e7d4c Igor Kovalenko
    target_ulong mask, size, va, offset;
140 6e8e7d4c Igor Kovalenko
141 6e8e7d4c Igor Kovalenko
    // flush page range if translation is valid
142 f707726e Igor Kovalenko
    if (TTE_IS_VALID(tlb->tte)) {
143 6e8e7d4c Igor Kovalenko
144 6e8e7d4c Igor Kovalenko
        mask = 0xffffffffffffe000ULL;
145 6e8e7d4c Igor Kovalenko
        mask <<= 3 * ((tlb->tte >> 61) & 3);
146 6e8e7d4c Igor Kovalenko
        size = ~mask + 1;
147 6e8e7d4c Igor Kovalenko
148 6e8e7d4c Igor Kovalenko
        va = tlb->tag & mask;
149 6e8e7d4c Igor Kovalenko
150 6e8e7d4c Igor Kovalenko
        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
151 6e8e7d4c Igor Kovalenko
            tlb_flush_page(env1, va + offset);
152 6e8e7d4c Igor Kovalenko
        }
153 6e8e7d4c Igor Kovalenko
    }
154 6e8e7d4c Igor Kovalenko
155 6e8e7d4c Igor Kovalenko
    tlb->tag = tlb_tag;
156 6e8e7d4c Igor Kovalenko
    tlb->tte = tlb_tte;
157 6e8e7d4c Igor Kovalenko
}
158 6e8e7d4c Igor Kovalenko
159 6e8e7d4c Igor Kovalenko
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
160 f707726e Igor Kovalenko
                      const char* strmmu, CPUState *env1)
161 6e8e7d4c Igor Kovalenko
{
162 6e8e7d4c Igor Kovalenko
    unsigned int i;
163 6e8e7d4c Igor Kovalenko
    target_ulong mask;
164 299b520c Igor V. Kovalenko
    uint64_t context;
165 299b520c Igor V. Kovalenko
166 299b520c Igor V. Kovalenko
    int is_demap_context = (demap_addr >> 6) & 1;
167 299b520c Igor V. Kovalenko
168 299b520c Igor V. Kovalenko
    // demap context
169 299b520c Igor V. Kovalenko
    switch ((demap_addr >> 4) & 3) {
170 299b520c Igor V. Kovalenko
    case 0: // primary
171 299b520c Igor V. Kovalenko
        context = env1->dmmu.mmu_primary_context;
172 299b520c Igor V. Kovalenko
        break;
173 299b520c Igor V. Kovalenko
    case 1: // secondary
174 299b520c Igor V. Kovalenko
        context = env1->dmmu.mmu_secondary_context;
175 299b520c Igor V. Kovalenko
        break;
176 299b520c Igor V. Kovalenko
    case 2: // nucleus
177 299b520c Igor V. Kovalenko
        context = 0;
178 299b520c Igor V. Kovalenko
        break;
179 299b520c Igor V. Kovalenko
    case 3: // reserved
180 299b520c Igor V. Kovalenko
    default:
181 299b520c Igor V. Kovalenko
        return;
182 299b520c Igor V. Kovalenko
    }
183 6e8e7d4c Igor Kovalenko
184 6e8e7d4c Igor Kovalenko
    for (i = 0; i < 64; i++) {
185 f707726e Igor Kovalenko
        if (TTE_IS_VALID(tlb[i].tte)) {
186 6e8e7d4c Igor Kovalenko
187 299b520c Igor V. Kovalenko
            if (is_demap_context) {
188 299b520c Igor V. Kovalenko
                // will remove non-global entries matching context value
189 299b520c Igor V. Kovalenko
                if (TTE_IS_GLOBAL(tlb[i].tte) ||
190 299b520c Igor V. Kovalenko
                    !tlb_compare_context(&tlb[i], context)) {
191 299b520c Igor V. Kovalenko
                    continue;
192 299b520c Igor V. Kovalenko
                }
193 299b520c Igor V. Kovalenko
            } else {
194 299b520c Igor V. Kovalenko
                // demap page
195 299b520c Igor V. Kovalenko
                // will remove any entry matching VA
196 299b520c Igor V. Kovalenko
                mask = 0xffffffffffffe000ULL;
197 299b520c Igor V. Kovalenko
                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
198 299b520c Igor V. Kovalenko
199 299b520c Igor V. Kovalenko
                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
200 299b520c Igor V. Kovalenko
                    continue;
201 299b520c Igor V. Kovalenko
                }
202 299b520c Igor V. Kovalenko
203 299b520c Igor V. Kovalenko
                // entry should be global or matching context value
204 299b520c Igor V. Kovalenko
                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
205 299b520c Igor V. Kovalenko
                    !tlb_compare_context(&tlb[i], context)) {
206 299b520c Igor V. Kovalenko
                    continue;
207 299b520c Igor V. Kovalenko
                }
208 299b520c Igor V. Kovalenko
            }
209 6e8e7d4c Igor Kovalenko
210 299b520c Igor V. Kovalenko
            replace_tlb_entry(&tlb[i], 0, 0, env1);
211 6e8e7d4c Igor Kovalenko
#ifdef DEBUG_MMU
212 299b520c Igor V. Kovalenko
            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
213 d41160a3 Blue Swirl
            dump_mmu(stdout, fprintf, env1);
214 6e8e7d4c Igor Kovalenko
#endif
215 6e8e7d4c Igor Kovalenko
        }
216 6e8e7d4c Igor Kovalenko
    }
217 6e8e7d4c Igor Kovalenko
}
218 6e8e7d4c Igor Kovalenko
219 f707726e Igor Kovalenko
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
220 f707726e Igor Kovalenko
                                 uint64_t tlb_tag, uint64_t tlb_tte,
221 f707726e Igor Kovalenko
                                 const char* strmmu, CPUState *env1)
222 f707726e Igor Kovalenko
{
223 f707726e Igor Kovalenko
    unsigned int i, replace_used;
224 f707726e Igor Kovalenko
225 f707726e Igor Kovalenko
    // Try replacing invalid entry
226 f707726e Igor Kovalenko
    for (i = 0; i < 64; i++) {
227 f707726e Igor Kovalenko
        if (!TTE_IS_VALID(tlb[i].tte)) {
228 f707726e Igor Kovalenko
            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
229 f707726e Igor Kovalenko
#ifdef DEBUG_MMU
230 f707726e Igor Kovalenko
            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
231 d41160a3 Blue Swirl
            dump_mmu(stdout, fprintf, env1);
232 f707726e Igor Kovalenko
#endif
233 f707726e Igor Kovalenko
            return;
234 f707726e Igor Kovalenko
        }
235 f707726e Igor Kovalenko
    }
236 f707726e Igor Kovalenko
237 f707726e Igor Kovalenko
    // All entries are valid, try replacing unlocked entry
238 f707726e Igor Kovalenko
239 f707726e Igor Kovalenko
    for (replace_used = 0; replace_used < 2; ++replace_used) {
240 f707726e Igor Kovalenko
241 f707726e Igor Kovalenko
        // Used entries are not replaced on first pass
242 f707726e Igor Kovalenko
243 f707726e Igor Kovalenko
        for (i = 0; i < 64; i++) {
244 f707726e Igor Kovalenko
            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
245 f707726e Igor Kovalenko
246 f707726e Igor Kovalenko
                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
247 f707726e Igor Kovalenko
#ifdef DEBUG_MMU
248 f707726e Igor Kovalenko
                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
249 f707726e Igor Kovalenko
                            strmmu, (replace_used?"used":"unused"), i);
250 d41160a3 Blue Swirl
                dump_mmu(stdout, fprintf, env1);
251 f707726e Igor Kovalenko
#endif
252 f707726e Igor Kovalenko
                return;
253 f707726e Igor Kovalenko
            }
254 f707726e Igor Kovalenko
        }
255 f707726e Igor Kovalenko
256 f707726e Igor Kovalenko
        // Now reset used bit and search for unused entries again
257 f707726e Igor Kovalenko
258 f707726e Igor Kovalenko
        for (i = 0; i < 64; i++) {
259 f707726e Igor Kovalenko
            TTE_SET_UNUSED(tlb[i].tte);
260 f707726e Igor Kovalenko
        }
261 f707726e Igor Kovalenko
    }
262 f707726e Igor Kovalenko
263 f707726e Igor Kovalenko
#ifdef DEBUG_MMU
264 f707726e Igor Kovalenko
    DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
265 f707726e Igor Kovalenko
#endif
266 f707726e Igor Kovalenko
    // error state?
267 f707726e Igor Kovalenko
}
268 f707726e Igor Kovalenko
269 697a77e6 Igor Kovalenko
#endif
270 697a77e6 Igor Kovalenko
271 41db525e Richard Henderson
static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
272 2cade6a3 blueswir1
{
273 2cade6a3 blueswir1
#ifdef TARGET_SPARC64
274 2cade6a3 blueswir1
    if (AM_CHECK(env1))
275 41db525e Richard Henderson
        addr &= 0xffffffffULL;
276 2cade6a3 blueswir1
#endif
277 41db525e Richard Henderson
    return addr;
278 2cade6a3 blueswir1
}
279 2cade6a3 blueswir1
280 1295001c Igor V. Kovalenko
/* returns true if access using this ASI is to have address translated by MMU
281 1295001c Igor V. Kovalenko
   otherwise access is to raw physical address */
282 1295001c Igor V. Kovalenko
static inline int is_translating_asi(int asi)
283 1295001c Igor V. Kovalenko
{
284 1295001c Igor V. Kovalenko
#ifdef TARGET_SPARC64
285 1295001c Igor V. Kovalenko
    /* Ultrasparc IIi translating asi
286 1295001c Igor V. Kovalenko
       - note this list is defined by cpu implementation
287 1295001c Igor V. Kovalenko
     */
288 1295001c Igor V. Kovalenko
    switch (asi) {
289 1295001c Igor V. Kovalenko
    case 0x04 ... 0x11:
290 1295001c Igor V. Kovalenko
    case 0x18 ... 0x19:
291 1295001c Igor V. Kovalenko
    case 0x24 ... 0x2C:
292 1295001c Igor V. Kovalenko
    case 0x70 ... 0x73:
293 1295001c Igor V. Kovalenko
    case 0x78 ... 0x79:
294 1295001c Igor V. Kovalenko
    case 0x80 ... 0xFF:
295 1295001c Igor V. Kovalenko
        return 1;
296 1295001c Igor V. Kovalenko
297 1295001c Igor V. Kovalenko
    default:
298 1295001c Igor V. Kovalenko
        return 0;
299 1295001c Igor V. Kovalenko
    }
300 1295001c Igor V. Kovalenko
#else
301 1295001c Igor V. Kovalenko
    /* TODO: check sparc32 bits */
302 1295001c Igor V. Kovalenko
    return 0;
303 1295001c Igor V. Kovalenko
#endif
304 1295001c Igor V. Kovalenko
}
305 1295001c Igor V. Kovalenko
306 1295001c Igor V. Kovalenko
static inline target_ulong asi_address_mask(CPUState *env1,
307 1295001c Igor V. Kovalenko
                                            int asi, target_ulong addr)
308 1295001c Igor V. Kovalenko
{
309 1295001c Igor V. Kovalenko
    if (is_translating_asi(asi)) {
310 1295001c Igor V. Kovalenko
        return address_mask(env, addr);
311 1295001c Igor V. Kovalenko
    } else {
312 1295001c Igor V. Kovalenko
        return addr;
313 1295001c Igor V. Kovalenko
    }
314 1295001c Igor V. Kovalenko
}
315 1295001c Igor V. Kovalenko
316 f4a5a5ba blueswir1
static void raise_exception(int tt)
317 9d893301 bellard
{
318 9d893301 bellard
    env->exception_index = tt;
319 1162c041 Blue Swirl
    cpu_loop_exit(env);
320 3b46e624 ths
}
321 9d893301 bellard
322 a7812ae4 pbrook
void HELPER(raise_exception)(int tt)
323 a7812ae4 pbrook
{
324 a7812ae4 pbrook
    raise_exception(tt);
325 a7812ae4 pbrook
}
326 a7812ae4 pbrook
327 b04d9890 Fabien Chouteau
void helper_shutdown(void)
328 b04d9890 Fabien Chouteau
{
329 b04d9890 Fabien Chouteau
#if !defined(CONFIG_USER_ONLY)
330 b04d9890 Fabien Chouteau
    qemu_system_shutdown_request();
331 b04d9890 Fabien Chouteau
#endif
332 b04d9890 Fabien Chouteau
}
333 b04d9890 Fabien Chouteau
334 2b29924f blueswir1
void helper_check_align(target_ulong addr, uint32_t align)
335 2b29924f blueswir1
{
336 c2bc0e38 blueswir1
    if (addr & align) {
337 c2bc0e38 blueswir1
#ifdef DEBUG_UNALIGNED
338 c2bc0e38 blueswir1
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
339 c2bc0e38 blueswir1
           "\n", addr, env->pc);
340 c2bc0e38 blueswir1
#endif
341 2b29924f blueswir1
        raise_exception(TT_UNALIGNED);
342 c2bc0e38 blueswir1
    }
343 2b29924f blueswir1
}
344 2b29924f blueswir1
345 44e7757c blueswir1
#define F_HELPER(name, p) void helper_f##name##p(void)
346 44e7757c blueswir1
347 44e7757c blueswir1
#define F_BINOP(name)                                           \
348 714547bb blueswir1
    float32 helper_f ## name ## s (float32 src1, float32 src2)  \
349 44e7757c blueswir1
    {                                                           \
350 714547bb blueswir1
        return float32_ ## name (src1, src2, &env->fp_status);  \
351 44e7757c blueswir1
    }                                                           \
352 44e7757c blueswir1
    F_HELPER(name, d)                                           \
353 44e7757c blueswir1
    {                                                           \
354 44e7757c blueswir1
        DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
355 4e14008f blueswir1
    }                                                           \
356 4e14008f blueswir1
    F_HELPER(name, q)                                           \
357 4e14008f blueswir1
    {                                                           \
358 4e14008f blueswir1
        QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
359 44e7757c blueswir1
    }
360 44e7757c blueswir1
361 44e7757c blueswir1
F_BINOP(add);
362 44e7757c blueswir1
F_BINOP(sub);
363 44e7757c blueswir1
F_BINOP(mul);
364 44e7757c blueswir1
F_BINOP(div);
365 44e7757c blueswir1
#undef F_BINOP
366 44e7757c blueswir1
367 d84763bc blueswir1
void helper_fsmuld(float32 src1, float32 src2)
368 1a2fb1c0 blueswir1
{
369 d84763bc blueswir1
    DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
370 d84763bc blueswir1
                      float32_to_float64(src2, &env->fp_status),
371 44e7757c blueswir1
                      &env->fp_status);
372 44e7757c blueswir1
}
373 1a2fb1c0 blueswir1
374 4e14008f blueswir1
void helper_fdmulq(void)
375 4e14008f blueswir1
{
376 4e14008f blueswir1
    QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
377 4e14008f blueswir1
                       float64_to_float128(DT1, &env->fp_status),
378 4e14008f blueswir1
                       &env->fp_status);
379 4e14008f blueswir1
}
380 4e14008f blueswir1
381 714547bb blueswir1
float32 helper_fnegs(float32 src)
382 44e7757c blueswir1
{
383 714547bb blueswir1
    return float32_chs(src);
384 417454b0 blueswir1
}
385 417454b0 blueswir1
386 44e7757c blueswir1
#ifdef TARGET_SPARC64
387 44e7757c blueswir1
F_HELPER(neg, d)
388 7e8c2b6c blueswir1
{
389 44e7757c blueswir1
    DT0 = float64_chs(DT1);
390 7e8c2b6c blueswir1
}
391 4e14008f blueswir1
392 4e14008f blueswir1
F_HELPER(neg, q)
393 4e14008f blueswir1
{
394 4e14008f blueswir1
    QT0 = float128_chs(QT1);
395 4e14008f blueswir1
}
396 4e14008f blueswir1
#endif
397 44e7757c blueswir1
398 44e7757c blueswir1
/* Integer to float conversion.  */
399 714547bb blueswir1
float32 helper_fitos(int32_t src)
400 a0c4cb4a bellard
{
401 714547bb blueswir1
    return int32_to_float32(src, &env->fp_status);
402 a0c4cb4a bellard
}
403 a0c4cb4a bellard
404 d84763bc blueswir1
void helper_fitod(int32_t src)
405 a0c4cb4a bellard
{
406 d84763bc blueswir1
    DT0 = int32_to_float64(src, &env->fp_status);
407 a0c4cb4a bellard
}
408 9c2b428e blueswir1
409 c5d04e99 blueswir1
void helper_fitoq(int32_t src)
410 4e14008f blueswir1
{
411 c5d04e99 blueswir1
    QT0 = int32_to_float128(src, &env->fp_status);
412 4e14008f blueswir1
}
413 4e14008f blueswir1
414 1e64e78d blueswir1
#ifdef TARGET_SPARC64
415 d84763bc blueswir1
float32 helper_fxtos(void)
416 1e64e78d blueswir1
{
417 d84763bc blueswir1
    return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
418 1e64e78d blueswir1
}
419 1e64e78d blueswir1
420 44e7757c blueswir1
F_HELPER(xto, d)
421 1e64e78d blueswir1
{
422 1e64e78d blueswir1
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
423 1e64e78d blueswir1
}
424 64a88d5d blueswir1
425 4e14008f blueswir1
F_HELPER(xto, q)
426 4e14008f blueswir1
{
427 4e14008f blueswir1
    QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
428 4e14008f blueswir1
}
429 4e14008f blueswir1
#endif
430 44e7757c blueswir1
#undef F_HELPER
431 44e7757c blueswir1
432 44e7757c blueswir1
/* floating point conversion */
433 d84763bc blueswir1
float32 helper_fdtos(void)
434 44e7757c blueswir1
{
435 d84763bc blueswir1
    return float64_to_float32(DT1, &env->fp_status);
436 44e7757c blueswir1
}
437 44e7757c blueswir1
438 d84763bc blueswir1
void helper_fstod(float32 src)
439 44e7757c blueswir1
{
440 d84763bc blueswir1
    DT0 = float32_to_float64(src, &env->fp_status);
441 44e7757c blueswir1
}
442 9c2b428e blueswir1
443 c5d04e99 blueswir1
float32 helper_fqtos(void)
444 4e14008f blueswir1
{
445 c5d04e99 blueswir1
    return float128_to_float32(QT1, &env->fp_status);
446 4e14008f blueswir1
}
447 4e14008f blueswir1
448 c5d04e99 blueswir1
void helper_fstoq(float32 src)
449 4e14008f blueswir1
{
450 c5d04e99 blueswir1
    QT0 = float32_to_float128(src, &env->fp_status);
451 4e14008f blueswir1
}
452 4e14008f blueswir1
453 4e14008f blueswir1
void helper_fqtod(void)
454 4e14008f blueswir1
{
455 4e14008f blueswir1
    DT0 = float128_to_float64(QT1, &env->fp_status);
456 4e14008f blueswir1
}
457 4e14008f blueswir1
458 4e14008f blueswir1
void helper_fdtoq(void)
459 4e14008f blueswir1
{
460 4e14008f blueswir1
    QT0 = float64_to_float128(DT1, &env->fp_status);
461 4e14008f blueswir1
}
462 4e14008f blueswir1
463 44e7757c blueswir1
/* Float to integer conversion.  */
464 714547bb blueswir1
int32_t helper_fstoi(float32 src)
465 44e7757c blueswir1
{
466 714547bb blueswir1
    return float32_to_int32_round_to_zero(src, &env->fp_status);
467 44e7757c blueswir1
}
468 44e7757c blueswir1
469 d84763bc blueswir1
int32_t helper_fdtoi(void)
470 44e7757c blueswir1
{
471 d84763bc blueswir1
    return float64_to_int32_round_to_zero(DT1, &env->fp_status);
472 44e7757c blueswir1
}
473 44e7757c blueswir1
474 c5d04e99 blueswir1
int32_t helper_fqtoi(void)
475 4e14008f blueswir1
{
476 c5d04e99 blueswir1
    return float128_to_int32_round_to_zero(QT1, &env->fp_status);
477 4e14008f blueswir1
}
478 4e14008f blueswir1
479 44e7757c blueswir1
#ifdef TARGET_SPARC64
480 d84763bc blueswir1
void helper_fstox(float32 src)
481 44e7757c blueswir1
{
482 d84763bc blueswir1
    *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
483 44e7757c blueswir1
}
484 44e7757c blueswir1
485 44e7757c blueswir1
void helper_fdtox(void)
486 44e7757c blueswir1
{
487 44e7757c blueswir1
    *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
488 44e7757c blueswir1
}
489 44e7757c blueswir1
490 4e14008f blueswir1
void helper_fqtox(void)
491 4e14008f blueswir1
{
492 4e14008f blueswir1
    *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
493 4e14008f blueswir1
}
494 4e14008f blueswir1
495 44e7757c blueswir1
void helper_faligndata(void)
496 44e7757c blueswir1
{
497 44e7757c blueswir1
    uint64_t tmp;
498 44e7757c blueswir1
499 44e7757c blueswir1
    tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
500 06057e6f blueswir1
    /* on many architectures a shift of 64 does nothing */
501 06057e6f blueswir1
    if ((env->gsr & 7) != 0) {
502 06057e6f blueswir1
        tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
503 06057e6f blueswir1
    }
504 44e7757c blueswir1
    *((uint64_t *)&DT0) = tmp;
505 44e7757c blueswir1
}
506 44e7757c blueswir1
507 e2542fe2 Juan Quintela
#ifdef HOST_WORDS_BIGENDIAN
508 44e7757c blueswir1
#define VIS_B64(n) b[7 - (n)]
509 44e7757c blueswir1
#define VIS_W64(n) w[3 - (n)]
510 44e7757c blueswir1
#define VIS_SW64(n) sw[3 - (n)]
511 44e7757c blueswir1
#define VIS_L64(n) l[1 - (n)]
512 44e7757c blueswir1
#define VIS_B32(n) b[3 - (n)]
513 44e7757c blueswir1
#define VIS_W32(n) w[1 - (n)]
514 44e7757c blueswir1
#else
515 44e7757c blueswir1
#define VIS_B64(n) b[n]
516 44e7757c blueswir1
#define VIS_W64(n) w[n]
517 44e7757c blueswir1
#define VIS_SW64(n) sw[n]
518 44e7757c blueswir1
#define VIS_L64(n) l[n]
519 44e7757c blueswir1
#define VIS_B32(n) b[n]
520 44e7757c blueswir1
#define VIS_W32(n) w[n]
521 44e7757c blueswir1
#endif
522 44e7757c blueswir1
523 44e7757c blueswir1
typedef union {
524 44e7757c blueswir1
    uint8_t b[8];
525 44e7757c blueswir1
    uint16_t w[4];
526 44e7757c blueswir1
    int16_t sw[4];
527 44e7757c blueswir1
    uint32_t l[2];
528 44e7757c blueswir1
    float64 d;
529 44e7757c blueswir1
} vis64;
530 44e7757c blueswir1
531 44e7757c blueswir1
typedef union {
532 44e7757c blueswir1
    uint8_t b[4];
533 44e7757c blueswir1
    uint16_t w[2];
534 44e7757c blueswir1
    uint32_t l;
535 44e7757c blueswir1
    float32 f;
536 44e7757c blueswir1
} vis32;
537 44e7757c blueswir1
538 44e7757c blueswir1
void helper_fpmerge(void)
539 44e7757c blueswir1
{
540 44e7757c blueswir1
    vis64 s, d;
541 44e7757c blueswir1
542 44e7757c blueswir1
    s.d = DT0;
543 44e7757c blueswir1
    d.d = DT1;
544 44e7757c blueswir1
545 44e7757c blueswir1
    // Reverse calculation order to handle overlap
546 44e7757c blueswir1
    d.VIS_B64(7) = s.VIS_B64(3);
547 44e7757c blueswir1
    d.VIS_B64(6) = d.VIS_B64(3);
548 44e7757c blueswir1
    d.VIS_B64(5) = s.VIS_B64(2);
549 44e7757c blueswir1
    d.VIS_B64(4) = d.VIS_B64(2);
550 44e7757c blueswir1
    d.VIS_B64(3) = s.VIS_B64(1);
551 44e7757c blueswir1
    d.VIS_B64(2) = d.VIS_B64(1);
552 44e7757c blueswir1
    d.VIS_B64(1) = s.VIS_B64(0);
553 44e7757c blueswir1
    //d.VIS_B64(0) = d.VIS_B64(0);
554 44e7757c blueswir1
555 44e7757c blueswir1
    DT0 = d.d;
556 44e7757c blueswir1
}
557 44e7757c blueswir1
558 44e7757c blueswir1
void helper_fmul8x16(void)
559 44e7757c blueswir1
{
560 44e7757c blueswir1
    vis64 s, d;
561 44e7757c blueswir1
    uint32_t tmp;
562 44e7757c blueswir1
563 44e7757c blueswir1
    s.d = DT0;
564 44e7757c blueswir1
    d.d = DT1;
565 44e7757c blueswir1
566 44e7757c blueswir1
#define PMUL(r)                                                 \
567 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
568 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                    \
569 44e7757c blueswir1
        tmp += 0x100;                                           \
570 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
571 44e7757c blueswir1
572 44e7757c blueswir1
    PMUL(0);
573 44e7757c blueswir1
    PMUL(1);
574 44e7757c blueswir1
    PMUL(2);
575 44e7757c blueswir1
    PMUL(3);
576 44e7757c blueswir1
#undef PMUL
577 44e7757c blueswir1
578 44e7757c blueswir1
    DT0 = d.d;
579 44e7757c blueswir1
}
580 44e7757c blueswir1
581 44e7757c blueswir1
void helper_fmul8x16al(void)
582 44e7757c blueswir1
{
583 44e7757c blueswir1
    vis64 s, d;
584 44e7757c blueswir1
    uint32_t tmp;
585 44e7757c blueswir1
586 44e7757c blueswir1
    s.d = DT0;
587 44e7757c blueswir1
    d.d = DT1;
588 44e7757c blueswir1
589 44e7757c blueswir1
#define PMUL(r)                                                 \
590 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
591 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                    \
592 44e7757c blueswir1
        tmp += 0x100;                                           \
593 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
594 44e7757c blueswir1
595 44e7757c blueswir1
    PMUL(0);
596 44e7757c blueswir1
    PMUL(1);
597 44e7757c blueswir1
    PMUL(2);
598 44e7757c blueswir1
    PMUL(3);
599 44e7757c blueswir1
#undef PMUL
600 44e7757c blueswir1
601 44e7757c blueswir1
    DT0 = d.d;
602 44e7757c blueswir1
}
603 44e7757c blueswir1
604 44e7757c blueswir1
void helper_fmul8x16au(void)
605 44e7757c blueswir1
{
606 44e7757c blueswir1
    vis64 s, d;
607 44e7757c blueswir1
    uint32_t tmp;
608 44e7757c blueswir1
609 44e7757c blueswir1
    s.d = DT0;
610 44e7757c blueswir1
    d.d = DT1;
611 44e7757c blueswir1
612 44e7757c blueswir1
#define PMUL(r)                                                 \
613 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
614 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                    \
615 44e7757c blueswir1
        tmp += 0x100;                                           \
616 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
617 44e7757c blueswir1
618 44e7757c blueswir1
    PMUL(0);
619 44e7757c blueswir1
    PMUL(1);
620 44e7757c blueswir1
    PMUL(2);
621 44e7757c blueswir1
    PMUL(3);
622 44e7757c blueswir1
#undef PMUL
623 44e7757c blueswir1
624 44e7757c blueswir1
    DT0 = d.d;
625 44e7757c blueswir1
}
626 44e7757c blueswir1
627 44e7757c blueswir1
void helper_fmul8sux16(void)
628 44e7757c blueswir1
{
629 44e7757c blueswir1
    vis64 s, d;
630 44e7757c blueswir1
    uint32_t tmp;
631 44e7757c blueswir1
632 44e7757c blueswir1
    s.d = DT0;
633 44e7757c blueswir1
    d.d = DT1;
634 44e7757c blueswir1
635 44e7757c blueswir1
#define PMUL(r)                                                         \
636 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
637 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                            \
638 44e7757c blueswir1
        tmp += 0x100;                                                   \
639 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
640 44e7757c blueswir1
641 44e7757c blueswir1
    PMUL(0);
642 44e7757c blueswir1
    PMUL(1);
643 44e7757c blueswir1
    PMUL(2);
644 44e7757c blueswir1
    PMUL(3);
645 44e7757c blueswir1
#undef PMUL
646 44e7757c blueswir1
647 44e7757c blueswir1
    DT0 = d.d;
648 44e7757c blueswir1
}
649 44e7757c blueswir1
650 44e7757c blueswir1
void helper_fmul8ulx16(void)
651 44e7757c blueswir1
{
652 44e7757c blueswir1
    vis64 s, d;
653 44e7757c blueswir1
    uint32_t tmp;
654 44e7757c blueswir1
655 44e7757c blueswir1
    s.d = DT0;
656 44e7757c blueswir1
    d.d = DT1;
657 44e7757c blueswir1
658 44e7757c blueswir1
#define PMUL(r)                                                         \
659 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
660 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                            \
661 44e7757c blueswir1
        tmp += 0x100;                                                   \
662 44e7757c blueswir1
    d.VIS_W64(r) = tmp >> 8;
663 44e7757c blueswir1
664 44e7757c blueswir1
    PMUL(0);
665 44e7757c blueswir1
    PMUL(1);
666 44e7757c blueswir1
    PMUL(2);
667 44e7757c blueswir1
    PMUL(3);
668 44e7757c blueswir1
#undef PMUL
669 44e7757c blueswir1
670 44e7757c blueswir1
    DT0 = d.d;
671 44e7757c blueswir1
}
672 44e7757c blueswir1
673 44e7757c blueswir1
void helper_fmuld8sux16(void)
674 44e7757c blueswir1
{
675 44e7757c blueswir1
    vis64 s, d;
676 44e7757c blueswir1
    uint32_t tmp;
677 44e7757c blueswir1
678 44e7757c blueswir1
    s.d = DT0;
679 44e7757c blueswir1
    d.d = DT1;
680 44e7757c blueswir1
681 44e7757c blueswir1
#define PMUL(r)                                                         \
682 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
683 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                            \
684 44e7757c blueswir1
        tmp += 0x100;                                                   \
685 44e7757c blueswir1
    d.VIS_L64(r) = tmp;
686 44e7757c blueswir1
687 44e7757c blueswir1
    // Reverse calculation order to handle overlap
688 44e7757c blueswir1
    PMUL(1);
689 44e7757c blueswir1
    PMUL(0);
690 44e7757c blueswir1
#undef PMUL
691 44e7757c blueswir1
692 44e7757c blueswir1
    DT0 = d.d;
693 44e7757c blueswir1
}
694 44e7757c blueswir1
695 44e7757c blueswir1
void helper_fmuld8ulx16(void)
696 44e7757c blueswir1
{
697 44e7757c blueswir1
    vis64 s, d;
698 44e7757c blueswir1
    uint32_t tmp;
699 44e7757c blueswir1
700 44e7757c blueswir1
    s.d = DT0;
701 44e7757c blueswir1
    d.d = DT1;
702 44e7757c blueswir1
703 44e7757c blueswir1
#define PMUL(r)                                                         \
704 44e7757c blueswir1
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
705 44e7757c blueswir1
    if ((tmp & 0xff) > 0x7f)                                            \
706 44e7757c blueswir1
        tmp += 0x100;                                                   \
707 44e7757c blueswir1
    d.VIS_L64(r) = tmp;
708 44e7757c blueswir1
709 44e7757c blueswir1
    // Reverse calculation order to handle overlap
710 44e7757c blueswir1
    PMUL(1);
711 44e7757c blueswir1
    PMUL(0);
712 44e7757c blueswir1
#undef PMUL
713 44e7757c blueswir1
714 44e7757c blueswir1
    DT0 = d.d;
715 44e7757c blueswir1
}
716 44e7757c blueswir1
717 44e7757c blueswir1
void helper_fexpand(void)
718 44e7757c blueswir1
{
719 44e7757c blueswir1
    vis32 s;
720 44e7757c blueswir1
    vis64 d;
721 44e7757c blueswir1
722 44e7757c blueswir1
    s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
723 44e7757c blueswir1
    d.d = DT1;
724 c55bda30 blueswir1
    d.VIS_W64(0) = s.VIS_B32(0) << 4;
725 c55bda30 blueswir1
    d.VIS_W64(1) = s.VIS_B32(1) << 4;
726 c55bda30 blueswir1
    d.VIS_W64(2) = s.VIS_B32(2) << 4;
727 c55bda30 blueswir1
    d.VIS_W64(3) = s.VIS_B32(3) << 4;
728 44e7757c blueswir1
729 44e7757c blueswir1
    DT0 = d.d;
730 44e7757c blueswir1
}
731 44e7757c blueswir1
732 44e7757c blueswir1
#define VIS_HELPER(name, F)                             \
733 44e7757c blueswir1
    void name##16(void)                                 \
734 44e7757c blueswir1
    {                                                   \
735 44e7757c blueswir1
        vis64 s, d;                                     \
736 44e7757c blueswir1
                                                        \
737 44e7757c blueswir1
        s.d = DT0;                                      \
738 44e7757c blueswir1
        d.d = DT1;                                      \
739 44e7757c blueswir1
                                                        \
740 44e7757c blueswir1
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
741 44e7757c blueswir1
        d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
742 44e7757c blueswir1
        d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
743 44e7757c blueswir1
        d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
744 44e7757c blueswir1
                                                        \
745 44e7757c blueswir1
        DT0 = d.d;                                      \
746 44e7757c blueswir1
    }                                                   \
747 44e7757c blueswir1
                                                        \
748 1d01299d blueswir1
    uint32_t name##16s(uint32_t src1, uint32_t src2)    \
749 44e7757c blueswir1
    {                                                   \
750 44e7757c blueswir1
        vis32 s, d;                                     \
751 44e7757c blueswir1
                                                        \
752 1d01299d blueswir1
        s.l = src1;                                     \
753 1d01299d blueswir1
        d.l = src2;                                     \
754 44e7757c blueswir1
                                                        \
755 44e7757c blueswir1
        d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
756 44e7757c blueswir1
        d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
757 44e7757c blueswir1
                                                        \
758 1d01299d blueswir1
        return d.l;                                     \
759 44e7757c blueswir1
    }                                                   \
760 44e7757c blueswir1
                                                        \
761 44e7757c blueswir1
    void name##32(void)                                 \
762 44e7757c blueswir1
    {                                                   \
763 44e7757c blueswir1
        vis64 s, d;                                     \
764 44e7757c blueswir1
                                                        \
765 44e7757c blueswir1
        s.d = DT0;                                      \
766 44e7757c blueswir1
        d.d = DT1;                                      \
767 44e7757c blueswir1
                                                        \
768 44e7757c blueswir1
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
769 44e7757c blueswir1
        d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
770 44e7757c blueswir1
                                                        \
771 44e7757c blueswir1
        DT0 = d.d;                                      \
772 44e7757c blueswir1
    }                                                   \
773 44e7757c blueswir1
                                                        \
774 1d01299d blueswir1
    uint32_t name##32s(uint32_t src1, uint32_t src2)    \
775 44e7757c blueswir1
    {                                                   \
776 44e7757c blueswir1
        vis32 s, d;                                     \
777 44e7757c blueswir1
                                                        \
778 1d01299d blueswir1
        s.l = src1;                                     \
779 1d01299d blueswir1
        d.l = src2;                                     \
780 44e7757c blueswir1
                                                        \
781 44e7757c blueswir1
        d.l = F(d.l, s.l);                              \
782 44e7757c blueswir1
                                                        \
783 1d01299d blueswir1
        return d.l;                                     \
784 44e7757c blueswir1
    }
785 44e7757c blueswir1
786 44e7757c blueswir1
#define FADD(a, b) ((a) + (b))
787 44e7757c blueswir1
#define FSUB(a, b) ((a) - (b))
788 44e7757c blueswir1
VIS_HELPER(helper_fpadd, FADD)
789 44e7757c blueswir1
VIS_HELPER(helper_fpsub, FSUB)
790 44e7757c blueswir1
791 44e7757c blueswir1
#define VIS_CMPHELPER(name, F)                                        \
792 44e7757c blueswir1
    void name##16(void)                                           \
793 44e7757c blueswir1
    {                                                             \
794 44e7757c blueswir1
        vis64 s, d;                                               \
795 44e7757c blueswir1
                                                                  \
796 44e7757c blueswir1
        s.d = DT0;                                                \
797 44e7757c blueswir1
        d.d = DT1;                                                \
798 44e7757c blueswir1
                                                                  \
799 44e7757c blueswir1
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
800 44e7757c blueswir1
        d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
801 44e7757c blueswir1
        d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
802 44e7757c blueswir1
        d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
803 44e7757c blueswir1
                                                                  \
804 44e7757c blueswir1
        DT0 = d.d;                                                \
805 44e7757c blueswir1
    }                                                             \
806 44e7757c blueswir1
                                                                  \
807 44e7757c blueswir1
    void name##32(void)                                           \
808 44e7757c blueswir1
    {                                                             \
809 44e7757c blueswir1
        vis64 s, d;                                               \
810 44e7757c blueswir1
                                                                  \
811 44e7757c blueswir1
        s.d = DT0;                                                \
812 44e7757c blueswir1
        d.d = DT1;                                                \
813 44e7757c blueswir1
                                                                  \
814 44e7757c blueswir1
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
815 44e7757c blueswir1
        d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
816 44e7757c blueswir1
                                                                  \
817 44e7757c blueswir1
        DT0 = d.d;                                                \
818 44e7757c blueswir1
    }
819 44e7757c blueswir1
820 44e7757c blueswir1
#define FCMPGT(a, b) ((a) > (b))
821 44e7757c blueswir1
#define FCMPEQ(a, b) ((a) == (b))
822 44e7757c blueswir1
#define FCMPLE(a, b) ((a) <= (b))
823 44e7757c blueswir1
#define FCMPNE(a, b) ((a) != (b))
824 44e7757c blueswir1
825 44e7757c blueswir1
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
826 44e7757c blueswir1
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
827 44e7757c blueswir1
VIS_CMPHELPER(helper_fcmple, FCMPLE)
828 44e7757c blueswir1
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
829 44e7757c blueswir1
#endif
830 44e7757c blueswir1
831 44e7757c blueswir1
void helper_check_ieee_exceptions(void)
832 44e7757c blueswir1
{
833 44e7757c blueswir1
    target_ulong status;
834 44e7757c blueswir1
835 44e7757c blueswir1
    status = get_float_exception_flags(&env->fp_status);
836 44e7757c blueswir1
    if (status) {
837 44e7757c blueswir1
        /* Copy IEEE 754 flags into FSR */
838 44e7757c blueswir1
        if (status & float_flag_invalid)
839 44e7757c blueswir1
            env->fsr |= FSR_NVC;
840 44e7757c blueswir1
        if (status & float_flag_overflow)
841 44e7757c blueswir1
            env->fsr |= FSR_OFC;
842 44e7757c blueswir1
        if (status & float_flag_underflow)
843 44e7757c blueswir1
            env->fsr |= FSR_UFC;
844 44e7757c blueswir1
        if (status & float_flag_divbyzero)
845 44e7757c blueswir1
            env->fsr |= FSR_DZC;
846 44e7757c blueswir1
        if (status & float_flag_inexact)
847 44e7757c blueswir1
            env->fsr |= FSR_NXC;
848 44e7757c blueswir1
849 44e7757c blueswir1
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
850 44e7757c blueswir1
            /* Unmasked exception, generate a trap */
851 44e7757c blueswir1
            env->fsr |= FSR_FTT_IEEE_EXCP;
852 44e7757c blueswir1
            raise_exception(TT_FP_EXCP);
853 44e7757c blueswir1
        } else {
854 44e7757c blueswir1
            /* Accumulate exceptions */
855 44e7757c blueswir1
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
856 44e7757c blueswir1
        }
857 44e7757c blueswir1
    }
858 44e7757c blueswir1
}
859 44e7757c blueswir1
860 44e7757c blueswir1
void helper_clear_float_exceptions(void)
861 44e7757c blueswir1
{
862 44e7757c blueswir1
    set_float_exception_flags(0, &env->fp_status);
863 44e7757c blueswir1
}
864 44e7757c blueswir1
865 714547bb blueswir1
float32 helper_fabss(float32 src)
866 e8af50a3 bellard
{
867 714547bb blueswir1
    return float32_abs(src);
868 e8af50a3 bellard
}
869 e8af50a3 bellard
870 3475187d bellard
#ifdef TARGET_SPARC64
871 7e8c2b6c blueswir1
void helper_fabsd(void)
872 3475187d bellard
{
873 3475187d bellard
    DT0 = float64_abs(DT1);
874 3475187d bellard
}
875 4e14008f blueswir1
876 4e14008f blueswir1
void helper_fabsq(void)
877 4e14008f blueswir1
{
878 4e14008f blueswir1
    QT0 = float128_abs(QT1);
879 4e14008f blueswir1
}
880 4e14008f blueswir1
#endif
881 3475187d bellard
882 714547bb blueswir1
float32 helper_fsqrts(float32 src)
883 e8af50a3 bellard
{
884 714547bb blueswir1
    return float32_sqrt(src, &env->fp_status);
885 e8af50a3 bellard
}
886 e8af50a3 bellard
887 7e8c2b6c blueswir1
void helper_fsqrtd(void)
888 e8af50a3 bellard
{
889 7a0e1f41 bellard
    DT0 = float64_sqrt(DT1, &env->fp_status);
890 e8af50a3 bellard
}
891 e8af50a3 bellard
892 4e14008f blueswir1
void helper_fsqrtq(void)
893 4e14008f blueswir1
{
894 4e14008f blueswir1
    QT0 = float128_sqrt(QT1, &env->fp_status);
895 4e14008f blueswir1
}
896 4e14008f blueswir1
897 1b5f56b1 Blue Swirl
#define GEN_FCMP(name, size, reg1, reg2, FS, E)                         \
898 7e8c2b6c blueswir1
    void glue(helper_, name) (void)                                     \
899 65ce8c2f bellard
    {                                                                   \
900 1b5f56b1 Blue Swirl
        env->fsr &= FSR_FTT_NMASK;                                      \
901 1b5f56b1 Blue Swirl
        if (E && (glue(size, _is_any_nan)(reg1) ||                      \
902 1b5f56b1 Blue Swirl
                     glue(size, _is_any_nan)(reg2)) &&                  \
903 1b5f56b1 Blue Swirl
            (env->fsr & FSR_NVM)) {                                     \
904 1b5f56b1 Blue Swirl
            env->fsr |= FSR_NVC;                                        \
905 1b5f56b1 Blue Swirl
            env->fsr |= FSR_FTT_IEEE_EXCP;                              \
906 1b5f56b1 Blue Swirl
            raise_exception(TT_FP_EXCP);                                \
907 1b5f56b1 Blue Swirl
        }                                                               \
908 65ce8c2f bellard
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
909 65ce8c2f bellard
        case float_relation_unordered:                                  \
910 1b5f56b1 Blue Swirl
            if ((env->fsr & FSR_NVM)) {                                 \
911 417454b0 blueswir1
                env->fsr |= FSR_NVC;                                    \
912 417454b0 blueswir1
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
913 65ce8c2f bellard
                raise_exception(TT_FP_EXCP);                            \
914 65ce8c2f bellard
            } else {                                                    \
915 1b5f56b1 Blue Swirl
                env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);             \
916 1b5f56b1 Blue Swirl
                env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS;                \
917 65ce8c2f bellard
                env->fsr |= FSR_NVA;                                    \
918 65ce8c2f bellard
            }                                                           \
919 65ce8c2f bellard
            break;                                                      \
920 65ce8c2f bellard
        case float_relation_less:                                       \
921 1b5f56b1 Blue Swirl
            env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                 \
922 1b5f56b1 Blue Swirl
            env->fsr |= FSR_FCC0 << FS;                                 \
923 65ce8c2f bellard
            break;                                                      \
924 65ce8c2f bellard
        case float_relation_greater:                                    \
925 1b5f56b1 Blue Swirl
            env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                 \
926 1b5f56b1 Blue Swirl
            env->fsr |= FSR_FCC1 << FS;                                 \
927 65ce8c2f bellard
            break;                                                      \
928 65ce8c2f bellard
        default:                                                        \
929 1b5f56b1 Blue Swirl
            env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                 \
930 65ce8c2f bellard
            break;                                                      \
931 65ce8c2f bellard
        }                                                               \
932 e8af50a3 bellard
    }
933 1b5f56b1 Blue Swirl
#define GEN_FCMPS(name, size, FS, E)                                    \
934 714547bb blueswir1
    void glue(helper_, name)(float32 src1, float32 src2)                \
935 714547bb blueswir1
    {                                                                   \
936 1b5f56b1 Blue Swirl
        env->fsr &= FSR_FTT_NMASK;                                      \
937 1b5f56b1 Blue Swirl
        if (E && (glue(size, _is_any_nan)(src1) ||                      \
938 1b5f56b1 Blue Swirl
                     glue(size, _is_any_nan)(src2)) &&                  \
939 1b5f56b1 Blue Swirl
            (env->fsr & FSR_NVM)) {                                     \
940 1b5f56b1 Blue Swirl
            env->fsr |= FSR_NVC;                                        \
941 1b5f56b1 Blue Swirl
            env->fsr |= FSR_FTT_IEEE_EXCP;                              \
942 1b5f56b1 Blue Swirl
            raise_exception(TT_FP_EXCP);                                \
943 1b5f56b1 Blue Swirl
        }                                                               \
944 714547bb blueswir1
        switch (glue(size, _compare) (src1, src2, &env->fp_status)) {   \
945 714547bb blueswir1
        case float_relation_unordered:                                  \
946 1b5f56b1 Blue Swirl
            if ((env->fsr & FSR_NVM)) {                                 \
947 714547bb blueswir1
                env->fsr |= FSR_NVC;                                    \
948 714547bb blueswir1
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
949 714547bb blueswir1
                raise_exception(TT_FP_EXCP);                            \
950 714547bb blueswir1
            } else {                                                    \
951 1b5f56b1 Blue Swirl
                env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);             \
952 1b5f56b1 Blue Swirl
                env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS;                \
953 714547bb blueswir1
                env->fsr |= FSR_NVA;                                    \
954 714547bb blueswir1
            }                                                           \
955 714547bb blueswir1
            break;                                                      \
956 714547bb blueswir1
        case float_relation_less:                                       \
957 1b5f56b1 Blue Swirl
            env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                 \
958 1b5f56b1 Blue Swirl
            env->fsr |= FSR_FCC0 << FS;                                 \
959 714547bb blueswir1
            break;                                                      \
960 714547bb blueswir1
        case float_relation_greater:                                    \
961 1b5f56b1 Blue Swirl
            env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                 \
962 1b5f56b1 Blue Swirl
            env->fsr |= FSR_FCC1 << FS;                                 \
963 714547bb blueswir1
            break;                                                      \
964 714547bb blueswir1
        default:                                                        \
965 1b5f56b1 Blue Swirl
            env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                 \
966 714547bb blueswir1
            break;                                                      \
967 714547bb blueswir1
        }                                                               \
968 714547bb blueswir1
    }
969 e8af50a3 bellard
970 714547bb blueswir1
GEN_FCMPS(fcmps, float32, 0, 0);
971 417454b0 blueswir1
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
972 417454b0 blueswir1
973 714547bb blueswir1
GEN_FCMPS(fcmpes, float32, 0, 1);
974 417454b0 blueswir1
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
975 3475187d bellard
976 4e14008f blueswir1
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
977 4e14008f blueswir1
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
978 4e14008f blueswir1
979 8393617c Blue Swirl
static uint32_t compute_all_flags(void)
980 8393617c Blue Swirl
{
981 8393617c Blue Swirl
    return env->psr & PSR_ICC;
982 8393617c Blue Swirl
}
983 8393617c Blue Swirl
984 8393617c Blue Swirl
static uint32_t compute_C_flags(void)
985 8393617c Blue Swirl
{
986 8393617c Blue Swirl
    return env->psr & PSR_CARRY;
987 8393617c Blue Swirl
}
988 8393617c Blue Swirl
989 5a4bb580 Richard Henderson
static inline uint32_t get_NZ_icc(int32_t dst)
990 bdf9f35d Blue Swirl
{
991 bdf9f35d Blue Swirl
    uint32_t ret = 0;
992 bdf9f35d Blue Swirl
993 5a4bb580 Richard Henderson
    if (dst == 0) {
994 5a4bb580 Richard Henderson
        ret = PSR_ZERO;
995 5a4bb580 Richard Henderson
    } else if (dst < 0) {
996 5a4bb580 Richard Henderson
        ret = PSR_NEG;
997 5a4bb580 Richard Henderson
    }
998 bdf9f35d Blue Swirl
    return ret;
999 bdf9f35d Blue Swirl
}
1000 bdf9f35d Blue Swirl
1001 8393617c Blue Swirl
#ifdef TARGET_SPARC64
1002 8393617c Blue Swirl
static uint32_t compute_all_flags_xcc(void)
1003 8393617c Blue Swirl
{
1004 8393617c Blue Swirl
    return env->xcc & PSR_ICC;
1005 8393617c Blue Swirl
}
1006 8393617c Blue Swirl
1007 8393617c Blue Swirl
static uint32_t compute_C_flags_xcc(void)
1008 8393617c Blue Swirl
{
1009 8393617c Blue Swirl
    return env->xcc & PSR_CARRY;
1010 8393617c Blue Swirl
}
1011 8393617c Blue Swirl
1012 5a4bb580 Richard Henderson
static inline uint32_t get_NZ_xcc(target_long dst)
1013 bdf9f35d Blue Swirl
{
1014 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1015 bdf9f35d Blue Swirl
1016 5a4bb580 Richard Henderson
    if (!dst) {
1017 5a4bb580 Richard Henderson
        ret = PSR_ZERO;
1018 5a4bb580 Richard Henderson
    } else if (dst < 0) {
1019 5a4bb580 Richard Henderson
        ret = PSR_NEG;
1020 5a4bb580 Richard Henderson
    }
1021 bdf9f35d Blue Swirl
    return ret;
1022 bdf9f35d Blue Swirl
}
1023 bdf9f35d Blue Swirl
#endif
1024 bdf9f35d Blue Swirl
1025 6c78ea32 Blue Swirl
static inline uint32_t get_V_div_icc(target_ulong src2)
1026 6c78ea32 Blue Swirl
{
1027 6c78ea32 Blue Swirl
    uint32_t ret = 0;
1028 6c78ea32 Blue Swirl
1029 5a4bb580 Richard Henderson
    if (src2 != 0) {
1030 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1031 5a4bb580 Richard Henderson
    }
1032 6c78ea32 Blue Swirl
    return ret;
1033 6c78ea32 Blue Swirl
}
1034 6c78ea32 Blue Swirl
1035 6c78ea32 Blue Swirl
static uint32_t compute_all_div(void)
1036 6c78ea32 Blue Swirl
{
1037 6c78ea32 Blue Swirl
    uint32_t ret;
1038 6c78ea32 Blue Swirl
1039 6c78ea32 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1040 6c78ea32 Blue Swirl
    ret |= get_V_div_icc(CC_SRC2);
1041 6c78ea32 Blue Swirl
    return ret;
1042 6c78ea32 Blue Swirl
}
1043 6c78ea32 Blue Swirl
1044 6c78ea32 Blue Swirl
static uint32_t compute_C_div(void)
1045 6c78ea32 Blue Swirl
{
1046 6c78ea32 Blue Swirl
    return 0;
1047 6c78ea32 Blue Swirl
}
1048 6c78ea32 Blue Swirl
1049 5a4bb580 Richard Henderson
static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
1050 bdf9f35d Blue Swirl
{
1051 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1052 bdf9f35d Blue Swirl
1053 5a4bb580 Richard Henderson
    if (dst < src1) {
1054 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1055 5a4bb580 Richard Henderson
    }
1056 bdf9f35d Blue Swirl
    return ret;
1057 bdf9f35d Blue Swirl
}
1058 bdf9f35d Blue Swirl
1059 5a4bb580 Richard Henderson
static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1060 5a4bb580 Richard Henderson
                                      uint32_t src2)
1061 bdf9f35d Blue Swirl
{
1062 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1063 bdf9f35d Blue Swirl
1064 5a4bb580 Richard Henderson
    if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1065 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1066 5a4bb580 Richard Henderson
    }
1067 5a4bb580 Richard Henderson
    return ret;
1068 5a4bb580 Richard Henderson
}
1069 5a4bb580 Richard Henderson
1070 5a4bb580 Richard Henderson
static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1071 5a4bb580 Richard Henderson
                                     uint32_t src2)
1072 5a4bb580 Richard Henderson
{
1073 5a4bb580 Richard Henderson
    uint32_t ret = 0;
1074 5a4bb580 Richard Henderson
1075 5a4bb580 Richard Henderson
    if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1076 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1077 5a4bb580 Richard Henderson
    }
1078 bdf9f35d Blue Swirl
    return ret;
1079 bdf9f35d Blue Swirl
}
1080 bdf9f35d Blue Swirl
1081 bdf9f35d Blue Swirl
#ifdef TARGET_SPARC64
1082 bdf9f35d Blue Swirl
static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1083 bdf9f35d Blue Swirl
{
1084 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1085 bdf9f35d Blue Swirl
1086 5a4bb580 Richard Henderson
    if (dst < src1) {
1087 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1088 5a4bb580 Richard Henderson
    }
1089 5a4bb580 Richard Henderson
    return ret;
1090 5a4bb580 Richard Henderson
}
1091 5a4bb580 Richard Henderson
1092 5a4bb580 Richard Henderson
static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1093 5a4bb580 Richard Henderson
                                      target_ulong src2)
1094 5a4bb580 Richard Henderson
{
1095 5a4bb580 Richard Henderson
    uint32_t ret = 0;
1096 5a4bb580 Richard Henderson
1097 5a4bb580 Richard Henderson
    if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1098 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1099 5a4bb580 Richard Henderson
    }
1100 bdf9f35d Blue Swirl
    return ret;
1101 bdf9f35d Blue Swirl
}
1102 bdf9f35d Blue Swirl
1103 bdf9f35d Blue Swirl
static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1104 bdf9f35d Blue Swirl
                                         target_ulong src2)
1105 bdf9f35d Blue Swirl
{
1106 bdf9f35d Blue Swirl
    uint32_t ret = 0;
1107 bdf9f35d Blue Swirl
1108 5a4bb580 Richard Henderson
    if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1109 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1110 5a4bb580 Richard Henderson
    }
1111 bdf9f35d Blue Swirl
    return ret;
1112 bdf9f35d Blue Swirl
}
1113 bdf9f35d Blue Swirl
1114 bdf9f35d Blue Swirl
static uint32_t compute_all_add_xcc(void)
1115 bdf9f35d Blue Swirl
{
1116 bdf9f35d Blue Swirl
    uint32_t ret;
1117 bdf9f35d Blue Swirl
1118 bdf9f35d Blue Swirl
    ret = get_NZ_xcc(CC_DST);
1119 bdf9f35d Blue Swirl
    ret |= get_C_add_xcc(CC_DST, CC_SRC);
1120 bdf9f35d Blue Swirl
    ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1121 bdf9f35d Blue Swirl
    return ret;
1122 bdf9f35d Blue Swirl
}
1123 bdf9f35d Blue Swirl
1124 bdf9f35d Blue Swirl
static uint32_t compute_C_add_xcc(void)
1125 bdf9f35d Blue Swirl
{
1126 bdf9f35d Blue Swirl
    return get_C_add_xcc(CC_DST, CC_SRC);
1127 bdf9f35d Blue Swirl
}
1128 8393617c Blue Swirl
#endif
1129 8393617c Blue Swirl
1130 3e6ba503 Artyom Tarasenko
static uint32_t compute_all_add(void)
1131 789c91ef Blue Swirl
{
1132 789c91ef Blue Swirl
    uint32_t ret;
1133 789c91ef Blue Swirl
1134 789c91ef Blue Swirl
    ret = get_NZ_icc(CC_DST);
1135 5a4bb580 Richard Henderson
    ret |= get_C_add_icc(CC_DST, CC_SRC);
1136 789c91ef Blue Swirl
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1137 789c91ef Blue Swirl
    return ret;
1138 789c91ef Blue Swirl
}
1139 789c91ef Blue Swirl
1140 3e6ba503 Artyom Tarasenko
static uint32_t compute_C_add(void)
1141 789c91ef Blue Swirl
{
1142 5a4bb580 Richard Henderson
    return get_C_add_icc(CC_DST, CC_SRC);
1143 789c91ef Blue Swirl
}
1144 789c91ef Blue Swirl
1145 789c91ef Blue Swirl
#ifdef TARGET_SPARC64
1146 789c91ef Blue Swirl
static uint32_t compute_all_addx_xcc(void)
1147 789c91ef Blue Swirl
{
1148 789c91ef Blue Swirl
    uint32_t ret;
1149 789c91ef Blue Swirl
1150 789c91ef Blue Swirl
    ret = get_NZ_xcc(CC_DST);
1151 5a4bb580 Richard Henderson
    ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1152 789c91ef Blue Swirl
    ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1153 789c91ef Blue Swirl
    return ret;
1154 789c91ef Blue Swirl
}
1155 789c91ef Blue Swirl
1156 789c91ef Blue Swirl
static uint32_t compute_C_addx_xcc(void)
1157 789c91ef Blue Swirl
{
1158 789c91ef Blue Swirl
    uint32_t ret;
1159 789c91ef Blue Swirl
1160 5a4bb580 Richard Henderson
    ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1161 789c91ef Blue Swirl
    return ret;
1162 789c91ef Blue Swirl
}
1163 789c91ef Blue Swirl
#endif
1164 789c91ef Blue Swirl
1165 5a4bb580 Richard Henderson
static uint32_t compute_all_addx(void)
1166 5a4bb580 Richard Henderson
{
1167 5a4bb580 Richard Henderson
    uint32_t ret;
1168 5a4bb580 Richard Henderson
1169 5a4bb580 Richard Henderson
    ret = get_NZ_icc(CC_DST);
1170 5a4bb580 Richard Henderson
    ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1171 5a4bb580 Richard Henderson
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1172 5a4bb580 Richard Henderson
    return ret;
1173 5a4bb580 Richard Henderson
}
1174 5a4bb580 Richard Henderson
1175 5a4bb580 Richard Henderson
static uint32_t compute_C_addx(void)
1176 5a4bb580 Richard Henderson
{
1177 5a4bb580 Richard Henderson
    uint32_t ret;
1178 5a4bb580 Richard Henderson
1179 5a4bb580 Richard Henderson
    ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1180 5a4bb580 Richard Henderson
    return ret;
1181 5a4bb580 Richard Henderson
}
1182 5a4bb580 Richard Henderson
1183 3b2d1e92 Blue Swirl
static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1184 3b2d1e92 Blue Swirl
{
1185 3b2d1e92 Blue Swirl
    uint32_t ret = 0;
1186 3b2d1e92 Blue Swirl
1187 5a4bb580 Richard Henderson
    if ((src1 | src2) & 0x3) {
1188 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1189 5a4bb580 Richard Henderson
    }
1190 3b2d1e92 Blue Swirl
    return ret;
1191 3b2d1e92 Blue Swirl
}
1192 3b2d1e92 Blue Swirl
1193 3b2d1e92 Blue Swirl
static uint32_t compute_all_tadd(void)
1194 3b2d1e92 Blue Swirl
{
1195 3b2d1e92 Blue Swirl
    uint32_t ret;
1196 3b2d1e92 Blue Swirl
1197 3b2d1e92 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1198 5a4bb580 Richard Henderson
    ret |= get_C_add_icc(CC_DST, CC_SRC);
1199 3b2d1e92 Blue Swirl
    ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1200 3b2d1e92 Blue Swirl
    ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1201 3b2d1e92 Blue Swirl
    return ret;
1202 3b2d1e92 Blue Swirl
}
1203 3b2d1e92 Blue Swirl
1204 3b2d1e92 Blue Swirl
static uint32_t compute_all_taddtv(void)
1205 3b2d1e92 Blue Swirl
{
1206 3b2d1e92 Blue Swirl
    uint32_t ret;
1207 3b2d1e92 Blue Swirl
1208 3b2d1e92 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1209 5a4bb580 Richard Henderson
    ret |= get_C_add_icc(CC_DST, CC_SRC);
1210 3b2d1e92 Blue Swirl
    return ret;
1211 3b2d1e92 Blue Swirl
}
1212 3b2d1e92 Blue Swirl
1213 5a4bb580 Richard Henderson
static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1214 3b2d1e92 Blue Swirl
{
1215 5a4bb580 Richard Henderson
    uint32_t ret = 0;
1216 5a4bb580 Richard Henderson
1217 5a4bb580 Richard Henderson
    if (src1 < src2) {
1218 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1219 5a4bb580 Richard Henderson
    }
1220 5a4bb580 Richard Henderson
    return ret;
1221 3b2d1e92 Blue Swirl
}
1222 3b2d1e92 Blue Swirl
1223 5a4bb580 Richard Henderson
static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1224 5a4bb580 Richard Henderson
                                      uint32_t src2)
1225 d4b0d468 Blue Swirl
{
1226 d4b0d468 Blue Swirl
    uint32_t ret = 0;
1227 d4b0d468 Blue Swirl
1228 5a4bb580 Richard Henderson
    if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1229 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1230 5a4bb580 Richard Henderson
    }
1231 d4b0d468 Blue Swirl
    return ret;
1232 d4b0d468 Blue Swirl
}
1233 d4b0d468 Blue Swirl
1234 5a4bb580 Richard Henderson
static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1235 5a4bb580 Richard Henderson
                                     uint32_t src2)
1236 d4b0d468 Blue Swirl
{
1237 d4b0d468 Blue Swirl
    uint32_t ret = 0;
1238 d4b0d468 Blue Swirl
1239 5a4bb580 Richard Henderson
    if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1240 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1241 5a4bb580 Richard Henderson
    }
1242 d4b0d468 Blue Swirl
    return ret;
1243 d4b0d468 Blue Swirl
}
1244 d4b0d468 Blue Swirl
1245 d4b0d468 Blue Swirl
1246 d4b0d468 Blue Swirl
#ifdef TARGET_SPARC64
1247 d4b0d468 Blue Swirl
static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1248 d4b0d468 Blue Swirl
{
1249 d4b0d468 Blue Swirl
    uint32_t ret = 0;
1250 d4b0d468 Blue Swirl
1251 5a4bb580 Richard Henderson
    if (src1 < src2) {
1252 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1253 5a4bb580 Richard Henderson
    }
1254 5a4bb580 Richard Henderson
    return ret;
1255 5a4bb580 Richard Henderson
}
1256 5a4bb580 Richard Henderson
1257 5a4bb580 Richard Henderson
static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1258 5a4bb580 Richard Henderson
                                      target_ulong src2)
1259 5a4bb580 Richard Henderson
{
1260 5a4bb580 Richard Henderson
    uint32_t ret = 0;
1261 5a4bb580 Richard Henderson
1262 5a4bb580 Richard Henderson
    if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1263 5a4bb580 Richard Henderson
        ret = PSR_CARRY;
1264 5a4bb580 Richard Henderson
    }
1265 d4b0d468 Blue Swirl
    return ret;
1266 d4b0d468 Blue Swirl
}
1267 d4b0d468 Blue Swirl
1268 d4b0d468 Blue Swirl
static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1269 d4b0d468 Blue Swirl
                                     target_ulong src2)
1270 d4b0d468 Blue Swirl
{
1271 d4b0d468 Blue Swirl
    uint32_t ret = 0;
1272 d4b0d468 Blue Swirl
1273 5a4bb580 Richard Henderson
    if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1274 5a4bb580 Richard Henderson
        ret = PSR_OVF;
1275 5a4bb580 Richard Henderson
    }
1276 d4b0d468 Blue Swirl
    return ret;
1277 d4b0d468 Blue Swirl
}
1278 d4b0d468 Blue Swirl
1279 d4b0d468 Blue Swirl
static uint32_t compute_all_sub_xcc(void)
1280 d4b0d468 Blue Swirl
{
1281 d4b0d468 Blue Swirl
    uint32_t ret;
1282 d4b0d468 Blue Swirl
1283 d4b0d468 Blue Swirl
    ret = get_NZ_xcc(CC_DST);
1284 d4b0d468 Blue Swirl
    ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1285 d4b0d468 Blue Swirl
    ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1286 d4b0d468 Blue Swirl
    return ret;
1287 d4b0d468 Blue Swirl
}
1288 d4b0d468 Blue Swirl
1289 d4b0d468 Blue Swirl
static uint32_t compute_C_sub_xcc(void)
1290 d4b0d468 Blue Swirl
{
1291 d4b0d468 Blue Swirl
    return get_C_sub_xcc(CC_SRC, CC_SRC2);
1292 d4b0d468 Blue Swirl
}
1293 d4b0d468 Blue Swirl
#endif
1294 d4b0d468 Blue Swirl
1295 3e6ba503 Artyom Tarasenko
static uint32_t compute_all_sub(void)
1296 2ca1d92b Blue Swirl
{
1297 2ca1d92b Blue Swirl
    uint32_t ret;
1298 2ca1d92b Blue Swirl
1299 2ca1d92b Blue Swirl
    ret = get_NZ_icc(CC_DST);
1300 5a4bb580 Richard Henderson
    ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1301 2ca1d92b Blue Swirl
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1302 2ca1d92b Blue Swirl
    return ret;
1303 2ca1d92b Blue Swirl
}
1304 2ca1d92b Blue Swirl
1305 3e6ba503 Artyom Tarasenko
static uint32_t compute_C_sub(void)
1306 2ca1d92b Blue Swirl
{
1307 5a4bb580 Richard Henderson
    return get_C_sub_icc(CC_SRC, CC_SRC2);
1308 2ca1d92b Blue Swirl
}
1309 2ca1d92b Blue Swirl
1310 2ca1d92b Blue Swirl
#ifdef TARGET_SPARC64
1311 2ca1d92b Blue Swirl
static uint32_t compute_all_subx_xcc(void)
1312 2ca1d92b Blue Swirl
{
1313 2ca1d92b Blue Swirl
    uint32_t ret;
1314 2ca1d92b Blue Swirl
1315 2ca1d92b Blue Swirl
    ret = get_NZ_xcc(CC_DST);
1316 5a4bb580 Richard Henderson
    ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1317 2ca1d92b Blue Swirl
    ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1318 2ca1d92b Blue Swirl
    return ret;
1319 2ca1d92b Blue Swirl
}
1320 2ca1d92b Blue Swirl
1321 2ca1d92b Blue Swirl
static uint32_t compute_C_subx_xcc(void)
1322 2ca1d92b Blue Swirl
{
1323 2ca1d92b Blue Swirl
    uint32_t ret;
1324 2ca1d92b Blue Swirl
1325 5a4bb580 Richard Henderson
    ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1326 2ca1d92b Blue Swirl
    return ret;
1327 2ca1d92b Blue Swirl
}
1328 2ca1d92b Blue Swirl
#endif
1329 2ca1d92b Blue Swirl
1330 5a4bb580 Richard Henderson
static uint32_t compute_all_subx(void)
1331 3b2d1e92 Blue Swirl
{
1332 3b2d1e92 Blue Swirl
    uint32_t ret;
1333 3b2d1e92 Blue Swirl
1334 3b2d1e92 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1335 5a4bb580 Richard Henderson
    ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1336 3b2d1e92 Blue Swirl
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1337 3b2d1e92 Blue Swirl
    return ret;
1338 3b2d1e92 Blue Swirl
}
1339 3b2d1e92 Blue Swirl
1340 5a4bb580 Richard Henderson
static uint32_t compute_C_subx(void)
1341 3b2d1e92 Blue Swirl
{
1342 5a4bb580 Richard Henderson
    uint32_t ret;
1343 5a4bb580 Richard Henderson
1344 5a4bb580 Richard Henderson
    ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1345 5a4bb580 Richard Henderson
    return ret;
1346 3b2d1e92 Blue Swirl
}
1347 3b2d1e92 Blue Swirl
1348 5a4bb580 Richard Henderson
static uint32_t compute_all_tsub(void)
1349 3b2d1e92 Blue Swirl
{
1350 3b2d1e92 Blue Swirl
    uint32_t ret;
1351 3b2d1e92 Blue Swirl
1352 3b2d1e92 Blue Swirl
    ret = get_NZ_icc(CC_DST);
1353 5a4bb580 Richard Henderson
    ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1354 5a4bb580 Richard Henderson
    ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1355 5a4bb580 Richard Henderson
    ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1356 3b2d1e92 Blue Swirl
    return ret;
1357 3b2d1e92 Blue Swirl
}
1358 3b2d1e92 Blue Swirl
1359 5a4bb580 Richard Henderson
static uint32_t compute_all_tsubtv(void)
1360 3b2d1e92 Blue Swirl
{
1361 5a4bb580 Richard Henderson
    uint32_t ret;
1362 5a4bb580 Richard Henderson
1363 5a4bb580 Richard Henderson
    ret = get_NZ_icc(CC_DST);
1364 5a4bb580 Richard Henderson
    ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1365 5a4bb580 Richard Henderson
    return ret;
1366 3b2d1e92 Blue Swirl
}
1367 3b2d1e92 Blue Swirl
1368 38482a77 Blue Swirl
static uint32_t compute_all_logic(void)
1369 38482a77 Blue Swirl
{
1370 38482a77 Blue Swirl
    return get_NZ_icc(CC_DST);
1371 38482a77 Blue Swirl
}
1372 38482a77 Blue Swirl
1373 38482a77 Blue Swirl
static uint32_t compute_C_logic(void)
1374 38482a77 Blue Swirl
{
1375 38482a77 Blue Swirl
    return 0;
1376 38482a77 Blue Swirl
}
1377 38482a77 Blue Swirl
1378 38482a77 Blue Swirl
#ifdef TARGET_SPARC64
1379 38482a77 Blue Swirl
static uint32_t compute_all_logic_xcc(void)
1380 38482a77 Blue Swirl
{
1381 38482a77 Blue Swirl
    return get_NZ_xcc(CC_DST);
1382 38482a77 Blue Swirl
}
1383 38482a77 Blue Swirl
#endif
1384 38482a77 Blue Swirl
1385 8393617c Blue Swirl
typedef struct CCTable {
1386 8393617c Blue Swirl
    uint32_t (*compute_all)(void); /* return all the flags */
1387 8393617c Blue Swirl
    uint32_t (*compute_c)(void);  /* return the C flag */
1388 8393617c Blue Swirl
} CCTable;
1389 8393617c Blue Swirl
1390 8393617c Blue Swirl
static const CCTable icc_table[CC_OP_NB] = {
1391 8393617c Blue Swirl
    /* CC_OP_DYNAMIC should never happen */
1392 8393617c Blue Swirl
    [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1393 6c78ea32 Blue Swirl
    [CC_OP_DIV] = { compute_all_div, compute_C_div },
1394 bdf9f35d Blue Swirl
    [CC_OP_ADD] = { compute_all_add, compute_C_add },
1395 5a4bb580 Richard Henderson
    [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1396 5a4bb580 Richard Henderson
    [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1397 5a4bb580 Richard Henderson
    [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1398 d4b0d468 Blue Swirl
    [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1399 5a4bb580 Richard Henderson
    [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1400 5a4bb580 Richard Henderson
    [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1401 5a4bb580 Richard Henderson
    [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1402 38482a77 Blue Swirl
    [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1403 8393617c Blue Swirl
};
1404 8393617c Blue Swirl
1405 8393617c Blue Swirl
#ifdef TARGET_SPARC64
1406 8393617c Blue Swirl
static const CCTable xcc_table[CC_OP_NB] = {
1407 8393617c Blue Swirl
    /* CC_OP_DYNAMIC should never happen */
1408 8393617c Blue Swirl
    [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1409 6c78ea32 Blue Swirl
    [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1410 bdf9f35d Blue Swirl
    [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1411 789c91ef Blue Swirl
    [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1412 3b2d1e92 Blue Swirl
    [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1413 3b2d1e92 Blue Swirl
    [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1414 d4b0d468 Blue Swirl
    [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1415 2ca1d92b Blue Swirl
    [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1416 3b2d1e92 Blue Swirl
    [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1417 3b2d1e92 Blue Swirl
    [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1418 38482a77 Blue Swirl
    [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1419 8393617c Blue Swirl
};
1420 8393617c Blue Swirl
#endif
1421 8393617c Blue Swirl
1422 8393617c Blue Swirl
void helper_compute_psr(void)
1423 8393617c Blue Swirl
{
1424 8393617c Blue Swirl
    uint32_t new_psr;
1425 8393617c Blue Swirl
1426 8393617c Blue Swirl
    new_psr = icc_table[CC_OP].compute_all();
1427 8393617c Blue Swirl
    env->psr = new_psr;
1428 8393617c Blue Swirl
#ifdef TARGET_SPARC64
1429 8393617c Blue Swirl
    new_psr = xcc_table[CC_OP].compute_all();
1430 8393617c Blue Swirl
    env->xcc = new_psr;
1431 8393617c Blue Swirl
#endif
1432 8393617c Blue Swirl
    CC_OP = CC_OP_FLAGS;
1433 8393617c Blue Swirl
}
1434 8393617c Blue Swirl
1435 70c48285 Richard Henderson
uint32_t helper_compute_C_icc(void)
1436 8393617c Blue Swirl
{
1437 8393617c Blue Swirl
    uint32_t ret;
1438 8393617c Blue Swirl
1439 8393617c Blue Swirl
    ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1440 8393617c Blue Swirl
    return ret;
1441 8393617c Blue Swirl
}
1442 8393617c Blue Swirl
1443 5a834bb4 Blue Swirl
static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1444 5a834bb4 Blue Swirl
{
1445 5a834bb4 Blue Swirl
    dst[0] = src[0];
1446 5a834bb4 Blue Swirl
    dst[1] = src[1];
1447 5a834bb4 Blue Swirl
    dst[2] = src[2];
1448 5a834bb4 Blue Swirl
    dst[3] = src[3];
1449 5a834bb4 Blue Swirl
    dst[4] = src[4];
1450 5a834bb4 Blue Swirl
    dst[5] = src[5];
1451 5a834bb4 Blue Swirl
    dst[6] = src[6];
1452 5a834bb4 Blue Swirl
    dst[7] = src[7];
1453 5a834bb4 Blue Swirl
}
1454 5a834bb4 Blue Swirl
1455 5a834bb4 Blue Swirl
static void set_cwp(int new_cwp)
1456 5a834bb4 Blue Swirl
{
1457 5a834bb4 Blue Swirl
    /* put the modified wrap registers at their proper location */
1458 5a834bb4 Blue Swirl
    if (env->cwp == env->nwindows - 1) {
1459 5a834bb4 Blue Swirl
        memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1460 5a834bb4 Blue Swirl
    }
1461 5a834bb4 Blue Swirl
    env->cwp = new_cwp;
1462 5a834bb4 Blue Swirl
1463 5a834bb4 Blue Swirl
    /* put the wrap registers at their temporary location */
1464 5a834bb4 Blue Swirl
    if (new_cwp == env->nwindows - 1) {
1465 5a834bb4 Blue Swirl
        memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1466 5a834bb4 Blue Swirl
    }
1467 5a834bb4 Blue Swirl
    env->regwptr = env->regbase + (new_cwp * 16);
1468 5a834bb4 Blue Swirl
}
1469 5a834bb4 Blue Swirl
1470 5a834bb4 Blue Swirl
void cpu_set_cwp(CPUState *env1, int new_cwp)
1471 5a834bb4 Blue Swirl
{
1472 5a834bb4 Blue Swirl
    CPUState *saved_env;
1473 5a834bb4 Blue Swirl
1474 5a834bb4 Blue Swirl
    saved_env = env;
1475 5a834bb4 Blue Swirl
    env = env1;
1476 5a834bb4 Blue Swirl
    set_cwp(new_cwp);
1477 5a834bb4 Blue Swirl
    env = saved_env;
1478 5a834bb4 Blue Swirl
}
1479 5a834bb4 Blue Swirl
1480 5a834bb4 Blue Swirl
static target_ulong get_psr(void)
1481 5a834bb4 Blue Swirl
{
1482 5a834bb4 Blue Swirl
    helper_compute_psr();
1483 5a834bb4 Blue Swirl
1484 5a834bb4 Blue Swirl
#if !defined (TARGET_SPARC64)
1485 5a834bb4 Blue Swirl
    return env->version | (env->psr & PSR_ICC) |
1486 5a834bb4 Blue Swirl
        (env->psref? PSR_EF : 0) |
1487 5a834bb4 Blue Swirl
        (env->psrpil << 8) |
1488 5a834bb4 Blue Swirl
        (env->psrs? PSR_S : 0) |
1489 5a834bb4 Blue Swirl
        (env->psrps? PSR_PS : 0) |
1490 5a834bb4 Blue Swirl
        (env->psret? PSR_ET : 0) | env->cwp;
1491 5a834bb4 Blue Swirl
#else
1492 2aae2b8e Igor V. Kovalenko
    return env->psr & PSR_ICC;
1493 5a834bb4 Blue Swirl
#endif
1494 5a834bb4 Blue Swirl
}
1495 5a834bb4 Blue Swirl
1496 5a834bb4 Blue Swirl
target_ulong cpu_get_psr(CPUState *env1)
1497 5a834bb4 Blue Swirl
{
1498 5a834bb4 Blue Swirl
    CPUState *saved_env;
1499 5a834bb4 Blue Swirl
    target_ulong ret;
1500 5a834bb4 Blue Swirl
1501 5a834bb4 Blue Swirl
    saved_env = env;
1502 5a834bb4 Blue Swirl
    env = env1;
1503 5a834bb4 Blue Swirl
    ret = get_psr();
1504 5a834bb4 Blue Swirl
    env = saved_env;
1505 5a834bb4 Blue Swirl
    return ret;
1506 5a834bb4 Blue Swirl
}
1507 5a834bb4 Blue Swirl
1508 5a834bb4 Blue Swirl
static void put_psr(target_ulong val)
1509 5a834bb4 Blue Swirl
{
1510 5a834bb4 Blue Swirl
    env->psr = val & PSR_ICC;
1511 2aae2b8e Igor V. Kovalenko
#if !defined (TARGET_SPARC64)
1512 5a834bb4 Blue Swirl
    env->psref = (val & PSR_EF)? 1 : 0;
1513 5a834bb4 Blue Swirl
    env->psrpil = (val & PSR_PIL) >> 8;
1514 2aae2b8e Igor V. Kovalenko
#endif
1515 5a834bb4 Blue Swirl
#if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1516 5a834bb4 Blue Swirl
    cpu_check_irqs(env);
1517 5a834bb4 Blue Swirl
#endif
1518 2aae2b8e Igor V. Kovalenko
#if !defined (TARGET_SPARC64)
1519 5a834bb4 Blue Swirl
    env->psrs = (val & PSR_S)? 1 : 0;
1520 5a834bb4 Blue Swirl
    env->psrps = (val & PSR_PS)? 1 : 0;
1521 5a834bb4 Blue Swirl
    env->psret = (val & PSR_ET)? 1 : 0;
1522 5a834bb4 Blue Swirl
    set_cwp(val & PSR_CWP);
1523 2aae2b8e Igor V. Kovalenko
#endif
1524 5a834bb4 Blue Swirl
    env->cc_op = CC_OP_FLAGS;
1525 5a834bb4 Blue Swirl
}
1526 5a834bb4 Blue Swirl
1527 5a834bb4 Blue Swirl
void cpu_put_psr(CPUState *env1, target_ulong val)
1528 5a834bb4 Blue Swirl
{
1529 5a834bb4 Blue Swirl
    CPUState *saved_env;
1530 5a834bb4 Blue Swirl
1531 5a834bb4 Blue Swirl
    saved_env = env;
1532 5a834bb4 Blue Swirl
    env = env1;
1533 5a834bb4 Blue Swirl
    put_psr(val);
1534 5a834bb4 Blue Swirl
    env = saved_env;
1535 5a834bb4 Blue Swirl
}
1536 5a834bb4 Blue Swirl
1537 5a834bb4 Blue Swirl
static int cwp_inc(int cwp)
1538 5a834bb4 Blue Swirl
{
1539 5a834bb4 Blue Swirl
    if (unlikely(cwp >= env->nwindows)) {
1540 5a834bb4 Blue Swirl
        cwp -= env->nwindows;
1541 5a834bb4 Blue Swirl
    }
1542 5a834bb4 Blue Swirl
    return cwp;
1543 5a834bb4 Blue Swirl
}
1544 5a834bb4 Blue Swirl
1545 5a834bb4 Blue Swirl
int cpu_cwp_inc(CPUState *env1, int cwp)
1546 5a834bb4 Blue Swirl
{
1547 5a834bb4 Blue Swirl
    CPUState *saved_env;
1548 5a834bb4 Blue Swirl
    target_ulong ret;
1549 5a834bb4 Blue Swirl
1550 5a834bb4 Blue Swirl
    saved_env = env;
1551 5a834bb4 Blue Swirl
    env = env1;
1552 5a834bb4 Blue Swirl
    ret = cwp_inc(cwp);
1553 5a834bb4 Blue Swirl
    env = saved_env;
1554 5a834bb4 Blue Swirl
    return ret;
1555 5a834bb4 Blue Swirl
}
1556 5a834bb4 Blue Swirl
1557 5a834bb4 Blue Swirl
static int cwp_dec(int cwp)
1558 5a834bb4 Blue Swirl
{
1559 5a834bb4 Blue Swirl
    if (unlikely(cwp < 0)) {
1560 5a834bb4 Blue Swirl
        cwp += env->nwindows;
1561 5a834bb4 Blue Swirl
    }
1562 5a834bb4 Blue Swirl
    return cwp;
1563 5a834bb4 Blue Swirl
}
1564 5a834bb4 Blue Swirl
1565 5a834bb4 Blue Swirl
int cpu_cwp_dec(CPUState *env1, int cwp)
1566 5a834bb4 Blue Swirl
{
1567 5a834bb4 Blue Swirl
    CPUState *saved_env;
1568 5a834bb4 Blue Swirl
    target_ulong ret;
1569 5a834bb4 Blue Swirl
1570 5a834bb4 Blue Swirl
    saved_env = env;
1571 5a834bb4 Blue Swirl
    env = env1;
1572 5a834bb4 Blue Swirl
    ret = cwp_dec(cwp);
1573 5a834bb4 Blue Swirl
    env = saved_env;
1574 5a834bb4 Blue Swirl
    return ret;
1575 5a834bb4 Blue Swirl
}
1576 5a834bb4 Blue Swirl
1577 3475187d bellard
#ifdef TARGET_SPARC64
1578 714547bb blueswir1
GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1579 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1580 64a88d5d blueswir1
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1581 417454b0 blueswir1
1582 714547bb blueswir1
GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1583 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1584 64a88d5d blueswir1
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1585 417454b0 blueswir1
1586 714547bb blueswir1
GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1587 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1588 64a88d5d blueswir1
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1589 417454b0 blueswir1
1590 714547bb blueswir1
GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1591 417454b0 blueswir1
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1592 64a88d5d blueswir1
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1593 3475187d bellard
1594 714547bb blueswir1
GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1595 417454b0 blueswir1
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1596 64a88d5d blueswir1
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1597 3475187d bellard
1598 714547bb blueswir1
GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1599 417454b0 blueswir1
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1600 4e14008f blueswir1
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1601 4e14008f blueswir1
#endif
1602 714547bb blueswir1
#undef GEN_FCMPS
1603 3475187d bellard
1604 77f193da blueswir1
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1605 77f193da blueswir1
    defined(DEBUG_MXCC)
1606 952a328f blueswir1
static void dump_mxcc(CPUState *env)
1607 952a328f blueswir1
{
1608 0bf9e31a Blue Swirl
    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1609 0bf9e31a Blue Swirl
           "\n",
1610 77f193da blueswir1
           env->mxccdata[0], env->mxccdata[1],
1611 77f193da blueswir1
           env->mxccdata[2], env->mxccdata[3]);
1612 0bf9e31a Blue Swirl
    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1613 0bf9e31a Blue Swirl
           "\n"
1614 0bf9e31a Blue Swirl
           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1615 0bf9e31a Blue Swirl
           "\n",
1616 77f193da blueswir1
           env->mxccregs[0], env->mxccregs[1],
1617 77f193da blueswir1
           env->mxccregs[2], env->mxccregs[3],
1618 77f193da blueswir1
           env->mxccregs[4], env->mxccregs[5],
1619 77f193da blueswir1
           env->mxccregs[6], env->mxccregs[7]);
1620 952a328f blueswir1
}
1621 952a328f blueswir1
#endif
1622 952a328f blueswir1
1623 1a2fb1c0 blueswir1
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1624 1a2fb1c0 blueswir1
    && defined(DEBUG_ASI)
1625 1a2fb1c0 blueswir1
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1626 1a2fb1c0 blueswir1
                     uint64_t r1)
1627 8543e2cf blueswir1
{
1628 8543e2cf blueswir1
    switch (size)
1629 8543e2cf blueswir1
    {
1630 8543e2cf blueswir1
    case 1:
1631 1a2fb1c0 blueswir1
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1632 1a2fb1c0 blueswir1
                    addr, asi, r1 & 0xff);
1633 8543e2cf blueswir1
        break;
1634 8543e2cf blueswir1
    case 2:
1635 1a2fb1c0 blueswir1
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1636 1a2fb1c0 blueswir1
                    addr, asi, r1 & 0xffff);
1637 8543e2cf blueswir1
        break;
1638 8543e2cf blueswir1
    case 4:
1639 1a2fb1c0 blueswir1
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1640 1a2fb1c0 blueswir1
                    addr, asi, r1 & 0xffffffff);
1641 8543e2cf blueswir1
        break;
1642 8543e2cf blueswir1
    case 8:
1643 1a2fb1c0 blueswir1
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1644 1a2fb1c0 blueswir1
                    addr, asi, r1);
1645 8543e2cf blueswir1
        break;
1646 8543e2cf blueswir1
    }
1647 8543e2cf blueswir1
}
1648 8543e2cf blueswir1
#endif
1649 8543e2cf blueswir1
1650 1a2fb1c0 blueswir1
#ifndef TARGET_SPARC64
1651 1a2fb1c0 blueswir1
#ifndef CONFIG_USER_ONLY
1652 b04d9890 Fabien Chouteau
1653 b04d9890 Fabien Chouteau
1654 b04d9890 Fabien Chouteau
/* Leon3 cache control */
1655 b04d9890 Fabien Chouteau
1656 60f356e8 Fabien Chouteau
static void leon3_cache_control_int(void)
1657 b04d9890 Fabien Chouteau
{
1658 b04d9890 Fabien Chouteau
    uint32_t state = 0;
1659 b04d9890 Fabien Chouteau
1660 b04d9890 Fabien Chouteau
    if (env->cache_control & CACHE_CTRL_IF) {
1661 b04d9890 Fabien Chouteau
        /* Instruction cache state */
1662 b04d9890 Fabien Chouteau
        state = env->cache_control & CACHE_STATE_MASK;
1663 b04d9890 Fabien Chouteau
        if (state == CACHE_ENABLED) {
1664 b04d9890 Fabien Chouteau
            state = CACHE_FROZEN;
1665 b04d9890 Fabien Chouteau
            DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n");
1666 b04d9890 Fabien Chouteau
        }
1667 b04d9890 Fabien Chouteau
1668 b04d9890 Fabien Chouteau
        env->cache_control &= ~CACHE_STATE_MASK;
1669 b04d9890 Fabien Chouteau
        env->cache_control |= state;
1670 b04d9890 Fabien Chouteau
    }
1671 b04d9890 Fabien Chouteau
1672 b04d9890 Fabien Chouteau
    if (env->cache_control & CACHE_CTRL_DF) {
1673 b04d9890 Fabien Chouteau
        /* Data cache state */
1674 b04d9890 Fabien Chouteau
        state = (env->cache_control >> 2) & CACHE_STATE_MASK;
1675 b04d9890 Fabien Chouteau
        if (state == CACHE_ENABLED) {
1676 b04d9890 Fabien Chouteau
            state = CACHE_FROZEN;
1677 b04d9890 Fabien Chouteau
            DPRINTF_CACHE_CONTROL("Data cache: freeze\n");
1678 b04d9890 Fabien Chouteau
        }
1679 b04d9890 Fabien Chouteau
1680 b04d9890 Fabien Chouteau
        env->cache_control &= ~(CACHE_STATE_MASK << 2);
1681 b04d9890 Fabien Chouteau
        env->cache_control |= (state << 2);
1682 b04d9890 Fabien Chouteau
    }
1683 b04d9890 Fabien Chouteau
}
1684 b04d9890 Fabien Chouteau
1685 b04d9890 Fabien Chouteau
static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
1686 b04d9890 Fabien Chouteau
{
1687 b04d9890 Fabien Chouteau
    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
1688 b04d9890 Fabien Chouteau
                          addr, val, size);
1689 b04d9890 Fabien Chouteau
1690 b04d9890 Fabien Chouteau
    if (size != 4) {
1691 b04d9890 Fabien Chouteau
        DPRINTF_CACHE_CONTROL("32bits only\n");
1692 b04d9890 Fabien Chouteau
        return;
1693 b04d9890 Fabien Chouteau
    }
1694 b04d9890 Fabien Chouteau
1695 b04d9890 Fabien Chouteau
    switch (addr) {
1696 b04d9890 Fabien Chouteau
    case 0x00:              /* Cache control */
1697 b04d9890 Fabien Chouteau
1698 b04d9890 Fabien Chouteau
        /* These values must always be read as zeros */
1699 b04d9890 Fabien Chouteau
        val &= ~CACHE_CTRL_FD;
1700 b04d9890 Fabien Chouteau
        val &= ~CACHE_CTRL_FI;
1701 b04d9890 Fabien Chouteau
        val &= ~CACHE_CTRL_IB;
1702 b04d9890 Fabien Chouteau
        val &= ~CACHE_CTRL_IP;
1703 b04d9890 Fabien Chouteau
        val &= ~CACHE_CTRL_DP;
1704 b04d9890 Fabien Chouteau
1705 b04d9890 Fabien Chouteau
        env->cache_control = val;
1706 b04d9890 Fabien Chouteau
        break;
1707 b04d9890 Fabien Chouteau
    case 0x04:              /* Instruction cache configuration */
1708 b04d9890 Fabien Chouteau
    case 0x08:              /* Data cache configuration */
1709 b04d9890 Fabien Chouteau
        /* Read Only */
1710 b04d9890 Fabien Chouteau
        break;
1711 b04d9890 Fabien Chouteau
    default:
1712 b04d9890 Fabien Chouteau
        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
1713 b04d9890 Fabien Chouteau
        break;
1714 b04d9890 Fabien Chouteau
    };
1715 b04d9890 Fabien Chouteau
}
1716 b04d9890 Fabien Chouteau
1717 b04d9890 Fabien Chouteau
static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
1718 b04d9890 Fabien Chouteau
{
1719 b04d9890 Fabien Chouteau
    uint64_t ret = 0;
1720 b04d9890 Fabien Chouteau
1721 b04d9890 Fabien Chouteau
    if (size != 4) {
1722 b04d9890 Fabien Chouteau
        DPRINTF_CACHE_CONTROL("32bits only\n");
1723 b04d9890 Fabien Chouteau
        return 0;
1724 b04d9890 Fabien Chouteau
    }
1725 b04d9890 Fabien Chouteau
1726 b04d9890 Fabien Chouteau
    switch (addr) {
1727 b04d9890 Fabien Chouteau
    case 0x00:              /* Cache control */
1728 b04d9890 Fabien Chouteau
        ret = env->cache_control;
1729 b04d9890 Fabien Chouteau
        break;
1730 b04d9890 Fabien Chouteau
1731 b04d9890 Fabien Chouteau
        /* Configuration registers are read and only always keep those
1732 b04d9890 Fabien Chouteau
           predefined values */
1733 b04d9890 Fabien Chouteau
1734 b04d9890 Fabien Chouteau
    case 0x04:              /* Instruction cache configuration */
1735 b04d9890 Fabien Chouteau
        ret = 0x10220000;
1736 b04d9890 Fabien Chouteau
        break;
1737 b04d9890 Fabien Chouteau
    case 0x08:              /* Data cache configuration */
1738 b04d9890 Fabien Chouteau
        ret = 0x18220000;
1739 b04d9890 Fabien Chouteau
        break;
1740 b04d9890 Fabien Chouteau
    default:
1741 b04d9890 Fabien Chouteau
        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
1742 b04d9890 Fabien Chouteau
        break;
1743 b04d9890 Fabien Chouteau
    };
1744 60f356e8 Fabien Chouteau
    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
1745 b04d9890 Fabien Chouteau
                          addr, ret, size);
1746 b04d9890 Fabien Chouteau
    return ret;
1747 b04d9890 Fabien Chouteau
}
1748 b04d9890 Fabien Chouteau
1749 60f356e8 Fabien Chouteau
void leon3_irq_manager(void *irq_manager, int intno)
1750 60f356e8 Fabien Chouteau
{
1751 60f356e8 Fabien Chouteau
    leon3_irq_ack(irq_manager, intno);
1752 60f356e8 Fabien Chouteau
    leon3_cache_control_int();
1753 60f356e8 Fabien Chouteau
}
1754 60f356e8 Fabien Chouteau
1755 1a2fb1c0 blueswir1
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1756 e8af50a3 bellard
{
1757 1a2fb1c0 blueswir1
    uint64_t ret = 0;
1758 8543e2cf blueswir1
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1759 1a2fb1c0 blueswir1
    uint32_t last_addr = addr;
1760 952a328f blueswir1
#endif
1761 e80cfcfc bellard
1762 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
1763 e80cfcfc bellard
    switch (asi) {
1764 b04d9890 Fabien Chouteau
    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1765 1a2fb1c0 blueswir1
        switch (addr) {
1766 b04d9890 Fabien Chouteau
        case 0x00:          /* Leon3 Cache Control */
1767 b04d9890 Fabien Chouteau
        case 0x08:          /* Leon3 Instruction Cache config */
1768 b04d9890 Fabien Chouteau
        case 0x0C:          /* Leon3 Date Cache config */
1769 60f356e8 Fabien Chouteau
            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
1770 60f356e8 Fabien Chouteau
                ret = leon3_cache_control_ld(addr, size);
1771 60f356e8 Fabien Chouteau
            }
1772 b04d9890 Fabien Chouteau
            break;
1773 952a328f blueswir1
        case 0x01c00a00: /* MXCC control register */
1774 1a2fb1c0 blueswir1
            if (size == 8)
1775 1a2fb1c0 blueswir1
                ret = env->mxccregs[3];
1776 1a2fb1c0 blueswir1
            else
1777 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1778 77f193da blueswir1
                             size);
1779 952a328f blueswir1
            break;
1780 952a328f blueswir1
        case 0x01c00a04: /* MXCC control register */
1781 952a328f blueswir1
            if (size == 4)
1782 952a328f blueswir1
                ret = env->mxccregs[3];
1783 952a328f blueswir1
            else
1784 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1785 77f193da blueswir1
                             size);
1786 952a328f blueswir1
            break;
1787 295db113 blueswir1
        case 0x01c00c00: /* Module reset register */
1788 295db113 blueswir1
            if (size == 8) {
1789 1a2fb1c0 blueswir1
                ret = env->mxccregs[5];
1790 295db113 blueswir1
                // should we do something here?
1791 295db113 blueswir1
            } else
1792 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1793 77f193da blueswir1
                             size);
1794 295db113 blueswir1
            break;
1795 952a328f blueswir1
        case 0x01c00f00: /* MBus port address register */
1796 1a2fb1c0 blueswir1
            if (size == 8)
1797 1a2fb1c0 blueswir1
                ret = env->mxccregs[7];
1798 1a2fb1c0 blueswir1
            else
1799 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1800 77f193da blueswir1
                             size);
1801 952a328f blueswir1
            break;
1802 952a328f blueswir1
        default:
1803 77f193da blueswir1
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1804 77f193da blueswir1
                         size);
1805 952a328f blueswir1
            break;
1806 952a328f blueswir1
        }
1807 77f193da blueswir1
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1808 9827e450 blueswir1
                     "addr = %08x -> ret = %" PRIx64 ","
1809 1a2fb1c0 blueswir1
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1810 952a328f blueswir1
#ifdef DEBUG_MXCC
1811 952a328f blueswir1
        dump_mxcc(env);
1812 952a328f blueswir1
#endif
1813 6c36d3fa blueswir1
        break;
1814 e8af50a3 bellard
    case 3: /* MMU probe */
1815 0f8a249a blueswir1
        {
1816 0f8a249a blueswir1
            int mmulev;
1817 0f8a249a blueswir1
1818 1a2fb1c0 blueswir1
            mmulev = (addr >> 8) & 15;
1819 0f8a249a blueswir1
            if (mmulev > 4)
1820 0f8a249a blueswir1
                ret = 0;
1821 1a2fb1c0 blueswir1
            else
1822 1a2fb1c0 blueswir1
                ret = mmu_probe(env, addr, mmulev);
1823 1a2fb1c0 blueswir1
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1824 1a2fb1c0 blueswir1
                        addr, mmulev, ret);
1825 0f8a249a blueswir1
        }
1826 0f8a249a blueswir1
        break;
1827 e8af50a3 bellard
    case 4: /* read MMU regs */
1828 0f8a249a blueswir1
        {
1829 1a2fb1c0 blueswir1
            int reg = (addr >> 8) & 0x1f;
1830 3b46e624 ths
1831 0f8a249a blueswir1
            ret = env->mmuregs[reg];
1832 0f8a249a blueswir1
            if (reg == 3) /* Fault status cleared on read */
1833 3dd9a152 blueswir1
                env->mmuregs[3] = 0;
1834 3dd9a152 blueswir1
            else if (reg == 0x13) /* Fault status read */
1835 3dd9a152 blueswir1
                ret = env->mmuregs[3];
1836 3dd9a152 blueswir1
            else if (reg == 0x14) /* Fault address read */
1837 3dd9a152 blueswir1
                ret = env->mmuregs[4];
1838 1a2fb1c0 blueswir1
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1839 0f8a249a blueswir1
        }
1840 0f8a249a blueswir1
        break;
1841 045380be blueswir1
    case 5: // Turbosparc ITLB Diagnostic
1842 045380be blueswir1
    case 6: // Turbosparc DTLB Diagnostic
1843 045380be blueswir1
    case 7: // Turbosparc IOTLB Diagnostic
1844 045380be blueswir1
        break;
1845 6c36d3fa blueswir1
    case 9: /* Supervisor code access */
1846 6c36d3fa blueswir1
        switch(size) {
1847 6c36d3fa blueswir1
        case 1:
1848 1a2fb1c0 blueswir1
            ret = ldub_code(addr);
1849 6c36d3fa blueswir1
            break;
1850 6c36d3fa blueswir1
        case 2:
1851 a4e7dd52 blueswir1
            ret = lduw_code(addr);
1852 6c36d3fa blueswir1
            break;
1853 6c36d3fa blueswir1
        default:
1854 6c36d3fa blueswir1
        case 4:
1855 a4e7dd52 blueswir1
            ret = ldl_code(addr);
1856 6c36d3fa blueswir1
            break;
1857 6c36d3fa blueswir1
        case 8:
1858 a4e7dd52 blueswir1
            ret = ldq_code(addr);
1859 6c36d3fa blueswir1
            break;
1860 6c36d3fa blueswir1
        }
1861 6c36d3fa blueswir1
        break;
1862 81ad8ba2 blueswir1
    case 0xa: /* User data access */
1863 81ad8ba2 blueswir1
        switch(size) {
1864 81ad8ba2 blueswir1
        case 1:
1865 1a2fb1c0 blueswir1
            ret = ldub_user(addr);
1866 81ad8ba2 blueswir1
            break;
1867 81ad8ba2 blueswir1
        case 2:
1868 a4e7dd52 blueswir1
            ret = lduw_user(addr);
1869 81ad8ba2 blueswir1
            break;
1870 81ad8ba2 blueswir1
        default:
1871 81ad8ba2 blueswir1
        case 4:
1872 a4e7dd52 blueswir1
            ret = ldl_user(addr);
1873 81ad8ba2 blueswir1
            break;
1874 81ad8ba2 blueswir1
        case 8:
1875 a4e7dd52 blueswir1
            ret = ldq_user(addr);
1876 81ad8ba2 blueswir1
            break;
1877 81ad8ba2 blueswir1
        }
1878 81ad8ba2 blueswir1
        break;
1879 81ad8ba2 blueswir1
    case 0xb: /* Supervisor data access */
1880 81ad8ba2 blueswir1
        switch(size) {
1881 81ad8ba2 blueswir1
        case 1:
1882 1a2fb1c0 blueswir1
            ret = ldub_kernel(addr);
1883 81ad8ba2 blueswir1
            break;
1884 81ad8ba2 blueswir1
        case 2:
1885 a4e7dd52 blueswir1
            ret = lduw_kernel(addr);
1886 81ad8ba2 blueswir1
            break;
1887 81ad8ba2 blueswir1
        default:
1888 81ad8ba2 blueswir1
        case 4:
1889 a4e7dd52 blueswir1
            ret = ldl_kernel(addr);
1890 81ad8ba2 blueswir1
            break;
1891 81ad8ba2 blueswir1
        case 8:
1892 a4e7dd52 blueswir1
            ret = ldq_kernel(addr);
1893 81ad8ba2 blueswir1
            break;
1894 81ad8ba2 blueswir1
        }
1895 81ad8ba2 blueswir1
        break;
1896 6c36d3fa blueswir1
    case 0xc: /* I-cache tag */
1897 6c36d3fa blueswir1
    case 0xd: /* I-cache data */
1898 6c36d3fa blueswir1
    case 0xe: /* D-cache tag */
1899 6c36d3fa blueswir1
    case 0xf: /* D-cache data */
1900 6c36d3fa blueswir1
        break;
1901 6c36d3fa blueswir1
    case 0x20: /* MMU passthrough */
1902 02aab46a bellard
        switch(size) {
1903 02aab46a bellard
        case 1:
1904 1a2fb1c0 blueswir1
            ret = ldub_phys(addr);
1905 02aab46a bellard
            break;
1906 02aab46a bellard
        case 2:
1907 a4e7dd52 blueswir1
            ret = lduw_phys(addr);
1908 02aab46a bellard
            break;
1909 02aab46a bellard
        default:
1910 02aab46a bellard
        case 4:
1911 a4e7dd52 blueswir1
            ret = ldl_phys(addr);
1912 02aab46a bellard
            break;
1913 9e61bde5 bellard
        case 8:
1914 a4e7dd52 blueswir1
            ret = ldq_phys(addr);
1915 0f8a249a blueswir1
            break;
1916 02aab46a bellard
        }
1917 0f8a249a blueswir1
        break;
1918 7d85892b blueswir1
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1919 5dcb6b91 blueswir1
        switch(size) {
1920 5dcb6b91 blueswir1
        case 1:
1921 c227f099 Anthony Liguori
            ret = ldub_phys((target_phys_addr_t)addr
1922 c227f099 Anthony Liguori
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1923 5dcb6b91 blueswir1
            break;
1924 5dcb6b91 blueswir1
        case 2:
1925 c227f099 Anthony Liguori
            ret = lduw_phys((target_phys_addr_t)addr
1926 c227f099 Anthony Liguori
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1927 5dcb6b91 blueswir1
            break;
1928 5dcb6b91 blueswir1
        default:
1929 5dcb6b91 blueswir1
        case 4:
1930 c227f099 Anthony Liguori
            ret = ldl_phys((target_phys_addr_t)addr
1931 c227f099 Anthony Liguori
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1932 5dcb6b91 blueswir1
            break;
1933 5dcb6b91 blueswir1
        case 8:
1934 c227f099 Anthony Liguori
            ret = ldq_phys((target_phys_addr_t)addr
1935 c227f099 Anthony Liguori
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1936 0f8a249a blueswir1
            break;
1937 5dcb6b91 blueswir1
        }
1938 0f8a249a blueswir1
        break;
1939 045380be blueswir1
    case 0x30: // Turbosparc secondary cache diagnostic
1940 045380be blueswir1
    case 0x31: // Turbosparc RAM snoop
1941 045380be blueswir1
    case 0x32: // Turbosparc page table descriptor diagnostic
1942 666c87aa blueswir1
    case 0x39: /* data cache diagnostic register */
1943 666c87aa blueswir1
        ret = 0;
1944 666c87aa blueswir1
        break;
1945 4017190e blueswir1
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1946 4017190e blueswir1
        {
1947 4017190e blueswir1
            int reg = (addr >> 8) & 3;
1948 4017190e blueswir1
1949 4017190e blueswir1
            switch(reg) {
1950 4017190e blueswir1
            case 0: /* Breakpoint Value (Addr) */
1951 4017190e blueswir1
                ret = env->mmubpregs[reg];
1952 4017190e blueswir1
                break;
1953 4017190e blueswir1
            case 1: /* Breakpoint Mask */
1954 4017190e blueswir1
                ret = env->mmubpregs[reg];
1955 4017190e blueswir1
                break;
1956 4017190e blueswir1
            case 2: /* Breakpoint Control */
1957 4017190e blueswir1
                ret = env->mmubpregs[reg];
1958 4017190e blueswir1
                break;
1959 4017190e blueswir1
            case 3: /* Breakpoint Status */
1960 4017190e blueswir1
                ret = env->mmubpregs[reg];
1961 4017190e blueswir1
                env->mmubpregs[reg] = 0ULL;
1962 4017190e blueswir1
                break;
1963 4017190e blueswir1
            }
1964 0bf9e31a Blue Swirl
            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1965 0bf9e31a Blue Swirl
                        ret);
1966 4017190e blueswir1
        }
1967 4017190e blueswir1
        break;
1968 4d2c2b77 Blue Swirl
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1969 4d2c2b77 Blue Swirl
        ret = env->mmubpctrv;
1970 4d2c2b77 Blue Swirl
        break;
1971 4d2c2b77 Blue Swirl
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1972 4d2c2b77 Blue Swirl
        ret = env->mmubpctrc;
1973 4d2c2b77 Blue Swirl
        break;
1974 4d2c2b77 Blue Swirl
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1975 4d2c2b77 Blue Swirl
        ret = env->mmubpctrs;
1976 4d2c2b77 Blue Swirl
        break;
1977 4d2c2b77 Blue Swirl
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1978 4d2c2b77 Blue Swirl
        ret = env->mmubpaction;
1979 4d2c2b77 Blue Swirl
        break;
1980 045380be blueswir1
    case 8: /* User code access, XXX */
1981 e8af50a3 bellard
    default:
1982 e18231a3 blueswir1
        do_unassigned_access(addr, 0, 0, asi, size);
1983 0f8a249a blueswir1
        ret = 0;
1984 0f8a249a blueswir1
        break;
1985 e8af50a3 bellard
    }
1986 81ad8ba2 blueswir1
    if (sign) {
1987 81ad8ba2 blueswir1
        switch(size) {
1988 81ad8ba2 blueswir1
        case 1:
1989 1a2fb1c0 blueswir1
            ret = (int8_t) ret;
1990 e32664fb blueswir1
            break;
1991 81ad8ba2 blueswir1
        case 2:
1992 1a2fb1c0 blueswir1
            ret = (int16_t) ret;
1993 1a2fb1c0 blueswir1
            break;
1994 1a2fb1c0 blueswir1
        case 4:
1995 1a2fb1c0 blueswir1
            ret = (int32_t) ret;
1996 e32664fb blueswir1
            break;
1997 81ad8ba2 blueswir1
        default:
1998 81ad8ba2 blueswir1
            break;
1999 81ad8ba2 blueswir1
        }
2000 81ad8ba2 blueswir1
    }
2001 8543e2cf blueswir1
#ifdef DEBUG_ASI
2002 1a2fb1c0 blueswir1
    dump_asi("read ", last_addr, asi, size, ret);
2003 8543e2cf blueswir1
#endif
2004 1a2fb1c0 blueswir1
    return ret;
2005 e8af50a3 bellard
}
2006 e8af50a3 bellard
2007 1a2fb1c0 blueswir1
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
2008 e8af50a3 bellard
{
2009 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2010 e8af50a3 bellard
    switch(asi) {
2011 b04d9890 Fabien Chouteau
    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
2012 1a2fb1c0 blueswir1
        switch (addr) {
2013 b04d9890 Fabien Chouteau
        case 0x00:          /* Leon3 Cache Control */
2014 b04d9890 Fabien Chouteau
        case 0x08:          /* Leon3 Instruction Cache config */
2015 b04d9890 Fabien Chouteau
        case 0x0C:          /* Leon3 Date Cache config */
2016 60f356e8 Fabien Chouteau
            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
2017 60f356e8 Fabien Chouteau
                leon3_cache_control_st(addr, val, size);
2018 60f356e8 Fabien Chouteau
            }
2019 b04d9890 Fabien Chouteau
            break;
2020 b04d9890 Fabien Chouteau
2021 952a328f blueswir1
        case 0x01c00000: /* MXCC stream data register 0 */
2022 952a328f blueswir1
            if (size == 8)
2023 1a2fb1c0 blueswir1
                env->mxccdata[0] = val;
2024 952a328f blueswir1
            else
2025 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2026 77f193da blueswir1
                             size);
2027 952a328f blueswir1
            break;
2028 952a328f blueswir1
        case 0x01c00008: /* MXCC stream data register 1 */
2029 952a328f blueswir1
            if (size == 8)
2030 1a2fb1c0 blueswir1
                env->mxccdata[1] = val;
2031 952a328f blueswir1
            else
2032 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2033 77f193da blueswir1
                             size);
2034 952a328f blueswir1
            break;
2035 952a328f blueswir1
        case 0x01c00010: /* MXCC stream data register 2 */
2036 952a328f blueswir1
            if (size == 8)
2037 1a2fb1c0 blueswir1
                env->mxccdata[2] = val;
2038 952a328f blueswir1
            else
2039 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2040 77f193da blueswir1
                             size);
2041 952a328f blueswir1
            break;
2042 952a328f blueswir1
        case 0x01c00018: /* MXCC stream data register 3 */
2043 952a328f blueswir1
            if (size == 8)
2044 1a2fb1c0 blueswir1
                env->mxccdata[3] = val;
2045 952a328f blueswir1
            else
2046 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2047 77f193da blueswir1
                             size);
2048 952a328f blueswir1
            break;
2049 952a328f blueswir1
        case 0x01c00100: /* MXCC stream source */
2050 952a328f blueswir1
            if (size == 8)
2051 1a2fb1c0 blueswir1
                env->mxccregs[0] = val;
2052 952a328f blueswir1
            else
2053 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2054 77f193da blueswir1
                             size);
2055 77f193da blueswir1
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2056 77f193da blueswir1
                                        0);
2057 77f193da blueswir1
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2058 77f193da blueswir1
                                        8);
2059 77f193da blueswir1
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2060 77f193da blueswir1
                                        16);
2061 77f193da blueswir1
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2062 77f193da blueswir1
                                        24);
2063 952a328f blueswir1
            break;
2064 952a328f blueswir1
        case 0x01c00200: /* MXCC stream destination */
2065 952a328f blueswir1
            if (size == 8)
2066 1a2fb1c0 blueswir1
                env->mxccregs[1] = val;
2067 952a328f blueswir1
            else
2068 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2069 77f193da blueswir1
                             size);
2070 77f193da blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
2071 77f193da blueswir1
                     env->mxccdata[0]);
2072 77f193da blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
2073 77f193da blueswir1
                     env->mxccdata[1]);
2074 77f193da blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
2075 77f193da blueswir1
                     env->mxccdata[2]);
2076 77f193da blueswir1
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
2077 77f193da blueswir1
                     env->mxccdata[3]);
2078 952a328f blueswir1
            break;
2079 952a328f blueswir1
        case 0x01c00a00: /* MXCC control register */
2080 952a328f blueswir1
            if (size == 8)
2081 1a2fb1c0 blueswir1
                env->mxccregs[3] = val;
2082 952a328f blueswir1
            else
2083 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2084 77f193da blueswir1
                             size);
2085 952a328f blueswir1
            break;
2086 952a328f blueswir1
        case 0x01c00a04: /* MXCC control register */
2087 952a328f blueswir1
            if (size == 4)
2088 9f4576f0 blueswir1
                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
2089 77f193da blueswir1
                    | val;
2090 952a328f blueswir1
            else
2091 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2092 77f193da blueswir1
                             size);
2093 952a328f blueswir1
            break;
2094 952a328f blueswir1
        case 0x01c00e00: /* MXCC error register  */
2095 bbf7d96b blueswir1
            // writing a 1 bit clears the error
2096 952a328f blueswir1
            if (size == 8)
2097 1a2fb1c0 blueswir1
                env->mxccregs[6] &= ~val;
2098 952a328f blueswir1
            else
2099 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2100 77f193da blueswir1
                             size);
2101 952a328f blueswir1
            break;
2102 952a328f blueswir1
        case 0x01c00f00: /* MBus port address register */
2103 952a328f blueswir1
            if (size == 8)
2104 1a2fb1c0 blueswir1
                env->mxccregs[7] = val;
2105 952a328f blueswir1
            else
2106 77f193da blueswir1
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2107 77f193da blueswir1
                             size);
2108 952a328f blueswir1
            break;
2109 952a328f blueswir1
        default:
2110 77f193da blueswir1
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
2111 77f193da blueswir1
                         size);
2112 952a328f blueswir1
            break;
2113 952a328f blueswir1
        }
2114 9827e450 blueswir1
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
2115 9827e450 blueswir1
                     asi, size, addr, val);
2116 952a328f blueswir1
#ifdef DEBUG_MXCC
2117 952a328f blueswir1
        dump_mxcc(env);
2118 952a328f blueswir1
#endif
2119 6c36d3fa blueswir1
        break;
2120 e8af50a3 bellard
    case 3: /* MMU flush */
2121 0f8a249a blueswir1
        {
2122 0f8a249a blueswir1
            int mmulev;
2123 e80cfcfc bellard
2124 1a2fb1c0 blueswir1
            mmulev = (addr >> 8) & 15;
2125 952a328f blueswir1
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
2126 0f8a249a blueswir1
            switch (mmulev) {
2127 0f8a249a blueswir1
            case 0: // flush page
2128 1a2fb1c0 blueswir1
                tlb_flush_page(env, addr & 0xfffff000);
2129 0f8a249a blueswir1
                break;
2130 0f8a249a blueswir1
            case 1: // flush segment (256k)
2131 0f8a249a blueswir1
            case 2: // flush region (16M)
2132 0f8a249a blueswir1
            case 3: // flush context (4G)
2133 0f8a249a blueswir1
            case 4: // flush entire
2134 0f8a249a blueswir1
                tlb_flush(env, 1);
2135 0f8a249a blueswir1
                break;
2136 0f8a249a blueswir1
            default:
2137 0f8a249a blueswir1
                break;
2138 0f8a249a blueswir1
            }
2139 55754d9e bellard
#ifdef DEBUG_MMU
2140 d41160a3 Blue Swirl
            dump_mmu(stdout, fprintf, env);
2141 55754d9e bellard
#endif
2142 0f8a249a blueswir1
        }
2143 8543e2cf blueswir1
        break;
2144 e8af50a3 bellard
    case 4: /* write MMU regs */
2145 0f8a249a blueswir1
        {
2146 1a2fb1c0 blueswir1
            int reg = (addr >> 8) & 0x1f;
2147 0f8a249a blueswir1
            uint32_t oldreg;
2148 3b46e624 ths
2149 0f8a249a blueswir1
            oldreg = env->mmuregs[reg];
2150 55754d9e bellard
            switch(reg) {
2151 3deaeab7 blueswir1
            case 0: // Control Register
2152 3dd9a152 blueswir1
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
2153 1a2fb1c0 blueswir1
                                    (val & 0x00ffffff);
2154 0f8a249a blueswir1
                // Mappings generated during no-fault mode or MMU
2155 0f8a249a blueswir1
                // disabled mode are invalid in normal mode
2156 5578ceab blueswir1
                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
2157 5578ceab blueswir1
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
2158 55754d9e bellard
                    tlb_flush(env, 1);
2159 55754d9e bellard
                break;
2160 3deaeab7 blueswir1
            case 1: // Context Table Pointer Register
2161 5578ceab blueswir1
                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
2162 3deaeab7 blueswir1
                break;
2163 3deaeab7 blueswir1
            case 2: // Context Register
2164 5578ceab blueswir1
                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
2165 55754d9e bellard
                if (oldreg != env->mmuregs[reg]) {
2166 55754d9e bellard
                    /* we flush when the MMU context changes because
2167 55754d9e bellard
                       QEMU has no MMU context support */
2168 55754d9e bellard
                    tlb_flush(env, 1);
2169 55754d9e bellard
                }
2170 55754d9e bellard
                break;
2171 3deaeab7 blueswir1
            case 3: // Synchronous Fault Status Register with Clear
2172 3deaeab7 blueswir1
            case 4: // Synchronous Fault Address Register
2173 3deaeab7 blueswir1
                break;
2174 3deaeab7 blueswir1
            case 0x10: // TLB Replacement Control Register
2175 5578ceab blueswir1
                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
2176 55754d9e bellard
                break;
2177 3deaeab7 blueswir1
            case 0x13: // Synchronous Fault Status Register with Read and Clear
2178 5578ceab blueswir1
                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
2179 3dd9a152 blueswir1
                break;
2180 3deaeab7 blueswir1
            case 0x14: // Synchronous Fault Address Register
2181 1a2fb1c0 blueswir1
                env->mmuregs[4] = val;
2182 3dd9a152 blueswir1
                break;
2183 55754d9e bellard
            default:
2184 1a2fb1c0 blueswir1
                env->mmuregs[reg] = val;
2185 55754d9e bellard
                break;
2186 55754d9e bellard
            }
2187 55754d9e bellard
            if (oldreg != env->mmuregs[reg]) {
2188 77f193da blueswir1
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2189 77f193da blueswir1
                            reg, oldreg, env->mmuregs[reg]);
2190 55754d9e bellard
            }
2191 952a328f blueswir1
#ifdef DEBUG_MMU
2192 d41160a3 Blue Swirl
            dump_mmu(stdout, fprintf, env);
2193 55754d9e bellard
#endif
2194 0f8a249a blueswir1
        }
2195 8543e2cf blueswir1
        break;
2196 045380be blueswir1
    case 5: // Turbosparc ITLB Diagnostic
2197 045380be blueswir1
    case 6: // Turbosparc DTLB Diagnostic
2198 045380be blueswir1
    case 7: // Turbosparc IOTLB Diagnostic
2199 045380be blueswir1
        break;
2200 81ad8ba2 blueswir1
    case 0xa: /* User data access */
2201 81ad8ba2 blueswir1
        switch(size) {
2202 81ad8ba2 blueswir1
        case 1:
2203 1a2fb1c0 blueswir1
            stb_user(addr, val);
2204 81ad8ba2 blueswir1
            break;
2205 81ad8ba2 blueswir1
        case 2:
2206 a4e7dd52 blueswir1
            stw_user(addr, val);
2207 81ad8ba2 blueswir1
            break;
2208 81ad8ba2 blueswir1
        default:
2209 81ad8ba2 blueswir1
        case 4:
2210 a4e7dd52 blueswir1
            stl_user(addr, val);
2211 81ad8ba2 blueswir1
            break;
2212 81ad8ba2 blueswir1
        case 8:
2213 a4e7dd52 blueswir1
            stq_user(addr, val);
2214 81ad8ba2 blueswir1
            break;
2215 81ad8ba2 blueswir1
        }
2216 81ad8ba2 blueswir1
        break;
2217 81ad8ba2 blueswir1
    case 0xb: /* Supervisor data access */
2218 81ad8ba2 blueswir1
        switch(size) {
2219 81ad8ba2 blueswir1
        case 1:
2220 1a2fb1c0 blueswir1
            stb_kernel(addr, val);
2221 81ad8ba2 blueswir1
            break;
2222 81ad8ba2 blueswir1
        case 2:
2223 a4e7dd52 blueswir1
            stw_kernel(addr, val);
2224 81ad8ba2 blueswir1
            break;
2225 81ad8ba2 blueswir1
        default:
2226 81ad8ba2 blueswir1
        case 4:
2227 a4e7dd52 blueswir1
            stl_kernel(addr, val);
2228 81ad8ba2 blueswir1
            break;
2229 81ad8ba2 blueswir1
        case 8:
2230 a4e7dd52 blueswir1
            stq_kernel(addr, val);
2231 81ad8ba2 blueswir1
            break;
2232 81ad8ba2 blueswir1
        }
2233 81ad8ba2 blueswir1
        break;
2234 6c36d3fa blueswir1
    case 0xc: /* I-cache tag */
2235 6c36d3fa blueswir1
    case 0xd: /* I-cache data */
2236 6c36d3fa blueswir1
    case 0xe: /* D-cache tag */
2237 6c36d3fa blueswir1
    case 0xf: /* D-cache data */
2238 6c36d3fa blueswir1
    case 0x10: /* I/D-cache flush page */
2239 6c36d3fa blueswir1
    case 0x11: /* I/D-cache flush segment */
2240 6c36d3fa blueswir1
    case 0x12: /* I/D-cache flush region */
2241 6c36d3fa blueswir1
    case 0x13: /* I/D-cache flush context */
2242 6c36d3fa blueswir1
    case 0x14: /* I/D-cache flush user */
2243 6c36d3fa blueswir1
        break;
2244 e80cfcfc bellard
    case 0x17: /* Block copy, sta access */
2245 0f8a249a blueswir1
        {
2246 1a2fb1c0 blueswir1
            // val = src
2247 1a2fb1c0 blueswir1
            // addr = dst
2248 0f8a249a blueswir1
            // copy 32 bytes
2249 6c36d3fa blueswir1
            unsigned int i;
2250 1a2fb1c0 blueswir1
            uint32_t src = val & ~3, dst = addr & ~3, temp;
2251 3b46e624 ths
2252 6c36d3fa blueswir1
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2253 6c36d3fa blueswir1
                temp = ldl_kernel(src);
2254 6c36d3fa blueswir1
                stl_kernel(dst, temp);
2255 6c36d3fa blueswir1
            }
2256 0f8a249a blueswir1
        }
2257 8543e2cf blueswir1
        break;
2258 e80cfcfc bellard
    case 0x1f: /* Block fill, stda access */
2259 0f8a249a blueswir1
        {
2260 1a2fb1c0 blueswir1
            // addr = dst
2261 1a2fb1c0 blueswir1
            // fill 32 bytes with val
2262 6c36d3fa blueswir1
            unsigned int i;
2263 1a2fb1c0 blueswir1
            uint32_t dst = addr & 7;
2264 6c36d3fa blueswir1
2265 6c36d3fa blueswir1
            for (i = 0; i < 32; i += 8, dst += 8)
2266 6c36d3fa blueswir1
                stq_kernel(dst, val);
2267 0f8a249a blueswir1
        }
2268 8543e2cf blueswir1
        break;
2269 6c36d3fa blueswir1
    case 0x20: /* MMU passthrough */
2270 0f8a249a blueswir1
        {
2271 02aab46a bellard
            switch(size) {
2272 02aab46a bellard
            case 1:
2273 1a2fb1c0 blueswir1
                stb_phys(addr, val);
2274 02aab46a bellard
                break;
2275 02aab46a bellard
            case 2:
2276 a4e7dd52 blueswir1
                stw_phys(addr, val);
2277 02aab46a bellard
                break;
2278 02aab46a bellard
            case 4:
2279 02aab46a bellard
            default:
2280 a4e7dd52 blueswir1
                stl_phys(addr, val);
2281 02aab46a bellard
                break;
2282 9e61bde5 bellard
            case 8:
2283 a4e7dd52 blueswir1
                stq_phys(addr, val);
2284 9e61bde5 bellard
                break;
2285 02aab46a bellard
            }
2286 0f8a249a blueswir1
        }
2287 8543e2cf blueswir1
        break;
2288 045380be blueswir1
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2289 0f8a249a blueswir1
        {
2290 5dcb6b91 blueswir1
            switch(size) {
2291 5dcb6b91 blueswir1
            case 1:
2292 c227f099 Anthony Liguori
                stb_phys((target_phys_addr_t)addr
2293 c227f099 Anthony Liguori
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2294 5dcb6b91 blueswir1
                break;
2295 5dcb6b91 blueswir1
            case 2:
2296 c227f099 Anthony Liguori
                stw_phys((target_phys_addr_t)addr
2297 c227f099 Anthony Liguori
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2298 5dcb6b91 blueswir1
                break;
2299 5dcb6b91 blueswir1
            case 4:
2300 5dcb6b91 blueswir1
            default:
2301 c227f099 Anthony Liguori
                stl_phys((target_phys_addr_t)addr
2302 c227f099 Anthony Liguori
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2303 5dcb6b91 blueswir1
                break;
2304 5dcb6b91 blueswir1
            case 8:
2305 c227f099 Anthony Liguori
                stq_phys((target_phys_addr_t)addr
2306 c227f099 Anthony Liguori
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2307 5dcb6b91 blueswir1
                break;
2308 5dcb6b91 blueswir1
            }
2309 0f8a249a blueswir1
        }
2310 8543e2cf blueswir1
        break;
2311 045380be blueswir1
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2312 045380be blueswir1
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
2313 045380be blueswir1
               // Turbosparc snoop RAM
2314 77f193da blueswir1
    case 0x32: // store buffer control or Turbosparc page table
2315 77f193da blueswir1
               // descriptor diagnostic
2316 6c36d3fa blueswir1
    case 0x36: /* I-cache flash clear */
2317 6c36d3fa blueswir1
    case 0x37: /* D-cache flash clear */
2318 6c36d3fa blueswir1
        break;
2319 4017190e blueswir1
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2320 4017190e blueswir1
        {
2321 4017190e blueswir1
            int reg = (addr >> 8) & 3;
2322 4017190e blueswir1
2323 4017190e blueswir1
            switch(reg) {
2324 4017190e blueswir1
            case 0: /* Breakpoint Value (Addr) */
2325 4017190e blueswir1
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
2326 4017190e blueswir1
                break;
2327 4017190e blueswir1
            case 1: /* Breakpoint Mask */
2328 4017190e blueswir1
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
2329 4017190e blueswir1
                break;
2330 4017190e blueswir1
            case 2: /* Breakpoint Control */
2331 4017190e blueswir1
                env->mmubpregs[reg] = (val & 0x7fULL);
2332 4017190e blueswir1
                break;
2333 4017190e blueswir1
            case 3: /* Breakpoint Status */
2334 4017190e blueswir1
                env->mmubpregs[reg] = (val & 0xfULL);
2335 4017190e blueswir1
                break;
2336 4017190e blueswir1
            }
2337 0bf9e31a Blue Swirl
            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2338 4017190e blueswir1
                        env->mmuregs[reg]);
2339 4017190e blueswir1
        }
2340 4017190e blueswir1
        break;
2341 4d2c2b77 Blue Swirl
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
2342 4d2c2b77 Blue Swirl
        env->mmubpctrv = val & 0xffffffff;
2343 4d2c2b77 Blue Swirl
        break;
2344 4d2c2b77 Blue Swirl
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
2345 4d2c2b77 Blue Swirl
        env->mmubpctrc = val & 0x3;
2346 4d2c2b77 Blue Swirl
        break;
2347 4d2c2b77 Blue Swirl
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
2348 4d2c2b77 Blue Swirl
        env->mmubpctrs = val & 0x3;
2349 4d2c2b77 Blue Swirl
        break;
2350 4d2c2b77 Blue Swirl
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
2351 4d2c2b77 Blue Swirl
        env->mmubpaction = val & 0x1fff;
2352 4d2c2b77 Blue Swirl
        break;
2353 045380be blueswir1
    case 8: /* User code access, XXX */
2354 6c36d3fa blueswir1
    case 9: /* Supervisor code access, XXX */
2355 e8af50a3 bellard
    default:
2356 e18231a3 blueswir1
        do_unassigned_access(addr, 1, 0, asi, size);
2357 8543e2cf blueswir1
        break;
2358 e8af50a3 bellard
    }
2359 8543e2cf blueswir1
#ifdef DEBUG_ASI
2360 1a2fb1c0 blueswir1
    dump_asi("write", addr, asi, size, val);
2361 8543e2cf blueswir1
#endif
2362 e8af50a3 bellard
}
2363 e8af50a3 bellard
2364 81ad8ba2 blueswir1
#endif /* CONFIG_USER_ONLY */
2365 81ad8ba2 blueswir1
#else /* TARGET_SPARC64 */
2366 81ad8ba2 blueswir1
2367 81ad8ba2 blueswir1
#ifdef CONFIG_USER_ONLY
2368 1a2fb1c0 blueswir1
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2369 81ad8ba2 blueswir1
{
2370 81ad8ba2 blueswir1
    uint64_t ret = 0;
2371 1a2fb1c0 blueswir1
#if defined(DEBUG_ASI)
2372 1a2fb1c0 blueswir1
    target_ulong last_addr = addr;
2373 1a2fb1c0 blueswir1
#endif
2374 81ad8ba2 blueswir1
2375 81ad8ba2 blueswir1
    if (asi < 0x80)
2376 81ad8ba2 blueswir1
        raise_exception(TT_PRIV_ACT);
2377 81ad8ba2 blueswir1
2378 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2379 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
2380 c2bc0e38 blueswir1
2381 81ad8ba2 blueswir1
    switch (asi) {
2382 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault
2383 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
2384 e83ce550 blueswir1
        if (page_check_range(addr, size, PAGE_READ) == -1) {
2385 e83ce550 blueswir1
#ifdef DEBUG_ASI
2386 e83ce550 blueswir1
            dump_asi("read ", last_addr, asi, size, ret);
2387 e83ce550 blueswir1
#endif
2388 e83ce550 blueswir1
            return 0;
2389 e83ce550 blueswir1
        }
2390 e83ce550 blueswir1
        // Fall through
2391 e83ce550 blueswir1
    case 0x80: // Primary
2392 e83ce550 blueswir1
    case 0x88: // Primary LE
2393 81ad8ba2 blueswir1
        {
2394 81ad8ba2 blueswir1
            switch(size) {
2395 81ad8ba2 blueswir1
            case 1:
2396 1a2fb1c0 blueswir1
                ret = ldub_raw(addr);
2397 81ad8ba2 blueswir1
                break;
2398 81ad8ba2 blueswir1
            case 2:
2399 a4e7dd52 blueswir1
                ret = lduw_raw(addr);
2400 81ad8ba2 blueswir1
                break;
2401 81ad8ba2 blueswir1
            case 4:
2402 a4e7dd52 blueswir1
                ret = ldl_raw(addr);
2403 81ad8ba2 blueswir1
                break;
2404 81ad8ba2 blueswir1
            default:
2405 81ad8ba2 blueswir1
            case 8:
2406 a4e7dd52 blueswir1
                ret = ldq_raw(addr);
2407 81ad8ba2 blueswir1
                break;
2408 81ad8ba2 blueswir1
            }
2409 81ad8ba2 blueswir1
        }
2410 81ad8ba2 blueswir1
        break;
2411 81ad8ba2 blueswir1
    case 0x83: // Secondary no-fault
2412 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
2413 e83ce550 blueswir1
        if (page_check_range(addr, size, PAGE_READ) == -1) {
2414 e83ce550 blueswir1
#ifdef DEBUG_ASI
2415 e83ce550 blueswir1
            dump_asi("read ", last_addr, asi, size, ret);
2416 e83ce550 blueswir1
#endif
2417 e83ce550 blueswir1
            return 0;
2418 e83ce550 blueswir1
        }
2419 e83ce550 blueswir1
        // Fall through
2420 e83ce550 blueswir1
    case 0x81: // Secondary
2421 e83ce550 blueswir1
    case 0x89: // Secondary LE
2422 81ad8ba2 blueswir1
        // XXX
2423 81ad8ba2 blueswir1
        break;
2424 81ad8ba2 blueswir1
    default:
2425 81ad8ba2 blueswir1
        break;
2426 81ad8ba2 blueswir1
    }
2427 81ad8ba2 blueswir1
2428 81ad8ba2 blueswir1
    /* Convert from little endian */
2429 81ad8ba2 blueswir1
    switch (asi) {
2430 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2431 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2432 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
2433 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
2434 81ad8ba2 blueswir1
        switch(size) {
2435 81ad8ba2 blueswir1
        case 2:
2436 81ad8ba2 blueswir1
            ret = bswap16(ret);
2437 e32664fb blueswir1
            break;
2438 81ad8ba2 blueswir1
        case 4:
2439 81ad8ba2 blueswir1
            ret = bswap32(ret);
2440 e32664fb blueswir1
            break;
2441 81ad8ba2 blueswir1
        case 8:
2442 81ad8ba2 blueswir1
            ret = bswap64(ret);
2443 e32664fb blueswir1
            break;
2444 81ad8ba2 blueswir1
        default:
2445 81ad8ba2 blueswir1
            break;
2446 81ad8ba2 blueswir1
        }
2447 81ad8ba2 blueswir1
    default:
2448 81ad8ba2 blueswir1
        break;
2449 81ad8ba2 blueswir1
    }
2450 81ad8ba2 blueswir1
2451 81ad8ba2 blueswir1
    /* Convert to signed number */
2452 81ad8ba2 blueswir1
    if (sign) {
2453 81ad8ba2 blueswir1
        switch(size) {
2454 81ad8ba2 blueswir1
        case 1:
2455 81ad8ba2 blueswir1
            ret = (int8_t) ret;
2456 e32664fb blueswir1
            break;
2457 81ad8ba2 blueswir1
        case 2:
2458 81ad8ba2 blueswir1
            ret = (int16_t) ret;
2459 e32664fb blueswir1
            break;
2460 81ad8ba2 blueswir1
        case 4:
2461 81ad8ba2 blueswir1
            ret = (int32_t) ret;
2462 e32664fb blueswir1
            break;
2463 81ad8ba2 blueswir1
        default:
2464 81ad8ba2 blueswir1
            break;
2465 81ad8ba2 blueswir1
        }
2466 81ad8ba2 blueswir1
    }
2467 1a2fb1c0 blueswir1
#ifdef DEBUG_ASI
2468 1a2fb1c0 blueswir1
    dump_asi("read ", last_addr, asi, size, ret);
2469 1a2fb1c0 blueswir1
#endif
2470 1a2fb1c0 blueswir1
    return ret;
2471 81ad8ba2 blueswir1
}
2472 81ad8ba2 blueswir1
2473 1a2fb1c0 blueswir1
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2474 81ad8ba2 blueswir1
{
2475 1a2fb1c0 blueswir1
#ifdef DEBUG_ASI
2476 1a2fb1c0 blueswir1
    dump_asi("write", addr, asi, size, val);
2477 1a2fb1c0 blueswir1
#endif
2478 81ad8ba2 blueswir1
    if (asi < 0x80)
2479 81ad8ba2 blueswir1
        raise_exception(TT_PRIV_ACT);
2480 81ad8ba2 blueswir1
2481 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2482 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
2483 c2bc0e38 blueswir1
2484 81ad8ba2 blueswir1
    /* Convert to little endian */
2485 81ad8ba2 blueswir1
    switch (asi) {
2486 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2487 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2488 81ad8ba2 blueswir1
        switch(size) {
2489 81ad8ba2 blueswir1
        case 2:
2490 5b0f0bec Igor Kovalenko
            val = bswap16(val);
2491 e32664fb blueswir1
            break;
2492 81ad8ba2 blueswir1
        case 4:
2493 5b0f0bec Igor Kovalenko
            val = bswap32(val);
2494 e32664fb blueswir1
            break;
2495 81ad8ba2 blueswir1
        case 8:
2496 5b0f0bec Igor Kovalenko
            val = bswap64(val);
2497 e32664fb blueswir1
            break;
2498 81ad8ba2 blueswir1
        default:
2499 81ad8ba2 blueswir1
            break;
2500 81ad8ba2 blueswir1
        }
2501 81ad8ba2 blueswir1
    default:
2502 81ad8ba2 blueswir1
        break;
2503 81ad8ba2 blueswir1
    }
2504 81ad8ba2 blueswir1
2505 81ad8ba2 blueswir1
    switch(asi) {
2506 81ad8ba2 blueswir1
    case 0x80: // Primary
2507 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2508 81ad8ba2 blueswir1
        {
2509 81ad8ba2 blueswir1
            switch(size) {
2510 81ad8ba2 blueswir1
            case 1:
2511 1a2fb1c0 blueswir1
                stb_raw(addr, val);
2512 81ad8ba2 blueswir1
                break;
2513 81ad8ba2 blueswir1
            case 2:
2514 a4e7dd52 blueswir1
                stw_raw(addr, val);
2515 81ad8ba2 blueswir1
                break;
2516 81ad8ba2 blueswir1
            case 4:
2517 a4e7dd52 blueswir1
                stl_raw(addr, val);
2518 81ad8ba2 blueswir1
                break;
2519 81ad8ba2 blueswir1
            case 8:
2520 81ad8ba2 blueswir1
            default:
2521 a4e7dd52 blueswir1
                stq_raw(addr, val);
2522 81ad8ba2 blueswir1
                break;
2523 81ad8ba2 blueswir1
            }
2524 81ad8ba2 blueswir1
        }
2525 81ad8ba2 blueswir1
        break;
2526 81ad8ba2 blueswir1
    case 0x81: // Secondary
2527 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2528 81ad8ba2 blueswir1
        // XXX
2529 81ad8ba2 blueswir1
        return;
2530 81ad8ba2 blueswir1
2531 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault, RO
2532 81ad8ba2 blueswir1
    case 0x83: // Secondary no-fault, RO
2533 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE, RO
2534 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE, RO
2535 81ad8ba2 blueswir1
    default:
2536 e18231a3 blueswir1
        do_unassigned_access(addr, 1, 0, 1, size);
2537 81ad8ba2 blueswir1
        return;
2538 81ad8ba2 blueswir1
    }
2539 81ad8ba2 blueswir1
}
2540 81ad8ba2 blueswir1
2541 81ad8ba2 blueswir1
#else /* CONFIG_USER_ONLY */
2542 3475187d bellard
2543 1a2fb1c0 blueswir1
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2544 3475187d bellard
{
2545 83469015 bellard
    uint64_t ret = 0;
2546 1a2fb1c0 blueswir1
#if defined(DEBUG_ASI)
2547 1a2fb1c0 blueswir1
    target_ulong last_addr = addr;
2548 1a2fb1c0 blueswir1
#endif
2549 3475187d bellard
2550 01b5d4e5 Igor V. Kovalenko
    asi &= 0xff;
2551 01b5d4e5 Igor V. Kovalenko
2552 6f27aba6 blueswir1
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2553 2aae2b8e Igor V. Kovalenko
        || (cpu_has_hypervisor(env)
2554 5578ceab blueswir1
            && asi >= 0x30 && asi < 0x80
2555 fb79ceb9 blueswir1
            && !(env->hpstate & HS_PRIV)))
2556 0f8a249a blueswir1
        raise_exception(TT_PRIV_ACT);
2557 3475187d bellard
2558 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2559 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
2560 1295001c Igor V. Kovalenko
2561 3475187d bellard
    switch (asi) {
2562 e83ce550 blueswir1
    case 0x82: // Primary no-fault
2563 e83ce550 blueswir1
    case 0x8a: // Primary no-fault LE
2564 2065061e Igor V. Kovalenko
    case 0x83: // Secondary no-fault
2565 2065061e Igor V. Kovalenko
    case 0x8b: // Secondary no-fault LE
2566 2065061e Igor V. Kovalenko
        {
2567 2065061e Igor V. Kovalenko
            /* secondary space access has lowest asi bit equal to 1 */
2568 2065061e Igor V. Kovalenko
            int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2569 2065061e Igor V. Kovalenko
                                             : MMU_KERNEL_SECONDARY_IDX;
2570 2065061e Igor V. Kovalenko
2571 2065061e Igor V. Kovalenko
            if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2572 e83ce550 blueswir1
#ifdef DEBUG_ASI
2573 2065061e Igor V. Kovalenko
                dump_asi("read ", last_addr, asi, size, ret);
2574 e83ce550 blueswir1
#endif
2575 2065061e Igor V. Kovalenko
                return 0;
2576 2065061e Igor V. Kovalenko
            }
2577 e83ce550 blueswir1
        }
2578 e83ce550 blueswir1
        // Fall through
2579 81ad8ba2 blueswir1
    case 0x10: // As if user primary
2580 2065061e Igor V. Kovalenko
    case 0x11: // As if user secondary
2581 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
2582 2065061e Igor V. Kovalenko
    case 0x19: // As if user secondary LE
2583 81ad8ba2 blueswir1
    case 0x80: // Primary
2584 2065061e Igor V. Kovalenko
    case 0x81: // Secondary
2585 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2586 2065061e Igor V. Kovalenko
    case 0x89: // Secondary LE
2587 c99657d3 blueswir1
    case 0xe2: // UA2007 Primary block init
2588 c99657d3 blueswir1
    case 0xe3: // UA2007 Secondary block init
2589 81ad8ba2 blueswir1
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2590 2aae2b8e Igor V. Kovalenko
            if (cpu_hypervisor_mode(env)) {
2591 6f27aba6 blueswir1
                switch(size) {
2592 6f27aba6 blueswir1
                case 1:
2593 1a2fb1c0 blueswir1
                    ret = ldub_hypv(addr);
2594 6f27aba6 blueswir1
                    break;
2595 6f27aba6 blueswir1
                case 2:
2596 a4e7dd52 blueswir1
                    ret = lduw_hypv(addr);
2597 6f27aba6 blueswir1
                    break;
2598 6f27aba6 blueswir1
                case 4:
2599 a4e7dd52 blueswir1
                    ret = ldl_hypv(addr);
2600 6f27aba6 blueswir1
                    break;
2601 6f27aba6 blueswir1
                default:
2602 6f27aba6 blueswir1
                case 8:
2603 a4e7dd52 blueswir1
                    ret = ldq_hypv(addr);
2604 6f27aba6 blueswir1
                    break;
2605 6f27aba6 blueswir1
                }
2606 6f27aba6 blueswir1
            } else {
2607 2065061e Igor V. Kovalenko
                /* secondary space access has lowest asi bit equal to 1 */
2608 2065061e Igor V. Kovalenko
                if (asi & 1) {
2609 2065061e Igor V. Kovalenko
                    switch(size) {
2610 2065061e Igor V. Kovalenko
                    case 1:
2611 2065061e Igor V. Kovalenko
                        ret = ldub_kernel_secondary(addr);
2612 2065061e Igor V. Kovalenko
                        break;
2613 2065061e Igor V. Kovalenko
                    case 2:
2614 2065061e Igor V. Kovalenko
                        ret = lduw_kernel_secondary(addr);
2615 2065061e Igor V. Kovalenko
                        break;
2616 2065061e Igor V. Kovalenko
                    case 4:
2617 2065061e Igor V. Kovalenko
                        ret = ldl_kernel_secondary(addr);
2618 2065061e Igor V. Kovalenko
                        break;
2619 2065061e Igor V. Kovalenko
                    default:
2620 2065061e Igor V. Kovalenko
                    case 8:
2621 2065061e Igor V. Kovalenko
                        ret = ldq_kernel_secondary(addr);
2622 2065061e Igor V. Kovalenko
                        break;
2623 2065061e Igor V. Kovalenko
                    }
2624 2065061e Igor V. Kovalenko
                } else {
2625 2065061e Igor V. Kovalenko
                    switch(size) {
2626 2065061e Igor V. Kovalenko
                    case 1:
2627 2065061e Igor V. Kovalenko
                        ret = ldub_kernel(addr);
2628 2065061e Igor V. Kovalenko
                        break;
2629 2065061e Igor V. Kovalenko
                    case 2:
2630 2065061e Igor V. Kovalenko
                        ret = lduw_kernel(addr);
2631 2065061e Igor V. Kovalenko
                        break;
2632 2065061e Igor V. Kovalenko
                    case 4:
2633 2065061e Igor V. Kovalenko
                        ret = ldl_kernel(addr);
2634 2065061e Igor V. Kovalenko
                        break;
2635 2065061e Igor V. Kovalenko
                    default:
2636 2065061e Igor V. Kovalenko
                    case 8:
2637 2065061e Igor V. Kovalenko
                        ret = ldq_kernel(addr);
2638 2065061e Igor V. Kovalenko
                        break;
2639 2065061e Igor V. Kovalenko
                    }
2640 2065061e Igor V. Kovalenko
                }
2641 2065061e Igor V. Kovalenko
            }
2642 2065061e Igor V. Kovalenko
        } else {
2643 2065061e Igor V. Kovalenko
            /* secondary space access has lowest asi bit equal to 1 */
2644 2065061e Igor V. Kovalenko
            if (asi & 1) {
2645 6f27aba6 blueswir1
                switch(size) {
2646 6f27aba6 blueswir1
                case 1:
2647 2065061e Igor V. Kovalenko
                    ret = ldub_user_secondary(addr);
2648 6f27aba6 blueswir1
                    break;
2649 6f27aba6 blueswir1
                case 2:
2650 2065061e Igor V. Kovalenko
                    ret = lduw_user_secondary(addr);
2651 6f27aba6 blueswir1
                    break;
2652 6f27aba6 blueswir1
                case 4:
2653 2065061e Igor V. Kovalenko
                    ret = ldl_user_secondary(addr);
2654 6f27aba6 blueswir1
                    break;
2655 6f27aba6 blueswir1
                default:
2656 6f27aba6 blueswir1
                case 8:
2657 2065061e Igor V. Kovalenko
                    ret = ldq_user_secondary(addr);
2658 2065061e Igor V. Kovalenko
                    break;
2659 2065061e Igor V. Kovalenko
                }
2660 2065061e Igor V. Kovalenko
            } else {
2661 2065061e Igor V. Kovalenko
                switch(size) {
2662 2065061e Igor V. Kovalenko
                case 1:
2663 2065061e Igor V. Kovalenko
                    ret = ldub_user(addr);
2664 2065061e Igor V. Kovalenko
                    break;
2665 2065061e Igor V. Kovalenko
                case 2:
2666 2065061e Igor V. Kovalenko
                    ret = lduw_user(addr);
2667 2065061e Igor V. Kovalenko
                    break;
2668 2065061e Igor V. Kovalenko
                case 4:
2669 2065061e Igor V. Kovalenko
                    ret = ldl_user(addr);
2670 2065061e Igor V. Kovalenko
                    break;
2671 2065061e Igor V. Kovalenko
                default:
2672 2065061e Igor V. Kovalenko
                case 8:
2673 2065061e Igor V. Kovalenko
                    ret = ldq_user(addr);
2674 6f27aba6 blueswir1
                    break;
2675 6f27aba6 blueswir1
                }
2676 81ad8ba2 blueswir1
            }
2677 81ad8ba2 blueswir1
        }
2678 81ad8ba2 blueswir1
        break;
2679 3475187d bellard
    case 0x14: // Bypass
2680 3475187d bellard
    case 0x15: // Bypass, non-cacheable
2681 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
2682 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
2683 0f8a249a blueswir1
        {
2684 02aab46a bellard
            switch(size) {
2685 02aab46a bellard
            case 1:
2686 1a2fb1c0 blueswir1
                ret = ldub_phys(addr);
2687 02aab46a bellard
                break;
2688 02aab46a bellard
            case 2:
2689 a4e7dd52 blueswir1
                ret = lduw_phys(addr);
2690 02aab46a bellard
                break;
2691 02aab46a bellard
            case 4:
2692 a4e7dd52 blueswir1
                ret = ldl_phys(addr);
2693 02aab46a bellard
                break;
2694 02aab46a bellard
            default:
2695 02aab46a bellard
            case 8:
2696 a4e7dd52 blueswir1
                ret = ldq_phys(addr);
2697 02aab46a bellard
                break;
2698 02aab46a bellard
            }
2699 0f8a249a blueswir1
            break;
2700 0f8a249a blueswir1
        }
2701 db166940 blueswir1
    case 0x24: // Nucleus quad LDD 128 bit atomic
2702 db166940 blueswir1
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2703 db166940 blueswir1
        //  Only ldda allowed
2704 db166940 blueswir1
        raise_exception(TT_ILL_INSN);
2705 db166940 blueswir1
        return 0;
2706 83469015 bellard
    case 0x04: // Nucleus
2707 83469015 bellard
    case 0x0c: // Nucleus Little Endian (LE)
2708 2065061e Igor V. Kovalenko
    {
2709 2065061e Igor V. Kovalenko
        switch(size) {
2710 2065061e Igor V. Kovalenko
        case 1:
2711 2065061e Igor V. Kovalenko
            ret = ldub_nucleus(addr);
2712 2065061e Igor V. Kovalenko
            break;
2713 2065061e Igor V. Kovalenko
        case 2:
2714 2065061e Igor V. Kovalenko
            ret = lduw_nucleus(addr);
2715 2065061e Igor V. Kovalenko
            break;
2716 2065061e Igor V. Kovalenko
        case 4:
2717 2065061e Igor V. Kovalenko
            ret = ldl_nucleus(addr);
2718 2065061e Igor V. Kovalenko
            break;
2719 2065061e Igor V. Kovalenko
        default:
2720 2065061e Igor V. Kovalenko
        case 8:
2721 2065061e Igor V. Kovalenko
            ret = ldq_nucleus(addr);
2722 2065061e Igor V. Kovalenko
            break;
2723 2065061e Igor V. Kovalenko
        }
2724 2065061e Igor V. Kovalenko
        break;
2725 2065061e Igor V. Kovalenko
    }
2726 83469015 bellard
    case 0x4a: // UPA config
2727 0f8a249a blueswir1
        // XXX
2728 0f8a249a blueswir1
        break;
2729 3475187d bellard
    case 0x45: // LSU
2730 0f8a249a blueswir1
        ret = env->lsu;
2731 0f8a249a blueswir1
        break;
2732 3475187d bellard
    case 0x50: // I-MMU regs
2733 0f8a249a blueswir1
        {
2734 1a2fb1c0 blueswir1
            int reg = (addr >> 3) & 0xf;
2735 3475187d bellard
2736 697a77e6 Igor Kovalenko
            if (reg == 0) {
2737 697a77e6 Igor Kovalenko
                // I-TSB Tag Target register
2738 6e8e7d4c Igor Kovalenko
                ret = ultrasparc_tag_target(env->immu.tag_access);
2739 697a77e6 Igor Kovalenko
            } else {
2740 697a77e6 Igor Kovalenko
                ret = env->immuregs[reg];
2741 697a77e6 Igor Kovalenko
            }
2742 697a77e6 Igor Kovalenko
2743 0f8a249a blueswir1
            break;
2744 0f8a249a blueswir1
        }
2745 3475187d bellard
    case 0x51: // I-MMU 8k TSB pointer
2746 697a77e6 Igor Kovalenko
        {
2747 697a77e6 Igor Kovalenko
            // env->immuregs[5] holds I-MMU TSB register value
2748 697a77e6 Igor Kovalenko
            // env->immuregs[6] holds I-MMU Tag Access register value
2749 6e8e7d4c Igor Kovalenko
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2750 697a77e6 Igor Kovalenko
                                         8*1024);
2751 697a77e6 Igor Kovalenko
            break;
2752 697a77e6 Igor Kovalenko
        }
2753 3475187d bellard
    case 0x52: // I-MMU 64k TSB pointer
2754 697a77e6 Igor Kovalenko
        {
2755 697a77e6 Igor Kovalenko
            // env->immuregs[5] holds I-MMU TSB register value
2756 697a77e6 Igor Kovalenko
            // env->immuregs[6] holds I-MMU Tag Access register value
2757 6e8e7d4c Igor Kovalenko
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2758 697a77e6 Igor Kovalenko
                                         64*1024);
2759 697a77e6 Igor Kovalenko
            break;
2760 697a77e6 Igor Kovalenko
        }
2761 a5a52cf2 blueswir1
    case 0x55: // I-MMU data access
2762 a5a52cf2 blueswir1
        {
2763 a5a52cf2 blueswir1
            int reg = (addr >> 3) & 0x3f;
2764 a5a52cf2 blueswir1
2765 6e8e7d4c Igor Kovalenko
            ret = env->itlb[reg].tte;
2766 a5a52cf2 blueswir1
            break;
2767 a5a52cf2 blueswir1
        }
2768 83469015 bellard
    case 0x56: // I-MMU tag read
2769 0f8a249a blueswir1
        {
2770 43e9e742 blueswir1
            int reg = (addr >> 3) & 0x3f;
2771 0f8a249a blueswir1
2772 6e8e7d4c Igor Kovalenko
            ret = env->itlb[reg].tag;
2773 0f8a249a blueswir1
            break;
2774 0f8a249a blueswir1
        }
2775 3475187d bellard
    case 0x58: // D-MMU regs
2776 0f8a249a blueswir1
        {
2777 1a2fb1c0 blueswir1
            int reg = (addr >> 3) & 0xf;
2778 3475187d bellard
2779 697a77e6 Igor Kovalenko
            if (reg == 0) {
2780 697a77e6 Igor Kovalenko
                // D-TSB Tag Target register
2781 6e8e7d4c Igor Kovalenko
                ret = ultrasparc_tag_target(env->dmmu.tag_access);
2782 697a77e6 Igor Kovalenko
            } else {
2783 697a77e6 Igor Kovalenko
                ret = env->dmmuregs[reg];
2784 697a77e6 Igor Kovalenko
            }
2785 697a77e6 Igor Kovalenko
            break;
2786 697a77e6 Igor Kovalenko
        }
2787 697a77e6 Igor Kovalenko
    case 0x59: // D-MMU 8k TSB pointer
2788 697a77e6 Igor Kovalenko
        {
2789 697a77e6 Igor Kovalenko
            // env->dmmuregs[5] holds D-MMU TSB register value
2790 697a77e6 Igor Kovalenko
            // env->dmmuregs[6] holds D-MMU Tag Access register value
2791 6e8e7d4c Igor Kovalenko
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2792 697a77e6 Igor Kovalenko
                                         8*1024);
2793 697a77e6 Igor Kovalenko
            break;
2794 697a77e6 Igor Kovalenko
        }
2795 697a77e6 Igor Kovalenko
    case 0x5a: // D-MMU 64k TSB pointer
2796 697a77e6 Igor Kovalenko
        {
2797 697a77e6 Igor Kovalenko
            // env->dmmuregs[5] holds D-MMU TSB register value
2798 697a77e6 Igor Kovalenko
            // env->dmmuregs[6] holds D-MMU Tag Access register value
2799 6e8e7d4c Igor Kovalenko
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2800 697a77e6 Igor Kovalenko
                                         64*1024);
2801 0f8a249a blueswir1
            break;
2802 0f8a249a blueswir1
        }
2803 a5a52cf2 blueswir1
    case 0x5d: // D-MMU data access
2804 a5a52cf2 blueswir1
        {
2805 a5a52cf2 blueswir1
            int reg = (addr >> 3) & 0x3f;
2806 a5a52cf2 blueswir1
2807 6e8e7d4c Igor Kovalenko
            ret = env->dtlb[reg].tte;
2808 a5a52cf2 blueswir1
            break;
2809 a5a52cf2 blueswir1
        }
2810 83469015 bellard
    case 0x5e: // D-MMU tag read
2811 0f8a249a blueswir1
        {
2812 43e9e742 blueswir1
            int reg = (addr >> 3) & 0x3f;
2813 0f8a249a blueswir1
2814 6e8e7d4c Igor Kovalenko
            ret = env->dtlb[reg].tag;
2815 0f8a249a blueswir1
            break;
2816 0f8a249a blueswir1
        }
2817 f7350b47 blueswir1
    case 0x46: // D-cache data
2818 f7350b47 blueswir1
    case 0x47: // D-cache tag access
2819 a5a52cf2 blueswir1
    case 0x4b: // E-cache error enable
2820 a5a52cf2 blueswir1
    case 0x4c: // E-cache asynchronous fault status
2821 a5a52cf2 blueswir1
    case 0x4d: // E-cache asynchronous fault address
2822 f7350b47 blueswir1
    case 0x4e: // E-cache tag data
2823 f7350b47 blueswir1
    case 0x66: // I-cache instruction access
2824 f7350b47 blueswir1
    case 0x67: // I-cache tag access
2825 f7350b47 blueswir1
    case 0x6e: // I-cache predecode
2826 f7350b47 blueswir1
    case 0x6f: // I-cache LRU etc.
2827 f7350b47 blueswir1
    case 0x76: // E-cache tag
2828 f7350b47 blueswir1
    case 0x7e: // E-cache tag
2829 f7350b47 blueswir1
        break;
2830 3475187d bellard
    case 0x5b: // D-MMU data pointer
2831 83469015 bellard
    case 0x48: // Interrupt dispatch, RO
2832 83469015 bellard
    case 0x49: // Interrupt data receive
2833 83469015 bellard
    case 0x7f: // Incoming interrupt vector, RO
2834 0f8a249a blueswir1
        // XXX
2835 0f8a249a blueswir1
        break;
2836 3475187d bellard
    case 0x54: // I-MMU data in, WO
2837 3475187d bellard
    case 0x57: // I-MMU demap, WO
2838 3475187d bellard
    case 0x5c: // D-MMU data in, WO
2839 3475187d bellard
    case 0x5f: // D-MMU demap, WO
2840 83469015 bellard
    case 0x77: // Interrupt vector, WO
2841 3475187d bellard
    default:
2842 e18231a3 blueswir1
        do_unassigned_access(addr, 0, 0, 1, size);
2843 0f8a249a blueswir1
        ret = 0;
2844 0f8a249a blueswir1
        break;
2845 3475187d bellard
    }
2846 81ad8ba2 blueswir1
2847 81ad8ba2 blueswir1
    /* Convert from little endian */
2848 81ad8ba2 blueswir1
    switch (asi) {
2849 81ad8ba2 blueswir1
    case 0x0c: // Nucleus Little Endian (LE)
2850 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
2851 81ad8ba2 blueswir1
    case 0x19: // As if user secondary LE
2852 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
2853 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
2854 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2855 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2856 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
2857 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
2858 81ad8ba2 blueswir1
        switch(size) {
2859 81ad8ba2 blueswir1
        case 2:
2860 81ad8ba2 blueswir1
            ret = bswap16(ret);
2861 e32664fb blueswir1
            break;
2862 81ad8ba2 blueswir1
        case 4:
2863 81ad8ba2 blueswir1
            ret = bswap32(ret);
2864 e32664fb blueswir1
            break;
2865 81ad8ba2 blueswir1
        case 8:
2866 81ad8ba2 blueswir1
            ret = bswap64(ret);
2867 e32664fb blueswir1
            break;
2868 81ad8ba2 blueswir1
        default:
2869 81ad8ba2 blueswir1
            break;
2870 81ad8ba2 blueswir1
        }
2871 81ad8ba2 blueswir1
    default:
2872 81ad8ba2 blueswir1
        break;
2873 81ad8ba2 blueswir1
    }
2874 81ad8ba2 blueswir1
2875 81ad8ba2 blueswir1
    /* Convert to signed number */
2876 81ad8ba2 blueswir1
    if (sign) {
2877 81ad8ba2 blueswir1
        switch(size) {
2878 81ad8ba2 blueswir1
        case 1:
2879 81ad8ba2 blueswir1
            ret = (int8_t) ret;
2880 e32664fb blueswir1
            break;
2881 81ad8ba2 blueswir1
        case 2:
2882 81ad8ba2 blueswir1
            ret = (int16_t) ret;
2883 e32664fb blueswir1
            break;
2884 81ad8ba2 blueswir1
        case 4:
2885 81ad8ba2 blueswir1
            ret = (int32_t) ret;
2886 e32664fb blueswir1
            break;
2887 81ad8ba2 blueswir1
        default:
2888 81ad8ba2 blueswir1
            break;
2889 81ad8ba2 blueswir1
        }
2890 81ad8ba2 blueswir1
    }
2891 1a2fb1c0 blueswir1
#ifdef DEBUG_ASI
2892 1a2fb1c0 blueswir1
    dump_asi("read ", last_addr, asi, size, ret);
2893 1a2fb1c0 blueswir1
#endif
2894 1a2fb1c0 blueswir1
    return ret;
2895 3475187d bellard
}
2896 3475187d bellard
2897 1a2fb1c0 blueswir1
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2898 3475187d bellard
{
2899 1a2fb1c0 blueswir1
#ifdef DEBUG_ASI
2900 1a2fb1c0 blueswir1
    dump_asi("write", addr, asi, size, val);
2901 1a2fb1c0 blueswir1
#endif
2902 01b5d4e5 Igor V. Kovalenko
2903 01b5d4e5 Igor V. Kovalenko
    asi &= 0xff;
2904 01b5d4e5 Igor V. Kovalenko
2905 6f27aba6 blueswir1
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2906 2aae2b8e Igor V. Kovalenko
        || (cpu_has_hypervisor(env)
2907 5578ceab blueswir1
            && asi >= 0x30 && asi < 0x80
2908 fb79ceb9 blueswir1
            && !(env->hpstate & HS_PRIV)))
2909 0f8a249a blueswir1
        raise_exception(TT_PRIV_ACT);
2910 3475187d bellard
2911 c2bc0e38 blueswir1
    helper_check_align(addr, size - 1);
2912 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
2913 1295001c Igor V. Kovalenko
2914 81ad8ba2 blueswir1
    /* Convert to little endian */
2915 81ad8ba2 blueswir1
    switch (asi) {
2916 81ad8ba2 blueswir1
    case 0x0c: // Nucleus Little Endian (LE)
2917 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
2918 81ad8ba2 blueswir1
    case 0x19: // As if user secondary LE
2919 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
2920 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
2921 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2922 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
2923 81ad8ba2 blueswir1
        switch(size) {
2924 81ad8ba2 blueswir1
        case 2:
2925 5b0f0bec Igor Kovalenko
            val = bswap16(val);
2926 e32664fb blueswir1
            break;
2927 81ad8ba2 blueswir1
        case 4:
2928 5b0f0bec Igor Kovalenko
            val = bswap32(val);
2929 e32664fb blueswir1
            break;
2930 81ad8ba2 blueswir1
        case 8:
2931 5b0f0bec Igor Kovalenko
            val = bswap64(val);
2932 e32664fb blueswir1
            break;
2933 81ad8ba2 blueswir1
        default:
2934 81ad8ba2 blueswir1
            break;
2935 81ad8ba2 blueswir1
        }
2936 81ad8ba2 blueswir1
    default:
2937 81ad8ba2 blueswir1
        break;
2938 81ad8ba2 blueswir1
    }
2939 81ad8ba2 blueswir1
2940 3475187d bellard
    switch(asi) {
2941 81ad8ba2 blueswir1
    case 0x10: // As if user primary
2942 2065061e Igor V. Kovalenko
    case 0x11: // As if user secondary
2943 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
2944 2065061e Igor V. Kovalenko
    case 0x19: // As if user secondary LE
2945 81ad8ba2 blueswir1
    case 0x80: // Primary
2946 2065061e Igor V. Kovalenko
    case 0x81: // Secondary
2947 81ad8ba2 blueswir1
    case 0x88: // Primary LE
2948 2065061e Igor V. Kovalenko
    case 0x89: // Secondary LE
2949 c99657d3 blueswir1
    case 0xe2: // UA2007 Primary block init
2950 c99657d3 blueswir1
    case 0xe3: // UA2007 Secondary block init
2951 81ad8ba2 blueswir1
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2952 2aae2b8e Igor V. Kovalenko
            if (cpu_hypervisor_mode(env)) {
2953 6f27aba6 blueswir1
                switch(size) {
2954 6f27aba6 blueswir1
                case 1:
2955 1a2fb1c0 blueswir1
                    stb_hypv(addr, val);
2956 6f27aba6 blueswir1
                    break;
2957 6f27aba6 blueswir1
                case 2:
2958 a4e7dd52 blueswir1
                    stw_hypv(addr, val);
2959 6f27aba6 blueswir1
                    break;
2960 6f27aba6 blueswir1
                case 4:
2961 a4e7dd52 blueswir1
                    stl_hypv(addr, val);
2962 6f27aba6 blueswir1
                    break;
2963 6f27aba6 blueswir1
                case 8:
2964 6f27aba6 blueswir1
                default:
2965 a4e7dd52 blueswir1
                    stq_hypv(addr, val);
2966 6f27aba6 blueswir1
                    break;
2967 6f27aba6 blueswir1
                }
2968 6f27aba6 blueswir1
            } else {
2969 2065061e Igor V. Kovalenko
                /* secondary space access has lowest asi bit equal to 1 */
2970 2065061e Igor V. Kovalenko
                if (asi & 1) {
2971 2065061e Igor V. Kovalenko
                    switch(size) {
2972 2065061e Igor V. Kovalenko
                    case 1:
2973 2065061e Igor V. Kovalenko
                        stb_kernel_secondary(addr, val);
2974 2065061e Igor V. Kovalenko
                        break;
2975 2065061e Igor V. Kovalenko
                    case 2:
2976 2065061e Igor V. Kovalenko
                        stw_kernel_secondary(addr, val);
2977 2065061e Igor V. Kovalenko
                        break;
2978 2065061e Igor V. Kovalenko
                    case 4:
2979 2065061e Igor V. Kovalenko
                        stl_kernel_secondary(addr, val);
2980 2065061e Igor V. Kovalenko
                        break;
2981 2065061e Igor V. Kovalenko
                    case 8:
2982 2065061e Igor V. Kovalenko
                    default:
2983 2065061e Igor V. Kovalenko
                        stq_kernel_secondary(addr, val);
2984 2065061e Igor V. Kovalenko
                        break;
2985 2065061e Igor V. Kovalenko
                    }
2986 2065061e Igor V. Kovalenko
                } else {
2987 2065061e Igor V. Kovalenko
                    switch(size) {
2988 2065061e Igor V. Kovalenko
                    case 1:
2989 2065061e Igor V. Kovalenko
                        stb_kernel(addr, val);
2990 2065061e Igor V. Kovalenko
                        break;
2991 2065061e Igor V. Kovalenko
                    case 2:
2992 2065061e Igor V. Kovalenko
                        stw_kernel(addr, val);
2993 2065061e Igor V. Kovalenko
                        break;
2994 2065061e Igor V. Kovalenko
                    case 4:
2995 2065061e Igor V. Kovalenko
                        stl_kernel(addr, val);
2996 2065061e Igor V. Kovalenko
                        break;
2997 2065061e Igor V. Kovalenko
                    case 8:
2998 2065061e Igor V. Kovalenko
                    default:
2999 2065061e Igor V. Kovalenko
                        stq_kernel(addr, val);
3000 2065061e Igor V. Kovalenko
                        break;
3001 2065061e Igor V. Kovalenko
                    }
3002 2065061e Igor V. Kovalenko
                }
3003 2065061e Igor V. Kovalenko
            }
3004 2065061e Igor V. Kovalenko
        } else {
3005 2065061e Igor V. Kovalenko
            /* secondary space access has lowest asi bit equal to 1 */
3006 2065061e Igor V. Kovalenko
            if (asi & 1) {
3007 6f27aba6 blueswir1
                switch(size) {
3008 6f27aba6 blueswir1
                case 1:
3009 2065061e Igor V. Kovalenko
                    stb_user_secondary(addr, val);
3010 6f27aba6 blueswir1
                    break;
3011 6f27aba6 blueswir1
                case 2:
3012 2065061e Igor V. Kovalenko
                    stw_user_secondary(addr, val);
3013 6f27aba6 blueswir1
                    break;
3014 6f27aba6 blueswir1
                case 4:
3015 2065061e Igor V. Kovalenko
                    stl_user_secondary(addr, val);
3016 6f27aba6 blueswir1
                    break;
3017 6f27aba6 blueswir1
                case 8:
3018 6f27aba6 blueswir1
                default:
3019 2065061e Igor V. Kovalenko
                    stq_user_secondary(addr, val);
3020 2065061e Igor V. Kovalenko
                    break;
3021 2065061e Igor V. Kovalenko
                }
3022 2065061e Igor V. Kovalenko
            } else {
3023 2065061e Igor V. Kovalenko
                switch(size) {
3024 2065061e Igor V. Kovalenko
                case 1:
3025 2065061e Igor V. Kovalenko
                    stb_user(addr, val);
3026 2065061e Igor V. Kovalenko
                    break;
3027 2065061e Igor V. Kovalenko
                case 2:
3028 2065061e Igor V. Kovalenko
                    stw_user(addr, val);
3029 2065061e Igor V. Kovalenko
                    break;
3030 2065061e Igor V. Kovalenko
                case 4:
3031 2065061e Igor V. Kovalenko
                    stl_user(addr, val);
3032 2065061e Igor V. Kovalenko
                    break;
3033 2065061e Igor V. Kovalenko
                case 8:
3034 2065061e Igor V. Kovalenko
                default:
3035 2065061e Igor V. Kovalenko
                    stq_user(addr, val);
3036 6f27aba6 blueswir1
                    break;
3037 6f27aba6 blueswir1
                }
3038 81ad8ba2 blueswir1
            }
3039 81ad8ba2 blueswir1
        }
3040 81ad8ba2 blueswir1
        break;
3041 3475187d bellard
    case 0x14: // Bypass
3042 3475187d bellard
    case 0x15: // Bypass, non-cacheable
3043 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
3044 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
3045 0f8a249a blueswir1
        {
3046 02aab46a bellard
            switch(size) {
3047 02aab46a bellard
            case 1:
3048 1a2fb1c0 blueswir1
                stb_phys(addr, val);
3049 02aab46a bellard
                break;
3050 02aab46a bellard
            case 2:
3051 a4e7dd52 blueswir1
                stw_phys(addr, val);
3052 02aab46a bellard
                break;
3053 02aab46a bellard
            case 4:
3054 a4e7dd52 blueswir1
                stl_phys(addr, val);
3055 02aab46a bellard
                break;
3056 02aab46a bellard
            case 8:
3057 02aab46a bellard
            default:
3058 a4e7dd52 blueswir1
                stq_phys(addr, val);
3059 02aab46a bellard
                break;
3060 02aab46a bellard
            }
3061 0f8a249a blueswir1
        }
3062 0f8a249a blueswir1
        return;
3063 db166940 blueswir1
    case 0x24: // Nucleus quad LDD 128 bit atomic
3064 db166940 blueswir1
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3065 db166940 blueswir1
        //  Only ldda allowed
3066 db166940 blueswir1
        raise_exception(TT_ILL_INSN);
3067 db166940 blueswir1
        return;
3068 83469015 bellard
    case 0x04: // Nucleus
3069 83469015 bellard
    case 0x0c: // Nucleus Little Endian (LE)
3070 2065061e Igor V. Kovalenko
    {
3071 2065061e Igor V. Kovalenko
        switch(size) {
3072 2065061e Igor V. Kovalenko
        case 1:
3073 2065061e Igor V. Kovalenko
            stb_nucleus(addr, val);
3074 2065061e Igor V. Kovalenko
            break;
3075 2065061e Igor V. Kovalenko
        case 2:
3076 2065061e Igor V. Kovalenko
            stw_nucleus(addr, val);
3077 2065061e Igor V. Kovalenko
            break;
3078 2065061e Igor V. Kovalenko
        case 4:
3079 2065061e Igor V. Kovalenko
            stl_nucleus(addr, val);
3080 2065061e Igor V. Kovalenko
            break;
3081 2065061e Igor V. Kovalenko
        default:
3082 2065061e Igor V. Kovalenko
        case 8:
3083 2065061e Igor V. Kovalenko
            stq_nucleus(addr, val);
3084 2065061e Igor V. Kovalenko
            break;
3085 2065061e Igor V. Kovalenko
        }
3086 2065061e Igor V. Kovalenko
        break;
3087 2065061e Igor V. Kovalenko
    }
3088 2065061e Igor V. Kovalenko
3089 83469015 bellard
    case 0x4a: // UPA config
3090 0f8a249a blueswir1
        // XXX
3091 0f8a249a blueswir1
        return;
3092 3475187d bellard
    case 0x45: // LSU
3093 0f8a249a blueswir1
        {
3094 0f8a249a blueswir1
            uint64_t oldreg;
3095 0f8a249a blueswir1
3096 0f8a249a blueswir1
            oldreg = env->lsu;
3097 1a2fb1c0 blueswir1
            env->lsu = val & (DMMU_E | IMMU_E);
3098 0f8a249a blueswir1
            // Mappings generated during D/I MMU disabled mode are
3099 0f8a249a blueswir1
            // invalid in normal mode
3100 0f8a249a blueswir1
            if (oldreg != env->lsu) {
3101 77f193da blueswir1
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
3102 77f193da blueswir1
                            oldreg, env->lsu);
3103 83469015 bellard
#ifdef DEBUG_MMU
3104 d41160a3 Blue Swirl
                dump_mmu(stdout, fprintf, env1);
3105 83469015 bellard
#endif
3106 0f8a249a blueswir1
                tlb_flush(env, 1);
3107 0f8a249a blueswir1
            }
3108 0f8a249a blueswir1
            return;
3109 0f8a249a blueswir1
        }
3110 3475187d bellard
    case 0x50: // I-MMU regs
3111 0f8a249a blueswir1
        {
3112 1a2fb1c0 blueswir1
            int reg = (addr >> 3) & 0xf;
3113 0f8a249a blueswir1
            uint64_t oldreg;
3114 3b46e624 ths
3115 0f8a249a blueswir1
            oldreg = env->immuregs[reg];
3116 3475187d bellard
            switch(reg) {
3117 3475187d bellard
            case 0: // RO
3118 3475187d bellard
                return;
3119 3475187d bellard
            case 1: // Not in I-MMU
3120 3475187d bellard
            case 2:
3121 3475187d bellard
                return;
3122 3475187d bellard
            case 3: // SFSR
3123 1a2fb1c0 blueswir1
                if ((val & 1) == 0)
3124 1a2fb1c0 blueswir1
                    val = 0; // Clear SFSR
3125 6e8e7d4c Igor Kovalenko
                env->immu.sfsr = val;
3126 3475187d bellard
                break;
3127 6e8e7d4c Igor Kovalenko
            case 4: // RO
3128 6e8e7d4c Igor Kovalenko
                return;
3129 3475187d bellard
            case 5: // TSB access
3130 6e8e7d4c Igor Kovalenko
                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
3131 6e8e7d4c Igor Kovalenko
                            PRIx64 "\n", env->immu.tsb, val);
3132 6e8e7d4c Igor Kovalenko
                env->immu.tsb = val;
3133 6e8e7d4c Igor Kovalenko
                break;
3134 3475187d bellard
            case 6: // Tag access
3135 6e8e7d4c Igor Kovalenko
                env->immu.tag_access = val;
3136 6e8e7d4c Igor Kovalenko
                break;
3137 6e8e7d4c Igor Kovalenko
            case 7:
3138 6e8e7d4c Igor Kovalenko
            case 8:
3139 6e8e7d4c Igor Kovalenko
                return;
3140 3475187d bellard
            default:
3141 3475187d bellard
                break;
3142 3475187d bellard
            }
3143 6e8e7d4c Igor Kovalenko
3144 3475187d bellard
            if (oldreg != env->immuregs[reg]) {
3145 6e8e7d4c Igor Kovalenko
                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3146 77f193da blueswir1
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3147 3475187d bellard
            }
3148 952a328f blueswir1
#ifdef DEBUG_MMU
3149 d41160a3 Blue Swirl
            dump_mmu(stdout, fprintf, env);
3150 3475187d bellard
#endif
3151 0f8a249a blueswir1
            return;
3152 0f8a249a blueswir1
        }
3153 3475187d bellard
    case 0x54: // I-MMU data in
3154 f707726e Igor Kovalenko
        replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
3155 f707726e Igor Kovalenko
        return;
3156 3475187d bellard
    case 0x55: // I-MMU data access
3157 0f8a249a blueswir1
        {
3158 cc6747f4 blueswir1
            // TODO: auto demap
3159 cc6747f4 blueswir1
3160 1a2fb1c0 blueswir1
            unsigned int i = (addr >> 3) & 0x3f;
3161 3475187d bellard
3162 f707726e Igor Kovalenko
            replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
3163 6e8e7d4c Igor Kovalenko
3164 6e8e7d4c Igor Kovalenko
#ifdef DEBUG_MMU
3165 f707726e Igor Kovalenko
            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
3166 d41160a3 Blue Swirl
            dump_mmu(stdout, fprintf, env);
3167 6e8e7d4c Igor Kovalenko
#endif
3168 0f8a249a blueswir1
            return;
3169 0f8a249a blueswir1
        }
3170 3475187d bellard
    case 0x57: // I-MMU demap
3171 170f4c55 Igor V. Kovalenko
        demap_tlb(env->itlb, addr, "immu", env);
3172 0f8a249a blueswir1
        return;
3173 3475187d bellard
    case 0x58: // D-MMU regs
3174 0f8a249a blueswir1
        {
3175 1a2fb1c0 blueswir1
            int reg = (addr >> 3) & 0xf;
3176 0f8a249a blueswir1
            uint64_t oldreg;
3177 3b46e624 ths
3178 0f8a249a blueswir1
            oldreg = env->dmmuregs[reg];
3179 3475187d bellard
            switch(reg) {
3180 3475187d bellard
            case 0: // RO
3181 3475187d bellard
            case 4:
3182 3475187d bellard
                return;
3183 3475187d bellard
            case 3: // SFSR
3184 1a2fb1c0 blueswir1
                if ((val & 1) == 0) {
3185 1a2fb1c0 blueswir1
                    val = 0; // Clear SFSR, Fault address
3186 6e8e7d4c Igor Kovalenko
                    env->dmmu.sfar = 0;
3187 0f8a249a blueswir1
                }
3188 6e8e7d4c Igor Kovalenko
                env->dmmu.sfsr = val;
3189 3475187d bellard
                break;
3190 3475187d bellard
            case 1: // Primary context
3191 6e8e7d4c Igor Kovalenko
                env->dmmu.mmu_primary_context = val;
3192 664a65b0 Igor V. Kovalenko
                /* can be optimized to only flush MMU_USER_IDX
3193 664a65b0 Igor V. Kovalenko
                   and MMU_KERNEL_IDX entries */
3194 664a65b0 Igor V. Kovalenko
                tlb_flush(env, 1);
3195 6e8e7d4c Igor Kovalenko
                break;
3196 3475187d bellard
            case 2: // Secondary context
3197 6e8e7d4c Igor Kovalenko
                env->dmmu.mmu_secondary_context = val;
3198 664a65b0 Igor V. Kovalenko
                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3199 664a65b0 Igor V. Kovalenko
                   and MMU_KERNEL_SECONDARY_IDX entries */
3200 664a65b0 Igor V. Kovalenko
                tlb_flush(env, 1);
3201 6e8e7d4c Igor Kovalenko
                break;
3202 3475187d bellard
            case 5: // TSB access
3203 6e8e7d4c Igor Kovalenko
                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3204 6e8e7d4c Igor Kovalenko
                            PRIx64 "\n", env->dmmu.tsb, val);
3205 6e8e7d4c Igor Kovalenko
                env->dmmu.tsb = val;
3206 6e8e7d4c Igor Kovalenko
                break;
3207 3475187d bellard
            case 6: // Tag access
3208 6e8e7d4c Igor Kovalenko
                env->dmmu.tag_access = val;
3209 6e8e7d4c Igor Kovalenko
                break;
3210 3475187d bellard
            case 7: // Virtual Watchpoint
3211 3475187d bellard
            case 8: // Physical Watchpoint
3212 3475187d bellard
            default:
3213 6e8e7d4c Igor Kovalenko
                env->dmmuregs[reg] = val;
3214 3475187d bellard
                break;
3215 3475187d bellard
            }
3216 6e8e7d4c Igor Kovalenko
3217 3475187d bellard
            if (oldreg != env->dmmuregs[reg]) {
3218 6e8e7d4c Igor Kovalenko
                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3219 77f193da blueswir1
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3220 3475187d bellard
            }
3221 952a328f blueswir1
#ifdef DEBUG_MMU
3222 d41160a3 Blue Swirl
            dump_mmu(stdout, fprintf, env);
3223 3475187d bellard
#endif
3224 0f8a249a blueswir1
            return;
3225 0f8a249a blueswir1
        }
3226 3475187d bellard
    case 0x5c: // D-MMU data in
3227 f707726e Igor Kovalenko
        replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3228 f707726e Igor Kovalenko
        return;
3229 3475187d bellard
    case 0x5d: // D-MMU data access
3230 0f8a249a blueswir1
        {
3231 1a2fb1c0 blueswir1
            unsigned int i = (addr >> 3) & 0x3f;
3232 3475187d bellard
3233 f707726e Igor Kovalenko
            replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3234 f707726e Igor Kovalenko
3235 6e8e7d4c Igor Kovalenko
#ifdef DEBUG_MMU
3236 f707726e Igor Kovalenko
            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3237 d41160a3 Blue Swirl
            dump_mmu(stdout, fprintf, env);
3238 6e8e7d4c Igor Kovalenko
#endif
3239 0f8a249a blueswir1
            return;
3240 0f8a249a blueswir1
        }
3241 3475187d bellard
    case 0x5f: // D-MMU demap
3242 170f4c55 Igor V. Kovalenko
        demap_tlb(env->dtlb, addr, "dmmu", env);
3243 cc6747f4 blueswir1
        return;
3244 83469015 bellard
    case 0x49: // Interrupt data receive
3245 0f8a249a blueswir1
        // XXX
3246 0f8a249a blueswir1
        return;
3247 f7350b47 blueswir1
    case 0x46: // D-cache data
3248 f7350b47 blueswir1
    case 0x47: // D-cache tag access
3249 a5a52cf2 blueswir1
    case 0x4b: // E-cache error enable
3250 a5a52cf2 blueswir1
    case 0x4c: // E-cache asynchronous fault status
3251 a5a52cf2 blueswir1
    case 0x4d: // E-cache asynchronous fault address
3252 f7350b47 blueswir1
    case 0x4e: // E-cache tag data
3253 f7350b47 blueswir1
    case 0x66: // I-cache instruction access
3254 f7350b47 blueswir1
    case 0x67: // I-cache tag access
3255 f7350b47 blueswir1
    case 0x6e: // I-cache predecode
3256 f7350b47 blueswir1
    case 0x6f: // I-cache LRU etc.
3257 f7350b47 blueswir1
    case 0x76: // E-cache tag
3258 f7350b47 blueswir1
    case 0x7e: // E-cache tag
3259 f7350b47 blueswir1
        return;
3260 3475187d bellard
    case 0x51: // I-MMU 8k TSB pointer, RO
3261 3475187d bellard
    case 0x52: // I-MMU 64k TSB pointer, RO
3262 3475187d bellard
    case 0x56: // I-MMU tag read, RO
3263 3475187d bellard
    case 0x59: // D-MMU 8k TSB pointer, RO
3264 3475187d bellard
    case 0x5a: // D-MMU 64k TSB pointer, RO
3265 3475187d bellard
    case 0x5b: // D-MMU data pointer, RO
3266 3475187d bellard
    case 0x5e: // D-MMU tag read, RO
3267 83469015 bellard
    case 0x48: // Interrupt dispatch, RO
3268 83469015 bellard
    case 0x7f: // Incoming interrupt vector, RO
3269 83469015 bellard
    case 0x82: // Primary no-fault, RO
3270 83469015 bellard
    case 0x83: // Secondary no-fault, RO
3271 83469015 bellard
    case 0x8a: // Primary no-fault LE, RO
3272 83469015 bellard
    case 0x8b: // Secondary no-fault LE, RO
3273 3475187d bellard
    default:
3274 e18231a3 blueswir1
        do_unassigned_access(addr, 1, 0, 1, size);
3275 0f8a249a blueswir1
        return;
3276 3475187d bellard
    }
3277 3475187d bellard
}
3278 81ad8ba2 blueswir1
#endif /* CONFIG_USER_ONLY */
3279 3391c818 blueswir1
3280 db166940 blueswir1
void helper_ldda_asi(target_ulong addr, int asi, int rd)
3281 db166940 blueswir1
{
3282 db166940 blueswir1
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3283 2aae2b8e Igor V. Kovalenko
        || (cpu_has_hypervisor(env)
3284 5578ceab blueswir1
            && asi >= 0x30 && asi < 0x80
3285 fb79ceb9 blueswir1
            && !(env->hpstate & HS_PRIV)))
3286 db166940 blueswir1
        raise_exception(TT_PRIV_ACT);
3287 db166940 blueswir1
3288 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
3289 1295001c Igor V. Kovalenko
3290 db166940 blueswir1
    switch (asi) {
3291 03ae77d6 Blue Swirl
#if !defined(CONFIG_USER_ONLY)
3292 db166940 blueswir1
    case 0x24: // Nucleus quad LDD 128 bit atomic
3293 db166940 blueswir1
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3294 db166940 blueswir1
        helper_check_align(addr, 0xf);
3295 db166940 blueswir1
        if (rd == 0) {
3296 54a3c0f0 Igor V. Kovalenko
            env->gregs[1] = ldq_nucleus(addr + 8);
3297 db166940 blueswir1
            if (asi == 0x2c)
3298 db166940 blueswir1
                bswap64s(&env->gregs[1]);
3299 db166940 blueswir1
        } else if (rd < 8) {
3300 54a3c0f0 Igor V. Kovalenko
            env->gregs[rd] = ldq_nucleus(addr);
3301 54a3c0f0 Igor V. Kovalenko
            env->gregs[rd + 1] = ldq_nucleus(addr + 8);
3302 db166940 blueswir1
            if (asi == 0x2c) {
3303 db166940 blueswir1
                bswap64s(&env->gregs[rd]);
3304 db166940 blueswir1
                bswap64s(&env->gregs[rd + 1]);
3305 db166940 blueswir1
            }
3306 db166940 blueswir1
        } else {
3307 54a3c0f0 Igor V. Kovalenko
            env->regwptr[rd] = ldq_nucleus(addr);
3308 54a3c0f0 Igor V. Kovalenko
            env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
3309 db166940 blueswir1
            if (asi == 0x2c) {
3310 db166940 blueswir1
                bswap64s(&env->regwptr[rd]);
3311 db166940 blueswir1
                bswap64s(&env->regwptr[rd + 1]);
3312 db166940 blueswir1
            }
3313 db166940 blueswir1
        }
3314 db166940 blueswir1
        break;
3315 03ae77d6 Blue Swirl
#endif
3316 db166940 blueswir1
    default:
3317 db166940 blueswir1
        helper_check_align(addr, 0x3);
3318 db166940 blueswir1
        if (rd == 0)
3319 db166940 blueswir1
            env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3320 db166940 blueswir1
        else if (rd < 8) {
3321 db166940 blueswir1
            env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3322 db166940 blueswir1
            env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3323 db166940 blueswir1
        } else {
3324 db166940 blueswir1
            env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3325 db166940 blueswir1
            env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3326 db166940 blueswir1
        }
3327 db166940 blueswir1
        break;
3328 db166940 blueswir1
    }
3329 db166940 blueswir1
}
3330 db166940 blueswir1
3331 1a2fb1c0 blueswir1
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3332 3391c818 blueswir1
{
3333 3391c818 blueswir1
    unsigned int i;
3334 4183f36d Tsuneo Saito
    CPU_DoubleU u;
3335 3391c818 blueswir1
3336 c2bc0e38 blueswir1
    helper_check_align(addr, 3);
3337 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
3338 1295001c Igor V. Kovalenko
3339 3391c818 blueswir1
    switch (asi) {
3340 3391c818 blueswir1
    case 0xf0: // Block load primary
3341 3391c818 blueswir1
    case 0xf1: // Block load secondary
3342 3391c818 blueswir1
    case 0xf8: // Block load primary LE
3343 3391c818 blueswir1
    case 0xf9: // Block load secondary LE
3344 51996525 blueswir1
        if (rd & 7) {
3345 51996525 blueswir1
            raise_exception(TT_ILL_INSN);
3346 51996525 blueswir1
            return;
3347 51996525 blueswir1
        }
3348 c2bc0e38 blueswir1
        helper_check_align(addr, 0x3f);
3349 51996525 blueswir1
        for (i = 0; i < 16; i++) {
3350 77f193da blueswir1
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3351 77f193da blueswir1
                                                         0);
3352 1a2fb1c0 blueswir1
            addr += 4;
3353 3391c818 blueswir1
        }
3354 3391c818 blueswir1
3355 3391c818 blueswir1
        return;
3356 0e2fa9ca Igor V. Kovalenko
    case 0x70: // Block load primary, user privilege
3357 0e2fa9ca Igor V. Kovalenko
    case 0x71: // Block load secondary, user privilege
3358 0e2fa9ca Igor V. Kovalenko
        if (rd & 7) {
3359 0e2fa9ca Igor V. Kovalenko
            raise_exception(TT_ILL_INSN);
3360 0e2fa9ca Igor V. Kovalenko
            return;
3361 0e2fa9ca Igor V. Kovalenko
        }
3362 0e2fa9ca Igor V. Kovalenko
        helper_check_align(addr, 0x3f);
3363 0e2fa9ca Igor V. Kovalenko
        for (i = 0; i < 16; i++) {
3364 0e2fa9ca Igor V. Kovalenko
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x1f, 4,
3365 0e2fa9ca Igor V. Kovalenko
                                                         0);
3366 0e2fa9ca Igor V. Kovalenko
            addr += 4;
3367 0e2fa9ca Igor V. Kovalenko
        }
3368 0e2fa9ca Igor V. Kovalenko
3369 0e2fa9ca Igor V. Kovalenko
        return;
3370 3391c818 blueswir1
    default:
3371 3391c818 blueswir1
        break;
3372 3391c818 blueswir1
    }
3373 3391c818 blueswir1
3374 3391c818 blueswir1
    switch(size) {
3375 3391c818 blueswir1
    default:
3376 3391c818 blueswir1
    case 4:
3377 4183f36d Tsuneo Saito
        *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
3378 3391c818 blueswir1
        break;
3379 3391c818 blueswir1
    case 8:
3380 4183f36d Tsuneo Saito
        u.ll = helper_ld_asi(addr, asi, size, 0);
3381 4183f36d Tsuneo Saito
        *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3382 4183f36d Tsuneo Saito
        *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3383 3391c818 blueswir1
        break;
3384 1f587329 blueswir1
    case 16:
3385 4183f36d Tsuneo Saito
        u.ll = helper_ld_asi(addr, asi, 8, 0);
3386 4183f36d Tsuneo Saito
        *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3387 4183f36d Tsuneo Saito
        *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3388 4183f36d Tsuneo Saito
        u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
3389 4183f36d Tsuneo Saito
        *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3390 4183f36d Tsuneo Saito
        *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3391 1f587329 blueswir1
        break;
3392 3391c818 blueswir1
    }
3393 3391c818 blueswir1
}
3394 3391c818 blueswir1
3395 1a2fb1c0 blueswir1
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3396 3391c818 blueswir1
{
3397 3391c818 blueswir1
    unsigned int i;
3398 1a2fb1c0 blueswir1
    target_ulong val = 0;
3399 e1ef36c4 Tsuneo Saito
    CPU_DoubleU u;
3400 3391c818 blueswir1
3401 c2bc0e38 blueswir1
    helper_check_align(addr, 3);
3402 1295001c Igor V. Kovalenko
    addr = asi_address_mask(env, asi, addr);
3403 1295001c Igor V. Kovalenko
3404 3391c818 blueswir1
    switch (asi) {
3405 c99657d3 blueswir1
    case 0xe0: // UA2007 Block commit store primary (cache flush)
3406 c99657d3 blueswir1
    case 0xe1: // UA2007 Block commit store secondary (cache flush)
3407 3391c818 blueswir1
    case 0xf0: // Block store primary
3408 3391c818 blueswir1
    case 0xf1: // Block store secondary
3409 3391c818 blueswir1
    case 0xf8: // Block store primary LE
3410 3391c818 blueswir1
    case 0xf9: // Block store secondary LE
3411 51996525 blueswir1
        if (rd & 7) {
3412 51996525 blueswir1
            raise_exception(TT_ILL_INSN);
3413 51996525 blueswir1
            return;
3414 51996525 blueswir1
        }
3415 c2bc0e38 blueswir1
        helper_check_align(addr, 0x3f);
3416 51996525 blueswir1
        for (i = 0; i < 16; i++) {
3417 1a2fb1c0 blueswir1
            val = *(uint32_t *)&env->fpr[rd++];
3418 1a2fb1c0 blueswir1
            helper_st_asi(addr, val, asi & 0x8f, 4);
3419 1a2fb1c0 blueswir1
            addr += 4;
3420 3391c818 blueswir1
        }
3421 3391c818 blueswir1
3422 3391c818 blueswir1
        return;
3423 0e2fa9ca Igor V. Kovalenko
    case 0x70: // Block store primary, user privilege
3424 0e2fa9ca Igor V. Kovalenko
    case 0x71: // Block store secondary, user privilege
3425 0e2fa9ca Igor V. Kovalenko
        if (rd & 7) {
3426 0e2fa9ca Igor V. Kovalenko
            raise_exception(TT_ILL_INSN);
3427 0e2fa9ca Igor V. Kovalenko
            return;
3428 0e2fa9ca Igor V. Kovalenko
        }
3429 0e2fa9ca Igor V. Kovalenko
        helper_check_align(addr, 0x3f);
3430 0e2fa9ca Igor V. Kovalenko
        for (i = 0; i < 16; i++) {
3431 0e2fa9ca Igor V. Kovalenko
            val = *(uint32_t *)&env->fpr[rd++];
3432 0e2fa9ca Igor V. Kovalenko
            helper_st_asi(addr, val, asi & 0x1f, 4);
3433 0e2fa9ca Igor V. Kovalenko
            addr += 4;
3434 0e2fa9ca Igor V. Kovalenko
        }
3435 0e2fa9ca Igor V. Kovalenko
3436 0e2fa9ca Igor V. Kovalenko
        return;
3437 3391c818 blueswir1
    default:
3438 3391c818 blueswir1
        break;
3439 3391c818 blueswir1
    }
3440 3391c818 blueswir1
3441 3391c818 blueswir1
    switch(size) {
3442 3391c818 blueswir1
    default:
3443 3391c818 blueswir1
    case 4:
3444 e1ef36c4 Tsuneo Saito
        helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
3445 3391c818 blueswir1
        break;
3446 3391c818 blueswir1
    case 8:
3447 e1ef36c4 Tsuneo Saito
        u.l.upper = *(uint32_t *)&env->fpr[rd++];
3448 e1ef36c4 Tsuneo Saito
        u.l.lower = *(uint32_t *)&env->fpr[rd++];
3449 e1ef36c4 Tsuneo Saito
        helper_st_asi(addr, u.ll, asi, size);
3450 3391c818 blueswir1
        break;
3451 1f587329 blueswir1
    case 16:
3452 e1ef36c4 Tsuneo Saito
        u.l.upper = *(uint32_t *)&env->fpr[rd++];
3453 e1ef36c4 Tsuneo Saito
        u.l.lower = *(uint32_t *)&env->fpr[rd++];
3454 e1ef36c4 Tsuneo Saito
        helper_st_asi(addr, u.ll, asi, 8);
3455 e1ef36c4 Tsuneo Saito
        u.l.upper = *(uint32_t *)&env->fpr[rd++];
3456 e1ef36c4 Tsuneo Saito
        u.l.lower = *(uint32_t *)&env->fpr[rd++];
3457 e1ef36c4 Tsuneo Saito
        helper_st_asi(addr + 8, u.ll, asi, 8);
3458 1f587329 blueswir1
        break;
3459 3391c818 blueswir1
    }
3460 1a2fb1c0 blueswir1
}
3461 1a2fb1c0 blueswir1
3462 1a2fb1c0 blueswir1
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3463 1a2fb1c0 blueswir1
                            target_ulong val2, uint32_t asi)
3464 1a2fb1c0 blueswir1
{
3465 1a2fb1c0 blueswir1
    target_ulong ret;
3466 1a2fb1c0 blueswir1
3467 1121f879 blueswir1
    val2 &= 0xffffffffUL;
3468 1a2fb1c0 blueswir1
    ret = helper_ld_asi(addr, asi, 4, 0);
3469 1a2fb1c0 blueswir1
    ret &= 0xffffffffUL;
3470 1121f879 blueswir1
    if (val2 == ret)
3471 1121f879 blueswir1
        helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3472 1a2fb1c0 blueswir1
    return ret;
3473 3391c818 blueswir1
}
3474 3391c818 blueswir1
3475 1a2fb1c0 blueswir1
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3476 1a2fb1c0 blueswir1
                             target_ulong val2, uint32_t asi)
3477 1a2fb1c0 blueswir1
{
3478 1a2fb1c0 blueswir1
    target_ulong ret;
3479 1a2fb1c0 blueswir1
3480 1a2fb1c0 blueswir1
    ret = helper_ld_asi(addr, asi, 8, 0);
3481 1121f879 blueswir1
    if (val2 == ret)
3482 1121f879 blueswir1
        helper_st_asi(addr, val1, asi, 8);
3483 1a2fb1c0 blueswir1
    return ret;
3484 1a2fb1c0 blueswir1
}
3485 81ad8ba2 blueswir1
#endif /* TARGET_SPARC64 */
3486 3475187d bellard
3487 3475187d bellard
#ifndef TARGET_SPARC64
3488 1a2fb1c0 blueswir1
void helper_rett(void)
3489 e8af50a3 bellard
{
3490 af7bf89b bellard
    unsigned int cwp;
3491 af7bf89b bellard
3492 d4218d99 blueswir1
    if (env->psret == 1)
3493 d4218d99 blueswir1
        raise_exception(TT_ILL_INSN);
3494 d4218d99 blueswir1
3495 e8af50a3 bellard
    env->psret = 1;
3496 5a834bb4 Blue Swirl
    cwp = cwp_inc(env->cwp + 1) ;
3497 e8af50a3 bellard
    if (env->wim & (1 << cwp)) {
3498 e8af50a3 bellard
        raise_exception(TT_WIN_UNF);
3499 e8af50a3 bellard
    }
3500 e8af50a3 bellard
    set_cwp(cwp);
3501 e8af50a3 bellard
    env->psrs = env->psrps;
3502 e8af50a3 bellard
}
3503 3475187d bellard
#endif
3504 e8af50a3 bellard
3505 0fcec41e Aurelien Jarno
static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc)
3506 3b89f26c blueswir1
{
3507 0fcec41e Aurelien Jarno
    int overflow = 0;
3508 3b89f26c blueswir1
    uint64_t x0;
3509 3b89f26c blueswir1
    uint32_t x1;
3510 3b89f26c blueswir1
3511 7621a90d blueswir1
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3512 09487205 Igor V. Kovalenko
    x1 = (b & 0xffffffff);
3513 3b89f26c blueswir1
3514 3b89f26c blueswir1
    if (x1 == 0) {
3515 3b89f26c blueswir1
        raise_exception(TT_DIV_ZERO);
3516 3b89f26c blueswir1
    }
3517 3b89f26c blueswir1
3518 3b89f26c blueswir1
    x0 = x0 / x1;
3519 3b89f26c blueswir1
    if (x0 > 0xffffffff) {
3520 0fcec41e Aurelien Jarno
        x0 = 0xffffffff;
3521 0fcec41e Aurelien Jarno
        overflow = 1;
3522 0fcec41e Aurelien Jarno
    }
3523 0fcec41e Aurelien Jarno
3524 0fcec41e Aurelien Jarno
    if (cc) {
3525 0fcec41e Aurelien Jarno
        env->cc_dst = x0;
3526 0fcec41e Aurelien Jarno
        env->cc_src2 = overflow;
3527 0fcec41e Aurelien Jarno
        env->cc_op = CC_OP_DIV;
3528 3b89f26c blueswir1
    }
3529 0fcec41e Aurelien Jarno
    return x0;
3530 3b89f26c blueswir1
}
3531 3b89f26c blueswir1
3532 0fcec41e Aurelien Jarno
target_ulong helper_udiv(target_ulong a, target_ulong b)
3533 0fcec41e Aurelien Jarno
{
3534 0fcec41e Aurelien Jarno
    return helper_udiv_common(a, b, 0);
3535 0fcec41e Aurelien Jarno
}
3536 0fcec41e Aurelien Jarno
3537 0fcec41e Aurelien Jarno
target_ulong helper_udiv_cc(target_ulong a, target_ulong b)
3538 0fcec41e Aurelien Jarno
{
3539 0fcec41e Aurelien Jarno
    return helper_udiv_common(a, b, 1);
3540 0fcec41e Aurelien Jarno
}
3541 0fcec41e Aurelien Jarno
3542 0fcec41e Aurelien Jarno
static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
3543 3b89f26c blueswir1
{
3544 0fcec41e Aurelien Jarno
    int overflow = 0;
3545 3b89f26c blueswir1
    int64_t x0;
3546 3b89f26c blueswir1
    int32_t x1;
3547 3b89f26c blueswir1
3548 7621a90d blueswir1
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3549 09487205 Igor V. Kovalenko
    x1 = (b & 0xffffffff);
3550 3b89f26c blueswir1
3551 3b89f26c blueswir1
    if (x1 == 0) {
3552 3b89f26c blueswir1
        raise_exception(TT_DIV_ZERO);
3553 3b89f26c blueswir1
    }
3554 3b89f26c blueswir1
3555 3b89f26c blueswir1
    x0 = x0 / x1;
3556 3b89f26c blueswir1
    if ((int32_t) x0 != x0) {
3557 0fcec41e Aurelien Jarno
        x0 = x0 < 0 ? 0x80000000: 0x7fffffff;
3558 0fcec41e Aurelien Jarno
        overflow = 1;
3559 0fcec41e Aurelien Jarno
    }
3560 0fcec41e Aurelien Jarno
3561 0fcec41e Aurelien Jarno
    if (cc) {
3562 0fcec41e Aurelien Jarno
        env->cc_dst = x0;
3563 0fcec41e Aurelien Jarno
        env->cc_src2 = overflow;
3564 0fcec41e Aurelien Jarno
        env->cc_op = CC_OP_DIV;
3565 3b89f26c blueswir1
    }
3566 0fcec41e Aurelien Jarno
    return x0;
3567 0fcec41e Aurelien Jarno
}
3568 0fcec41e Aurelien Jarno
3569 0fcec41e Aurelien Jarno
target_ulong helper_sdiv(target_ulong a, target_ulong b)
3570 0fcec41e Aurelien Jarno
{
3571 0fcec41e Aurelien Jarno
    return helper_sdiv_common(a, b, 0);
3572 0fcec41e Aurelien Jarno
}
3573 0fcec41e Aurelien Jarno
3574 0fcec41e Aurelien Jarno
target_ulong helper_sdiv_cc(target_ulong a, target_ulong b)
3575 0fcec41e Aurelien Jarno
{
3576 0fcec41e Aurelien Jarno
    return helper_sdiv_common(a, b, 1);
3577 3b89f26c blueswir1
}
3578 3b89f26c blueswir1
3579 7fa76c0b blueswir1
void helper_stdf(target_ulong addr, int mem_idx)
3580 7fa76c0b blueswir1
{
3581 c2bc0e38 blueswir1
    helper_check_align(addr, 7);
3582 7fa76c0b blueswir1
#if !defined(CONFIG_USER_ONLY)
3583 7fa76c0b blueswir1
    switch (mem_idx) {
3584 b219094a Igor V. Kovalenko
    case MMU_USER_IDX:
3585 c2bc0e38 blueswir1
        stfq_user(addr, DT0);
3586 7fa76c0b blueswir1
        break;
3587 b219094a Igor V. Kovalenko
    case MMU_KERNEL_IDX:
3588 c2bc0e38 blueswir1
        stfq_kernel(addr, DT0);
3589 7fa76c0b blueswir1
        break;
3590 7fa76c0b blueswir1
#ifdef TARGET_SPARC64
3591 b219094a Igor V. Kovalenko
    case MMU_HYPV_IDX:
3592 c2bc0e38 blueswir1
        stfq_hypv(addr, DT0);
3593 7fa76c0b blueswir1
        break;
3594 7fa76c0b blueswir1
#endif
3595 7fa76c0b blueswir1
    default:
3596 b219094a Igor V. Kovalenko
        DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
3597 7fa76c0b blueswir1
        break;
3598 7fa76c0b blueswir1
    }
3599 7fa76c0b blueswir1
#else
3600 41db525e Richard Henderson
    stfq_raw(address_mask(env, addr), DT0);
3601 7fa76c0b blueswir1
#endif
3602 7fa76c0b blueswir1
}
3603 7fa76c0b blueswir1
3604 7fa76c0b blueswir1
void helper_lddf(target_ulong addr, int mem_idx)
3605 7fa76c0b blueswir1
{
3606 c2bc0e38 blueswir1
    helper_check_align(addr, 7);
3607 7fa76c0b blueswir1
#if !defined(CONFIG_USER_ONLY)
3608 7fa76c0b blueswir1
    switch (mem_idx) {
3609 b219094a Igor V. Kovalenko
    case MMU_USER_IDX:
3610 c2bc0e38 blueswir1
        DT0 = ldfq_user(addr);
3611 7fa76c0b blueswir1
        break;
3612 b219094a Igor V. Kovalenko
    case MMU_KERNEL_IDX:
3613 c2bc0e38 blueswir1
        DT0 = ldfq_kernel(addr);
3614 7fa76c0b blueswir1
        break;
3615 7fa76c0b blueswir1
#ifdef TARGET_SPARC64
3616 b219094a Igor V. Kovalenko
    case MMU_HYPV_IDX:
3617 c2bc0e38 blueswir1
        DT0 = ldfq_hypv(addr);
3618 7fa76c0b blueswir1
        break;
3619 7fa76c0b blueswir1
#endif
3620 7fa76c0b blueswir1
    default:
3621 b219094a Igor V. Kovalenko
        DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
3622 7fa76c0b blueswir1
        break;
3623 7fa76c0b blueswir1
    }
3624 7fa76c0b blueswir1
#else
3625 41db525e Richard Henderson
    DT0 = ldfq_raw(address_mask(env, addr));
3626 7fa76c0b blueswir1
#endif
3627 7fa76c0b blueswir1
}
3628 7fa76c0b blueswir1
3629 64a88d5d blueswir1
void helper_ldqf(target_ulong addr, int mem_idx)
3630 7fa76c0b blueswir1
{
3631 7fa76c0b blueswir1
    // XXX add 128 bit load
3632 7fa76c0b blueswir1
    CPU_QuadU u;
3633 7fa76c0b blueswir1
3634 c2bc0e38 blueswir1
    helper_check_align(addr, 7);
3635 64a88d5d blueswir1
#if !defined(CONFIG_USER_ONLY)
3636 64a88d5d blueswir1
    switch (mem_idx) {
3637 b219094a Igor V. Kovalenko
    case MMU_USER_IDX:
3638 c2bc0e38 blueswir1
        u.ll.upper = ldq_user(addr);
3639 c2bc0e38 blueswir1
        u.ll.lower = ldq_user(addr + 8);
3640 64a88d5d blueswir1
        QT0 = u.q;
3641 64a88d5d blueswir1
        break;
3642 b219094a Igor V. Kovalenko
    case MMU_KERNEL_IDX:
3643 c2bc0e38 blueswir1
        u.ll.upper = ldq_kernel(addr);
3644 c2bc0e38 blueswir1
        u.ll.lower = ldq_kernel(addr + 8);
3645 64a88d5d blueswir1
        QT0 = u.q;
3646 64a88d5d blueswir1
        break;
3647 64a88d5d blueswir1
#ifdef TARGET_SPARC64
3648 b219094a Igor V. Kovalenko
    case MMU_HYPV_IDX:
3649 c2bc0e38 blueswir1
        u.ll.upper = ldq_hypv(addr);
3650 c2bc0e38 blueswir1
        u.ll.lower = ldq_hypv(addr + 8);
3651 64a88d5d blueswir1
        QT0 = u.q;
3652 64a88d5d blueswir1
        break;
3653 64a88d5d blueswir1
#endif
3654 64a88d5d blueswir1
    default:
3655 b219094a Igor V. Kovalenko
        DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
3656 64a88d5d blueswir1
        break;
3657 64a88d5d blueswir1
    }
3658 64a88d5d blueswir1
#else
3659 41db525e Richard Henderson
    u.ll.upper = ldq_raw(address_mask(env, addr));
3660 41db525e Richard Henderson
    u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3661 7fa76c0b blueswir1
    QT0 = u.q;
3662 64a88d5d blueswir1
#endif
3663 7fa76c0b blueswir1
}
3664 7fa76c0b blueswir1
3665 64a88d5d blueswir1
void helper_stqf(target_ulong addr, int mem_idx)
3666 7fa76c0b blueswir1
{
3667 7fa76c0b blueswir1
    // XXX add 128 bit store
3668 7fa76c0b blueswir1
    CPU_QuadU u;
3669 7fa76c0b blueswir1
3670 c2bc0e38 blueswir1
    helper_check_align(addr, 7);
3671 64a88d5d blueswir1
#if !defined(CONFIG_USER_ONLY)
3672 64a88d5d blueswir1
    switch (mem_idx) {
3673 b219094a Igor V. Kovalenko
    case MMU_USER_IDX:
3674 64a88d5d blueswir1
        u.q = QT0;
3675 c2bc0e38 blueswir1
        stq_user(addr, u.ll.upper);
3676 c2bc0e38 blueswir1
        stq_user(addr + 8, u.ll.lower);
3677 64a88d5d blueswir1
        break;
3678 b219094a Igor V. Kovalenko
    case MMU_KERNEL_IDX:
3679 64a88d5d blueswir1
        u.q = QT0;
3680 c2bc0e38 blueswir1
        stq_kernel(addr, u.ll.upper);
3681 c2bc0e38 blueswir1
        stq_kernel(addr + 8, u.ll.lower);
3682 64a88d5d blueswir1
        break;
3683 64a88d5d blueswir1
#ifdef TARGET_SPARC64
3684 b219094a Igor V. Kovalenko
    case MMU_HYPV_IDX:
3685 64a88d5d blueswir1
        u.q = QT0;
3686 c2bc0e38 blueswir1
        stq_hypv(addr, u.ll.upper);
3687 c2bc0e38 blueswir1
        stq_hypv(addr + 8, u.ll.lower);
3688 64a88d5d blueswir1
        break;
3689 64a88d5d blueswir1
#endif
3690 64a88d5d blueswir1
    default:
3691 b219094a Igor V. Kovalenko
        DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
3692 64a88d5d blueswir1
        break;
3693 64a88d5d blueswir1
    }
3694 64a88d5d blueswir1
#else
3695 7fa76c0b blueswir1
    u.q = QT0;
3696 41db525e Richard Henderson
    stq_raw(address_mask(env, addr), u.ll.upper);
3697 41db525e Richard Henderson
    stq_raw(address_mask(env, addr + 8), u.ll.lower);
3698 7fa76c0b blueswir1
#endif
3699 64a88d5d blueswir1
}
3700 7fa76c0b blueswir1
3701 3a3b925d blueswir1
static inline void set_fsr(void)
3702 e8af50a3 bellard
{
3703 7a0e1f41 bellard
    int rnd_mode;
3704 bb5529bb blueswir1
3705 e8af50a3 bellard
    switch (env->fsr & FSR_RD_MASK) {
3706 e8af50a3 bellard
    case FSR_RD_NEAREST:
3707 7a0e1f41 bellard
        rnd_mode = float_round_nearest_even;
3708 0f8a249a blueswir1
        break;
3709 ed910241 bellard
    default:
3710 e8af50a3 bellard
    case FSR_RD_ZERO:
3711 7a0e1f41 bellard
        rnd_mode = float_round_to_zero;
3712 0f8a249a blueswir1
        break;
3713 e8af50a3 bellard
    case FSR_RD_POS:
3714 7a0e1f41 bellard
        rnd_mode = float_round_up;
3715 0f8a249a blueswir1
        break;
3716 e8af50a3 bellard
    case FSR_RD_NEG:
3717 7a0e1f41 bellard
        rnd_mode = float_round_down;
3718 0f8a249a blueswir1
        break;
3719 e8af50a3 bellard
    }
3720 7a0e1f41 bellard
    set_float_rounding_mode(rnd_mode, &env->fp_status);
3721 e8af50a3 bellard
}
3722 e80cfcfc bellard
3723 3a3b925d blueswir1
void helper_ldfsr(uint32_t new_fsr)
3724 bb5529bb blueswir1
{
3725 3a3b925d blueswir1
    env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3726 3a3b925d blueswir1
    set_fsr();
3727 bb5529bb blueswir1
}
3728 bb5529bb blueswir1
3729 3a3b925d blueswir1
#ifdef TARGET_SPARC64
3730 3a3b925d blueswir1
void helper_ldxfsr(uint64_t new_fsr)
3731 3a3b925d blueswir1
{
3732 3a3b925d blueswir1
    env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3733 3a3b925d blueswir1
    set_fsr();
3734 3a3b925d blueswir1
}
3735 3a3b925d blueswir1
#endif
3736 3a3b925d blueswir1
3737 bb5529bb blueswir1
void helper_debug(void)
3738 e80cfcfc bellard
{
3739 e80cfcfc bellard
    env->exception_index = EXCP_DEBUG;
3740 1162c041 Blue Swirl
    cpu_loop_exit(env);
3741 e80cfcfc bellard
}
3742 af7bf89b bellard
3743 3475187d bellard
#ifndef TARGET_SPARC64
3744 72a9747b blueswir1
/* XXX: use another pointer for %iN registers to avoid slow wrapping
3745 72a9747b blueswir1
   handling ? */
3746 72a9747b blueswir1
void helper_save(void)
3747 72a9747b blueswir1
{
3748 72a9747b blueswir1
    uint32_t cwp;
3749 72a9747b blueswir1
3750 5a834bb4 Blue Swirl
    cwp = cwp_dec(env->cwp - 1);
3751 72a9747b blueswir1
    if (env->wim & (1 << cwp)) {
3752 72a9747b blueswir1
        raise_exception(TT_WIN_OVF);
3753 72a9747b blueswir1
    }
3754 72a9747b blueswir1
    set_cwp(cwp);
3755 72a9747b blueswir1
}
3756 72a9747b blueswir1
3757 72a9747b blueswir1
void helper_restore(void)
3758 72a9747b blueswir1
{
3759 72a9747b blueswir1
    uint32_t cwp;
3760 72a9747b blueswir1
3761 5a834bb4 Blue Swirl
    cwp = cwp_inc(env->cwp + 1);
3762 72a9747b blueswir1
    if (env->wim & (1 << cwp)) {
3763 72a9747b blueswir1
        raise_exception(TT_WIN_UNF);
3764 72a9747b blueswir1
    }
3765 72a9747b blueswir1
    set_cwp(cwp);
3766 72a9747b blueswir1
}
3767 72a9747b blueswir1
3768 1a2fb1c0 blueswir1
void helper_wrpsr(target_ulong new_psr)
3769 af7bf89b bellard
{
3770 5a834bb4 Blue Swirl
    if ((new_psr & PSR_CWP) >= env->nwindows) {
3771 d4218d99 blueswir1
        raise_exception(TT_ILL_INSN);
3772 5a834bb4 Blue Swirl
    } else {
3773 5a834bb4 Blue Swirl
        cpu_put_psr(env, new_psr);
3774 5a834bb4 Blue Swirl
    }
3775 af7bf89b bellard
}
3776 af7bf89b bellard
3777 1a2fb1c0 blueswir1
target_ulong helper_rdpsr(void)
3778 af7bf89b bellard
{
3779 5a834bb4 Blue Swirl
    return get_psr();
3780 af7bf89b bellard
}
3781 3475187d bellard
3782 3475187d bellard
#else
3783 72a9747b blueswir1
/* XXX: use another pointer for %iN registers to avoid slow wrapping
3784 72a9747b blueswir1
   handling ? */
3785 72a9747b blueswir1
void helper_save(void)
3786 72a9747b blueswir1
{
3787 72a9747b blueswir1
    uint32_t cwp;
3788 72a9747b blueswir1
3789 5a834bb4 Blue Swirl
    cwp = cwp_dec(env->cwp - 1);
3790 72a9747b blueswir1
    if (env->cansave == 0) {
3791 72a9747b blueswir1
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
3792 72a9747b blueswir1
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3793 72a9747b blueswir1
                                    ((env->wstate & 0x7) << 2)));
3794 72a9747b blueswir1
    } else {
3795 72a9747b blueswir1
        if (env->cleanwin - env->canrestore == 0) {
3796 72a9747b blueswir1
            // XXX Clean windows without trap
3797 72a9747b blueswir1
            raise_exception(TT_CLRWIN);
3798 72a9747b blueswir1
        } else {
3799 72a9747b blueswir1
            env->cansave--;
3800 72a9747b blueswir1
            env->canrestore++;
3801 72a9747b blueswir1
            set_cwp(cwp);
3802 72a9747b blueswir1
        }
3803 72a9747b blueswir1
    }
3804 72a9747b blueswir1
}
3805 72a9747b blueswir1
3806 72a9747b blueswir1
void helper_restore(void)
3807 72a9747b blueswir1
{
3808 72a9747b blueswir1
    uint32_t cwp;
3809 72a9747b blueswir1
3810 5a834bb4 Blue Swirl
    cwp = cwp_inc(env->cwp + 1);
3811 72a9747b blueswir1
    if (env->canrestore == 0) {
3812 72a9747b blueswir1
        raise_exception(TT_FILL | (env->otherwin != 0 ?
3813 72a9747b blueswir1
                                   (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3814 72a9747b blueswir1
                                   ((env->wstate & 0x7) << 2)));
3815 72a9747b blueswir1
    } else {
3816 72a9747b blueswir1
        env->cansave++;
3817 72a9747b blueswir1
        env->canrestore--;
3818 72a9747b blueswir1
        set_cwp(cwp);
3819 72a9747b blueswir1
    }
3820 72a9747b blueswir1
}
3821 72a9747b blueswir1
3822 72a9747b blueswir1
void helper_flushw(void)
3823 72a9747b blueswir1
{
3824 1a14026e blueswir1
    if (env->cansave != env->nwindows - 2) {
3825 72a9747b blueswir1
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
3826 72a9747b blueswir1
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3827 72a9747b blueswir1
                                    ((env->wstate & 0x7) << 2)));
3828 72a9747b blueswir1
    }
3829 72a9747b blueswir1
}
3830 72a9747b blueswir1
3831 72a9747b blueswir1
void helper_saved(void)
3832 72a9747b blueswir1
{
3833 72a9747b blueswir1
    env->cansave++;
3834 72a9747b blueswir1
    if (env->otherwin == 0)
3835 72a9747b blueswir1
        env->canrestore--;
3836 72a9747b blueswir1
    else
3837 72a9747b blueswir1
        env->otherwin--;
3838 72a9747b blueswir1
}
3839 72a9747b blueswir1
3840 72a9747b blueswir1
void helper_restored(void)
3841 72a9747b blueswir1
{
3842 72a9747b blueswir1
    env->canrestore++;
3843 1a14026e blueswir1
    if (env->cleanwin < env->nwindows - 1)
3844 72a9747b blueswir1
        env->cleanwin++;
3845 72a9747b blueswir1
    if (env->otherwin == 0)
3846 72a9747b blueswir1
        env->cansave--;
3847 72a9747b blueswir1
    else
3848 72a9747b blueswir1
        env->otherwin--;
3849 72a9747b blueswir1
}
3850 72a9747b blueswir1
3851 5a834bb4 Blue Swirl
static target_ulong get_ccr(void)
3852 5a834bb4 Blue Swirl
{
3853 5a834bb4 Blue Swirl
    target_ulong psr;
3854 5a834bb4 Blue Swirl
3855 5a834bb4 Blue Swirl
    psr = get_psr();
3856 5a834bb4 Blue Swirl
3857 5a834bb4 Blue Swirl
    return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3858 5a834bb4 Blue Swirl
}
3859 5a834bb4 Blue Swirl
3860 5a834bb4 Blue Swirl
target_ulong cpu_get_ccr(CPUState *env1)
3861 5a834bb4 Blue Swirl
{
3862 5a834bb4 Blue Swirl
    CPUState *saved_env;
3863 5a834bb4 Blue Swirl
    target_ulong ret;
3864 5a834bb4 Blue Swirl
3865 5a834bb4 Blue Swirl
    saved_env = env;
3866 5a834bb4 Blue Swirl
    env = env1;
3867 5a834bb4 Blue Swirl
    ret = get_ccr();
3868 5a834bb4 Blue Swirl
    env = saved_env;
3869 5a834bb4 Blue Swirl
    return ret;
3870 5a834bb4 Blue Swirl
}
3871 5a834bb4 Blue Swirl
3872 5a834bb4 Blue Swirl
static void put_ccr(target_ulong val)
3873 5a834bb4 Blue Swirl
{
3874 5a834bb4 Blue Swirl
    target_ulong tmp = val;
3875 5a834bb4 Blue Swirl
3876 5a834bb4 Blue Swirl
    env->xcc = (tmp >> 4) << 20;
3877 5a834bb4 Blue Swirl
    env->psr = (tmp & 0xf) << 20;
3878 5a834bb4 Blue Swirl
    CC_OP = CC_OP_FLAGS;
3879 5a834bb4 Blue Swirl
}
3880 5a834bb4 Blue Swirl
3881 5a834bb4 Blue Swirl
void cpu_put_ccr(CPUState *env1, target_ulong val)
3882 5a834bb4 Blue Swirl
{
3883 5a834bb4 Blue Swirl
    CPUState *saved_env;
3884 5a834bb4 Blue Swirl
3885 5a834bb4 Blue Swirl
    saved_env = env;
3886 5a834bb4 Blue Swirl
    env = env1;
3887 5a834bb4 Blue Swirl
    put_ccr(val);
3888 5a834bb4 Blue Swirl
    env = saved_env;
3889 5a834bb4 Blue Swirl
}
3890 5a834bb4 Blue Swirl
3891 5a834bb4 Blue Swirl
static target_ulong get_cwp64(void)
3892 5a834bb4 Blue Swirl
{
3893 5a834bb4 Blue Swirl
    return env->nwindows - 1 - env->cwp;
3894 5a834bb4 Blue Swirl
}
3895 5a834bb4 Blue Swirl
3896 5a834bb4 Blue Swirl
target_ulong cpu_get_cwp64(CPUState *env1)
3897 5a834bb4 Blue Swirl
{
3898 5a834bb4 Blue Swirl
    CPUState *saved_env;
3899 5a834bb4 Blue Swirl
    target_ulong ret;
3900 5a834bb4 Blue Swirl
3901 5a834bb4 Blue Swirl
    saved_env = env;
3902 5a834bb4 Blue Swirl
    env = env1;
3903 5a834bb4 Blue Swirl
    ret = get_cwp64();
3904 5a834bb4 Blue Swirl
    env = saved_env;
3905 5a834bb4 Blue Swirl
    return ret;
3906 5a834bb4 Blue Swirl
}
3907 5a834bb4 Blue Swirl
3908 5a834bb4 Blue Swirl
static void put_cwp64(int cwp)
3909 5a834bb4 Blue Swirl
{
3910 5a834bb4 Blue Swirl
    if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3911 5a834bb4 Blue Swirl
        cwp %= env->nwindows;
3912 5a834bb4 Blue Swirl
    }
3913 5a834bb4 Blue Swirl
    set_cwp(env->nwindows - 1 - cwp);
3914 5a834bb4 Blue Swirl
}
3915 5a834bb4 Blue Swirl
3916 5a834bb4 Blue Swirl
void cpu_put_cwp64(CPUState *env1, int cwp)
3917 5a834bb4 Blue Swirl
{
3918 5a834bb4 Blue Swirl
    CPUState *saved_env;
3919 5a834bb4 Blue Swirl
3920 5a834bb4 Blue Swirl
    saved_env = env;
3921 5a834bb4 Blue Swirl
    env = env1;
3922 5a834bb4 Blue Swirl
    put_cwp64(cwp);
3923 5a834bb4 Blue Swirl
    env = saved_env;
3924 5a834bb4 Blue Swirl
}
3925 5a834bb4 Blue Swirl
3926 d35527d9 blueswir1
target_ulong helper_rdccr(void)
3927 d35527d9 blueswir1
{
3928 5a834bb4 Blue Swirl
    return get_ccr();
3929 d35527d9 blueswir1
}
3930 d35527d9 blueswir1
3931 d35527d9 blueswir1
void helper_wrccr(target_ulong new_ccr)
3932 d35527d9 blueswir1
{
3933 5a834bb4 Blue Swirl
    put_ccr(new_ccr);
3934 d35527d9 blueswir1
}
3935 d35527d9 blueswir1
3936 d35527d9 blueswir1
// CWP handling is reversed in V9, but we still use the V8 register
3937 d35527d9 blueswir1
// order.
3938 d35527d9 blueswir1
target_ulong helper_rdcwp(void)
3939 d35527d9 blueswir1
{
3940 5a834bb4 Blue Swirl
    return get_cwp64();
3941 d35527d9 blueswir1
}
3942 d35527d9 blueswir1
3943 d35527d9 blueswir1
void helper_wrcwp(target_ulong new_cwp)
3944 d35527d9 blueswir1
{
3945 5a834bb4 Blue Swirl
    put_cwp64(new_cwp);
3946 d35527d9 blueswir1
}
3947 3475187d bellard
3948 1f5063fb blueswir1
// This function uses non-native bit order
3949 1f5063fb blueswir1
#define GET_FIELD(X, FROM, TO)                                  \
3950 1f5063fb blueswir1
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3951 1f5063fb blueswir1
3952 1f5063fb blueswir1
// This function uses the order in the manuals, i.e. bit 0 is 2^0
3953 1f5063fb blueswir1
#define GET_FIELD_SP(X, FROM, TO)               \
3954 1f5063fb blueswir1
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
3955 1f5063fb blueswir1
3956 1f5063fb blueswir1
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3957 1f5063fb blueswir1
{
3958 1f5063fb blueswir1
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3959 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3960 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3961 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3962 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3963 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3964 1f5063fb blueswir1
        (((pixel_addr >> 55) & 1) << 4) |
3965 1f5063fb blueswir1
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3966 1f5063fb blueswir1
        GET_FIELD_SP(pixel_addr, 11, 12);
3967 1f5063fb blueswir1
}
3968 1f5063fb blueswir1
3969 1f5063fb blueswir1
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3970 1f5063fb blueswir1
{
3971 1f5063fb blueswir1
    uint64_t tmp;
3972 1f5063fb blueswir1
3973 1f5063fb blueswir1
    tmp = addr + offset;
3974 1f5063fb blueswir1
    env->gsr &= ~7ULL;
3975 1f5063fb blueswir1
    env->gsr |= tmp & 7ULL;
3976 1f5063fb blueswir1
    return tmp & ~7ULL;
3977 1f5063fb blueswir1
}
3978 1f5063fb blueswir1
3979 1a2fb1c0 blueswir1
target_ulong helper_popc(target_ulong val)
3980 3475187d bellard
{
3981 1a2fb1c0 blueswir1
    return ctpop64(val);
3982 3475187d bellard
}
3983 83469015 bellard
3984 d780a466 Igor V. Kovalenko
static inline uint64_t *get_gregset(uint32_t pstate)
3985 83469015 bellard
{
3986 83469015 bellard
    switch (pstate) {
3987 83469015 bellard
    default:
3988 7e8695ed Igor V. Kovalenko
        DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3989 7e8695ed Igor V. Kovalenko
                pstate,
3990 7e8695ed Igor V. Kovalenko
                (pstate & PS_IG) ? " IG" : "",
3991 7e8695ed Igor V. Kovalenko
                (pstate & PS_MG) ? " MG" : "",
3992 7e8695ed Igor V. Kovalenko
                (pstate & PS_AG) ? " AG" : "");
3993 7e8695ed Igor V. Kovalenko
        /* pass through to normal set of global registers */
3994 83469015 bellard
    case 0:
3995 0f8a249a blueswir1
        return env->bgregs;
3996 83469015 bellard
    case PS_AG:
3997 0f8a249a blueswir1
        return env->agregs;
3998 83469015 bellard
    case PS_MG:
3999 0f8a249a blueswir1
        return env->mgregs;
4000 83469015 bellard
    case PS_IG:
4001 0f8a249a blueswir1
        return env->igregs;
4002 83469015 bellard
    }
4003 83469015 bellard
}
4004 83469015 bellard
4005 d780a466 Igor V. Kovalenko
static inline void change_pstate(uint32_t new_pstate)
4006 83469015 bellard
{
4007 d780a466 Igor V. Kovalenko
    uint32_t pstate_regs, new_pstate_regs;
4008 83469015 bellard
    uint64_t *src, *dst;
4009 83469015 bellard
4010 5210977a Igor Kovalenko
    if (env->def->features & CPU_FEATURE_GL) {
4011 5210977a Igor Kovalenko
        // PS_AG is not implemented in this case
4012 5210977a Igor Kovalenko
        new_pstate &= ~PS_AG;
4013 5210977a Igor Kovalenko
    }
4014 5210977a Igor Kovalenko
4015 83469015 bellard
    pstate_regs = env->pstate & 0xc01;
4016 83469015 bellard
    new_pstate_regs = new_pstate & 0xc01;
4017 5210977a Igor Kovalenko
4018 83469015 bellard
    if (new_pstate_regs != pstate_regs) {
4019 7e8695ed Igor V. Kovalenko
        DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
4020 7e8695ed Igor V. Kovalenko
                       pstate_regs, new_pstate_regs);
4021 0f8a249a blueswir1
        // Switch global register bank
4022 0f8a249a blueswir1
        src = get_gregset(new_pstate_regs);
4023 0f8a249a blueswir1
        dst = get_gregset(pstate_regs);
4024 0f8a249a blueswir1
        memcpy32(dst, env->gregs);
4025 0f8a249a blueswir1
        memcpy32(env->gregs, src);
4026 83469015 bellard
    }
4027 7e8695ed Igor V. Kovalenko
    else {
4028 7e8695ed Igor V. Kovalenko
        DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
4029 7e8695ed Igor V. Kovalenko
                       new_pstate_regs);
4030 7e8695ed Igor V. Kovalenko
    }
4031 83469015 bellard
    env->pstate = new_pstate;
4032 83469015 bellard
}
4033 83469015 bellard
4034 1a2fb1c0 blueswir1
void helper_wrpstate(target_ulong new_state)
4035 8f1f22f6 blueswir1
{
4036 5210977a Igor Kovalenko
    change_pstate(new_state & 0xf3f);
4037 4dc28134 Igor V. Kovalenko
4038 4dc28134 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
4039 4dc28134 Igor V. Kovalenko
    if (cpu_interrupts_enabled(env)) {
4040 4dc28134 Igor V. Kovalenko
        cpu_check_irqs(env);
4041 4dc28134 Igor V. Kovalenko
    }
4042 4dc28134 Igor V. Kovalenko
#endif
4043 8f1f22f6 blueswir1
}
4044 8f1f22f6 blueswir1
4045 e67768d0 Blue Swirl
void cpu_change_pstate(CPUState *env1, uint32_t new_pstate)
4046 e67768d0 Blue Swirl
{
4047 e67768d0 Blue Swirl
    CPUState *saved_env;
4048 e67768d0 Blue Swirl
4049 e67768d0 Blue Swirl
    saved_env = env;
4050 e67768d0 Blue Swirl
    env = env1;
4051 e67768d0 Blue Swirl
    change_pstate(new_pstate);
4052 e67768d0 Blue Swirl
    env = saved_env;
4053 e67768d0 Blue Swirl
}
4054 e67768d0 Blue Swirl
4055 1fae7b70 Igor V. Kovalenko
void helper_wrpil(target_ulong new_pil)
4056 1fae7b70 Igor V. Kovalenko
{
4057 1fae7b70 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
4058 1fae7b70 Igor V. Kovalenko
    DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
4059 1fae7b70 Igor V. Kovalenko
                   env->psrpil, (uint32_t)new_pil);
4060 1fae7b70 Igor V. Kovalenko
4061 1fae7b70 Igor V. Kovalenko
    env->psrpil = new_pil;
4062 1fae7b70 Igor V. Kovalenko
4063 1fae7b70 Igor V. Kovalenko
    if (cpu_interrupts_enabled(env)) {
4064 1fae7b70 Igor V. Kovalenko
        cpu_check_irqs(env);
4065 1fae7b70 Igor V. Kovalenko
    }
4066 1fae7b70 Igor V. Kovalenko
#endif
4067 1fae7b70 Igor V. Kovalenko
}
4068 1fae7b70 Igor V. Kovalenko
4069 1a2fb1c0 blueswir1
void helper_done(void)
4070 83469015 bellard
{
4071 8194f35a Igor Kovalenko
    trap_state* tsptr = cpu_tsptr(env);
4072 8194f35a Igor Kovalenko
4073 3723cd09 Igor V. Kovalenko
    env->pc = tsptr->tnpc;
4074 8194f35a Igor Kovalenko
    env->npc = tsptr->tnpc + 4;
4075 5a834bb4 Blue Swirl
    put_ccr(tsptr->tstate >> 32);
4076 8194f35a Igor Kovalenko
    env->asi = (tsptr->tstate >> 24) & 0xff;
4077 8194f35a Igor Kovalenko
    change_pstate((tsptr->tstate >> 8) & 0xf3f);
4078 5a834bb4 Blue Swirl
    put_cwp64(tsptr->tstate & 0xff);
4079 e6bf7d70 blueswir1
    env->tl--;
4080 4dc28134 Igor V. Kovalenko
4081 4dc28134 Igor V. Kovalenko
    DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
4082 4dc28134 Igor V. Kovalenko
4083 4dc28134 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
4084 4dc28134 Igor V. Kovalenko
    if (cpu_interrupts_enabled(env)) {
4085 4dc28134 Igor V. Kovalenko
        cpu_check_irqs(env);
4086 4dc28134 Igor V. Kovalenko
    }
4087 4dc28134 Igor V. Kovalenko
#endif
4088 83469015 bellard
}
4089 83469015 bellard
4090 1a2fb1c0 blueswir1
void helper_retry(void)
4091 83469015 bellard
{
4092 8194f35a Igor Kovalenko
    trap_state* tsptr = cpu_tsptr(env);
4093 8194f35a Igor Kovalenko
4094 8194f35a Igor Kovalenko
    env->pc = tsptr->tpc;
4095 8194f35a Igor Kovalenko
    env->npc = tsptr->tnpc;
4096 5a834bb4 Blue Swirl
    put_ccr(tsptr->tstate >> 32);
4097 8194f35a Igor Kovalenko
    env->asi = (tsptr->tstate >> 24) & 0xff;
4098 8194f35a Igor Kovalenko
    change_pstate((tsptr->tstate >> 8) & 0xf3f);
4099 5a834bb4 Blue Swirl
    put_cwp64(tsptr->tstate & 0xff);
4100 e6bf7d70 blueswir1
    env->tl--;
4101 4dc28134 Igor V. Kovalenko
4102 4dc28134 Igor V. Kovalenko
    DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
4103 4dc28134 Igor V. Kovalenko
4104 4dc28134 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
4105 4dc28134 Igor V. Kovalenko
    if (cpu_interrupts_enabled(env)) {
4106 4dc28134 Igor V. Kovalenko
        cpu_check_irqs(env);
4107 4dc28134 Igor V. Kovalenko
    }
4108 4dc28134 Igor V. Kovalenko
#endif
4109 4dc28134 Igor V. Kovalenko
}
4110 4dc28134 Igor V. Kovalenko
4111 4dc28134 Igor V. Kovalenko
static void do_modify_softint(const char* operation, uint32_t value)
4112 4dc28134 Igor V. Kovalenko
{
4113 4dc28134 Igor V. Kovalenko
    if (env->softint != value) {
4114 4dc28134 Igor V. Kovalenko
        env->softint = value;
4115 4dc28134 Igor V. Kovalenko
        DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
4116 4dc28134 Igor V. Kovalenko
#if !defined(CONFIG_USER_ONLY)
4117 4dc28134 Igor V. Kovalenko
        if (cpu_interrupts_enabled(env)) {
4118 4dc28134 Igor V. Kovalenko
            cpu_check_irqs(env);
4119 4dc28134 Igor V. Kovalenko
        }
4120 4dc28134 Igor V. Kovalenko
#endif
4121 4dc28134 Igor V. Kovalenko
    }
4122 83469015 bellard
}
4123 9d926598 blueswir1
4124 9d926598 blueswir1
void helper_set_softint(uint64_t value)
4125 9d926598 blueswir1
{
4126 4dc28134 Igor V. Kovalenko
    do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
4127 9d926598 blueswir1
}
4128 9d926598 blueswir1
4129 9d926598 blueswir1
void helper_clear_softint(uint64_t value)
4130 9d926598 blueswir1
{
4131 4dc28134 Igor V. Kovalenko
    do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
4132 9d926598 blueswir1
}
4133 9d926598 blueswir1
4134 9d926598 blueswir1
void helper_write_softint(uint64_t value)
4135 9d926598 blueswir1
{
4136 4dc28134 Igor V. Kovalenko
    do_modify_softint("helper_write_softint", (uint32_t)value);
4137 9d926598 blueswir1
}
4138 3475187d bellard
#endif
4139 ee5bbe38 bellard
4140 91736d37 blueswir1
#ifdef TARGET_SPARC64
4141 8194f35a Igor Kovalenko
trap_state* cpu_tsptr(CPUState* env)
4142 8194f35a Igor Kovalenko
{
4143 8194f35a Igor Kovalenko
    return &env->ts[env->tl & MAXTL_MASK];
4144 8194f35a Igor Kovalenko
}
4145 91736d37 blueswir1
#endif
4146 ee5bbe38 bellard
4147 5fafdf24 ths
#if !defined(CONFIG_USER_ONLY)
4148 ee5bbe38 bellard
4149 d2889a3e blueswir1
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4150 d2889a3e blueswir1
                                void *retaddr);
4151 d2889a3e blueswir1
4152 ee5bbe38 bellard
#define MMUSUFFIX _mmu
4153 d2889a3e blueswir1
#define ALIGNED_ONLY
4154 ee5bbe38 bellard
4155 ee5bbe38 bellard
#define SHIFT 0
4156 ee5bbe38 bellard
#include "softmmu_template.h"
4157 ee5bbe38 bellard
4158 ee5bbe38 bellard
#define SHIFT 1
4159 ee5bbe38 bellard
#include "softmmu_template.h"
4160 ee5bbe38 bellard
4161 ee5bbe38 bellard
#define SHIFT 2
4162 ee5bbe38 bellard
#include "softmmu_template.h"
4163 ee5bbe38 bellard
4164 ee5bbe38 bellard
#define SHIFT 3
4165 ee5bbe38 bellard
#include "softmmu_template.h"
4166 ee5bbe38 bellard
4167 c2bc0e38 blueswir1
/* XXX: make it generic ? */
4168 c2bc0e38 blueswir1
static void cpu_restore_state2(void *retaddr)
4169 c2bc0e38 blueswir1
{
4170 c2bc0e38 blueswir1
    TranslationBlock *tb;
4171 c2bc0e38 blueswir1
    unsigned long pc;
4172 c2bc0e38 blueswir1
4173 c2bc0e38 blueswir1
    if (retaddr) {
4174 c2bc0e38 blueswir1
        /* now we have a real cpu fault */
4175 c2bc0e38 blueswir1
        pc = (unsigned long)retaddr;
4176 c2bc0e38 blueswir1
        tb = tb_find_pc(pc);
4177 c2bc0e38 blueswir1
        if (tb) {
4178 c2bc0e38 blueswir1
            /* the PC is inside the translated code. It means that we have
4179 c2bc0e38 blueswir1
               a virtual CPU fault */
4180 618ba8e6 Stefan Weil
            cpu_restore_state(tb, env, pc);
4181 c2bc0e38 blueswir1
        }
4182 c2bc0e38 blueswir1
    }
4183 c2bc0e38 blueswir1
}
4184 c2bc0e38 blueswir1
4185 d2889a3e blueswir1
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4186 d2889a3e blueswir1
                                void *retaddr)
4187 d2889a3e blueswir1
{
4188 94554550 blueswir1
#ifdef DEBUG_UNALIGNED
4189 c2bc0e38 blueswir1
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4190 c2bc0e38 blueswir1
           "\n", addr, env->pc);
4191 94554550 blueswir1
#endif
4192 c2bc0e38 blueswir1
    cpu_restore_state2(retaddr);
4193 94554550 blueswir1
    raise_exception(TT_UNALIGNED);
4194 d2889a3e blueswir1
}
4195 ee5bbe38 bellard
4196 ee5bbe38 bellard
/* try to fill the TLB and return an exception if error. If retaddr is
4197 ee5bbe38 bellard
   NULL, it means that the function was called in C code (i.e. not
4198 ee5bbe38 bellard
   from generated code or from helper.c) */
4199 ee5bbe38 bellard
/* XXX: fix it to restore all registers */
4200 6ebbf390 j_mayer
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4201 ee5bbe38 bellard
{
4202 ee5bbe38 bellard
    int ret;
4203 ee5bbe38 bellard
    CPUState *saved_env;
4204 ee5bbe38 bellard
4205 ee5bbe38 bellard
    /* XXX: hack to restore env in all cases, even if not called from
4206 ee5bbe38 bellard
       generated code */
4207 ee5bbe38 bellard
    saved_env = env;
4208 ee5bbe38 bellard
    env = cpu_single_env;
4209 ee5bbe38 bellard
4210 6ebbf390 j_mayer
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4211 ee5bbe38 bellard
    if (ret) {
4212 c2bc0e38 blueswir1
        cpu_restore_state2(retaddr);
4213 1162c041 Blue Swirl
        cpu_loop_exit(env);
4214 ee5bbe38 bellard
    }
4215 ee5bbe38 bellard
    env = saved_env;
4216 ee5bbe38 bellard
}
4217 ee5bbe38 bellard
4218 3c7b48b7 Paul Brook
#endif /* !CONFIG_USER_ONLY */
4219 6c36d3fa blueswir1
4220 6c36d3fa blueswir1
#ifndef TARGET_SPARC64
4221 3c7b48b7 Paul Brook
#if !defined(CONFIG_USER_ONLY)
4222 c227f099 Anthony Liguori
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4223 e18231a3 blueswir1
                          int is_asi, int size)
4224 6c36d3fa blueswir1
{
4225 6c36d3fa blueswir1
    CPUState *saved_env;
4226 576c2cdc Artyom Tarasenko
    int fault_type;
4227 6c36d3fa blueswir1
4228 6c36d3fa blueswir1
    /* XXX: hack to restore env in all cases, even if not called from
4229 6c36d3fa blueswir1
       generated code */
4230 6c36d3fa blueswir1
    saved_env = env;
4231 6c36d3fa blueswir1
    env = cpu_single_env;
4232 8543e2cf blueswir1
#ifdef DEBUG_UNASSIGNED
4233 8543e2cf blueswir1
    if (is_asi)
4234 e18231a3 blueswir1
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4235 77f193da blueswir1
               " asi 0x%02x from " TARGET_FMT_lx "\n",
4236 e18231a3 blueswir1
               is_exec ? "exec" : is_write ? "write" : "read", size,
4237 e18231a3 blueswir1
               size == 1 ? "" : "s", addr, is_asi, env->pc);
4238 8543e2cf blueswir1
    else
4239 e18231a3 blueswir1
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4240 e18231a3 blueswir1
               " from " TARGET_FMT_lx "\n",
4241 e18231a3 blueswir1
               is_exec ? "exec" : is_write ? "write" : "read", size,
4242 e18231a3 blueswir1
               size == 1 ? "" : "s", addr, env->pc);
4243 8543e2cf blueswir1
#endif
4244 576c2cdc Artyom Tarasenko
    /* Don't overwrite translation and access faults */
4245 576c2cdc Artyom Tarasenko
    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4246 576c2cdc Artyom Tarasenko
    if ((fault_type > 4) || (fault_type == 0)) {
4247 576c2cdc Artyom Tarasenko
        env->mmuregs[3] = 0; /* Fault status register */
4248 576c2cdc Artyom Tarasenko
        if (is_asi)
4249 576c2cdc Artyom Tarasenko
            env->mmuregs[3] |= 1 << 16;
4250 576c2cdc Artyom Tarasenko
        if (env->psrs)
4251 576c2cdc Artyom Tarasenko
            env->mmuregs[3] |= 1 << 5;
4252 576c2cdc Artyom Tarasenko
        if (is_exec)
4253 576c2cdc Artyom Tarasenko
            env->mmuregs[3] |= 1 << 6;
4254 576c2cdc Artyom Tarasenko
        if (is_write)
4255 576c2cdc Artyom Tarasenko
            env->mmuregs[3] |= 1 << 7;
4256 576c2cdc Artyom Tarasenko
        env->mmuregs[3] |= (5 << 2) | 2;
4257 576c2cdc Artyom Tarasenko
        /* SuperSPARC will never place instruction fault addresses in the FAR */
4258 576c2cdc Artyom Tarasenko
        if (!is_exec) {
4259 576c2cdc Artyom Tarasenko
            env->mmuregs[4] = addr; /* Fault address register */
4260 576c2cdc Artyom Tarasenko
        }
4261 576c2cdc Artyom Tarasenko
    }
4262 576c2cdc Artyom Tarasenko
    /* overflow (same type fault was not read before another fault) */
4263 576c2cdc Artyom Tarasenko
    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4264 576c2cdc Artyom Tarasenko
        env->mmuregs[3] |= 1;
4265 576c2cdc Artyom Tarasenko
    }
4266 576c2cdc Artyom Tarasenko
4267 6c36d3fa blueswir1
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4268 1b2e93c1 blueswir1
        if (is_exec)
4269 1b2e93c1 blueswir1
            raise_exception(TT_CODE_ACCESS);
4270 1b2e93c1 blueswir1
        else
4271 1b2e93c1 blueswir1
            raise_exception(TT_DATA_ACCESS);
4272 6c36d3fa blueswir1
    }
4273 576c2cdc Artyom Tarasenko
4274 576c2cdc Artyom Tarasenko
    /* flush neverland mappings created during no-fault mode,
4275 576c2cdc Artyom Tarasenko
       so the sequential MMU faults report proper fault types */
4276 576c2cdc Artyom Tarasenko
    if (env->mmuregs[0] & MMU_NF) {
4277 576c2cdc Artyom Tarasenko
        tlb_flush(env, 1);
4278 576c2cdc Artyom Tarasenko
    }
4279 15e7c451 Artyom Tarasenko
4280 15e7c451 Artyom Tarasenko
    env = saved_env;
4281 6c36d3fa blueswir1
}
4282 3c7b48b7 Paul Brook
#endif
4283 3c7b48b7 Paul Brook
#else
4284 3c7b48b7 Paul Brook
#if defined(CONFIG_USER_ONLY)
4285 3c7b48b7 Paul Brook
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4286 3c7b48b7 Paul Brook
                          int is_asi, int size)
4287 6c36d3fa blueswir1
#else
4288 c227f099 Anthony Liguori
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4289 e18231a3 blueswir1
                          int is_asi, int size)
4290 3c7b48b7 Paul Brook
#endif
4291 6c36d3fa blueswir1
{
4292 6c36d3fa blueswir1
    CPUState *saved_env;
4293 6c36d3fa blueswir1
4294 6c36d3fa blueswir1
    /* XXX: hack to restore env in all cases, even if not called from
4295 6c36d3fa blueswir1
       generated code */
4296 6c36d3fa blueswir1
    saved_env = env;
4297 6c36d3fa blueswir1
    env = cpu_single_env;
4298 dffbe217 Igor V. Kovalenko
4299 dffbe217 Igor V. Kovalenko
#ifdef DEBUG_UNASSIGNED
4300 77f193da blueswir1
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4301 77f193da blueswir1
           "\n", addr, env->pc);
4302 6c36d3fa blueswir1
#endif
4303 dffbe217 Igor V. Kovalenko
4304 1b2e93c1 blueswir1
    if (is_exec)
4305 1b2e93c1 blueswir1
        raise_exception(TT_CODE_ACCESS);
4306 1b2e93c1 blueswir1
    else
4307 1b2e93c1 blueswir1
        raise_exception(TT_DATA_ACCESS);
4308 dffbe217 Igor V. Kovalenko
4309 dffbe217 Igor V. Kovalenko
    env = saved_env;
4310 6c36d3fa blueswir1
}
4311 6c36d3fa blueswir1
#endif
4312 20c9f095 blueswir1
4313 3c7b48b7 Paul Brook
4314 f4b1a842 blueswir1
#ifdef TARGET_SPARC64
4315 f4b1a842 blueswir1
void helper_tick_set_count(void *opaque, uint64_t count)
4316 f4b1a842 blueswir1
{
4317 f4b1a842 blueswir1
#if !defined(CONFIG_USER_ONLY)
4318 f4b1a842 blueswir1
    cpu_tick_set_count(opaque, count);
4319 f4b1a842 blueswir1
#endif
4320 f4b1a842 blueswir1
}
4321 f4b1a842 blueswir1
4322 f4b1a842 blueswir1
uint64_t helper_tick_get_count(void *opaque)
4323 f4b1a842 blueswir1
{
4324 f4b1a842 blueswir1
#if !defined(CONFIG_USER_ONLY)
4325 f4b1a842 blueswir1
    return cpu_tick_get_count(opaque);
4326 f4b1a842 blueswir1
#else
4327 f4b1a842 blueswir1
    return 0;
4328 f4b1a842 blueswir1
#endif
4329 f4b1a842 blueswir1
}
4330 f4b1a842 blueswir1
4331 f4b1a842 blueswir1
void helper_tick_set_limit(void *opaque, uint64_t limit)
4332 f4b1a842 blueswir1
{
4333 f4b1a842 blueswir1
#if !defined(CONFIG_USER_ONLY)
4334 f4b1a842 blueswir1
    cpu_tick_set_limit(opaque, limit);
4335 f4b1a842 blueswir1
#endif
4336 f4b1a842 blueswir1
}
4337 f4b1a842 blueswir1
#endif